Skip to main content
Log in

Review on the gas hydrate development and production as a new energy resource

  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Gas hydrates consist of guest gas molecules inside hydrogen-bonded water lattices. Natural gas hydrates are found in offshore and permafrost regions. The large amounts of gas hydrate reserves suggest the potential of gas hydrates as an energy resource if economically viable production methods were developed. The proper understandings of hydrate formation/dissociation are important for the drilling and oil production applications. The investigations of physical and geotechnical properties provide the in-depth understandings of the in-situ hydrate formation mechanism and the associated production technologies. The purpose of this review paper is to provide a starting kit for civil engineers who have recently started the research related to the hydrate development and production and want to have insights on the general trends of the hydrate research and the relevant knowledge needed for their research. Gas hydrate explorations include the geophysical explorations, such as the seismic survey, the borehole logging and the geological and geochemical explorations. Gas hydrate productions require the dissociation of gas hydrates, and the production technologies are categorized based on the dissociation techniques involved: depressurization method, thermal stimulation method, and inhibitor injection method. Establishing safe and efficient gas production technology requires the extensive information on the geotechnical characteristics of hydrate reservoirs. Flow assurances, the integrity of sediment formation and the well bore stability are crucial for the safe and efficient productions of gases from gas hydrates in sediments. The strength and deformation characteristics, the fluid migration characteristics, and the thermal conduction characteristics are key factors for controlling the above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bily, C. and Dick, J. W. L. (1974). “Natural occurring gas hydrates in the Mackenzie Delta, Northwest Territories.” Bulletin of Canadian Petroleum Geology, Vol. 22, No. 3, pp. 340–352.

    Google Scholar 

  • Boswell, R. M. and Collett, T. (2006). “The gas hydrate resource pyramid.” Fire in the Ice, Fall 2006, pp. 5–7.

  • Boswell, R. M., Rose, K. K., and Baker, R. C. (2008). “The research path to determining the natural gas supply potential of marine gas hydrates.” 2008 Offshore Technology Confereence, Houston, Texas, USA, 5–8 May.

  • Computer Modeling Group Ltd. (2007). CMG STARS, Calgary, Alberta, Canada.

  • Dai, J., Xu, H., Snyder, F., and Dutta, N. (2004). “Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico.” The Leading Edge, Vol. 23, pp. 60–66.

    Article  Google Scholar 

  • Davy, H. (1811). “The Bakerian Lecture: On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies.” Philosophical Transactions of the Royal Society of London, Vol. 101, pp. 1–35.

    Article  Google Scholar 

  • Demirbras, A. (2010). “Methane hydrates as potential energy resource: Part 2 — Methane production processes from gas hydrates.” Energy Conversion and Management, Vol. 51, pp. 1562–1571.

    Article  Google Scholar 

  • Hammerschmidt, E. G. (1934). “Formation of gas hydrates in natural gas transmission lines.” Industrial and Engineering Chemistry, Vol. 26, No. 8, pp. 851–855.

    Article  Google Scholar 

  • Hornbach, M., Holdbrrok, W., Gorman, A., Hackwith, K. Lizarralde, D., and Pecher, I. (2003). “Direct seismic detection of methane hydrate on the Blake Ridge.” Geophysics, Vol. 68, pp. 92–100.

    Article  Google Scholar 

  • Hyodo, M., Y. Nakata, N. Yoshimoto, and R. Orense (2007). “Shear behaviour of methane hydrate-bearing sand.” 17th International Offshore and Polar Engineering Conference, Int. Soc. of Offshore and Polar Eng., Lisbon, Portugal, 1–6 July.

    Google Scholar 

  • Kang, S. P., Lee, H., Lee, C. S., and Sung, W. M. (2001). “Hydrate phase equilibria of the guest mixtures containing CO2, N2, and tetrahydrofuran.” Fluid Phase Equilibria, Vol. 185, pp. 101–109.

    Article  Google Scholar 

  • Klauda, J. B. and Sandler, S. I. (2005). “Global distribution of methane hydrate in ocean sediment.” Energy and Fuels, Vol. 19, No. 2, pp. 469–478.

    Article  Google Scholar 

  • Krause, F. F. (2001). “Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA: Ordovician limestone with submarine frost heave structures-a possible response to gas clathrate hydrate evolution.” Sediment. Geol., Vol. 145, pp. 189–213, DOI:10.1016/S0037-0738(01)00148-8.

    Article  Google Scholar 

  • Kurihara, M., Funatsu, K., Ouchi, H., Masuda, Y., and Narita, H. (2005). “Investigation on applicability of methane hydrate production methods to reserviors with diverse characteristics.” The Fifth International Conference on Gas Hydrates, Trondheim, Norway, 13–16 June, Vol. 3, Paper 3003, pp. 714–725.

    Google Scholar 

  • Lee, J. H. (2009). “The development status and prospect for the production technology of gas hydrate.” Earth System Engineering, Vol. 46, No. 3, pp. 387–401.

    Google Scholar 

  • Lee, J. Y. (2007). Hydrate-bearing sediments: Formation and geophysical properties, PhD Thesis, Georgia Institute of Technology, p. 241.

  • Lee, M. W. and Collett, T. S. (2005). “Assessments of gas hydrate concentrations estimated from sonic logs in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate research production well, in Scientific Results From the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories.” Canada [CD-ROM], edited by S. R. Dallimore and T. S. Collett, Bull. Geol. Surv. Can., p. 585.

  • Lee, J. Y., Francisca, F. M., Ruppel, C., and Santamarina, J. C. (2010c). “Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments, Part II: Small-strain mechanical properties.” Journal of Geophysical Research, Vol. 115, B11105, pp. 1–11, DOI:10.1029/2009JB00670.

    Google Scholar 

  • Lee, J. Y., Lee, J. H., and Lee, M. H. (2009). “Depressurization of natural GH-bearing sediments using new instrumented pressure chamber with vertical effective stress — preliminary results.” AGU Fall Meeting, 14–18 December, San Francisco, California, USA.

  • Lee, J. Y., Ruppel, C., and Santamarina, J. C., (2010a). “Volume change associated with formation and dissociation of hydrates, geochemistry.” Geophysics, and Geosystem, Vol. 11, No. 3, Q03007, DOI:10.1029/2009GC002667.

    Article  Google Scholar 

  • Lee, J. Y., Ruppel, C., and Santamarina, J. C. (2010b). “Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments, Part I: Electromagnetic properties.” Journal of Geophysical Research, Vol. 115, B11104, pp. 1–9, DOI:10.1029/2009JB006669.

    Google Scholar 

  • Lee, J. Y., Santamarina, J. C., and Ruppel, C. (2008). “Mechanical and electromagnetic properties of northern Guld of Mexico sediments with and without THF hydrates.” Marine and Petroleum Geology, Vol. 25, pp. 884–895.

    Article  Google Scholar 

  • Lee, J. Y., Yun, T. S., Santamarina, J. C., and Ruppel, C. (2007). “Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments.” Geochemistry Geophysics Geosystem, 8, Q06003, DOI:10.1029/2006GC001531.

    Article  Google Scholar 

  • Liu, X. and Flemings, P. B. (2007). “Dynamic multiphase flow model of hydrate formation in marine sediments.” J. Geophys. Res., Vol. 112, B03101, doi:10.1029/2005JB004227.

    Article  Google Scholar 

  • MacDonald, G. J. (1990). “Role of methane clathrates in past and future climates.” Climatic Changes, Vol. 16, pp. 247.

    Article  Google Scholar 

  • Makogon, Y. F., Holditch, S. A., and Makogon, T. Y. (2007). “Natural gas-hydrates — A potential energy resource for 21st century.” Journal of Petoleum Science and Engineering, Vol. 56, pp. 14–31.

    Article  Google Scholar 

  • Masuda, S. (1998). “The CO2 ocean sequestration project in Japan, presented at the fourth international conference on greenhouse gas control technologies.” Interlaken, Switzerland, August 30–September 2.

  • Masui, A., H. Haneda, Y. Ogata, and K. Aoki (2006). “Triaxial compression test on submarine sediment containing methane hydrate in deep sea off the coast of Japan.” the 41st Annual Conference, Jpn. Geotech. Soc., Kagoshima, Japan, 12–14 July.

  • Moridis, G. and Collet, T. (2003). “Strategies for gas production from hydrate accumulation under various geologic conditions.” LBNL-52568, TOUGH symposium 2003, Berkeley, CA, May 12–14.

  • Mordis, G. J., Collet, T. S., Boswell, R., Kurihama, M., Reagan, M. T., Koh, C., and Sloan, E. D. (2009). “Toward production from gas hydrate: Current status, assessment of resources, and simulation-based evaluation of technology and potential.” SPE Unconventional Reservoirs Conference, 10–12 February 2008, Keystone, Colorado, USA.

  • Moridis, G. J. and Kowalsky, M. B. (2006). “Gas production from unconfined class 2 hydrate accumulations in the oceanic subsurface.” In Economic Geology of Natural Gas Hydrate, ed. M.D. Max, A.H. Johnson, and W.P. Dillon, Chap. Dordrecht, The Netherlands: coastal Systems and Continental Margins, Springer, Vol. 7, pp. 249–266.

    Chapter  Google Scholar 

  • Moridis, G. J., Kowalsky, M., and Pruess, K. (2008). TOUGH +HYDRATE v1.0 user’s manual: A code for the simulation of system behavior in hydrate-bearing geologic media. Report LBNL_00149E, Lawrence Berkeley National Laboratory, Berkeley, California.

    Book  Google Scholar 

  • Mordis, G. J. and Regan, M. T. (2007). “Gas production from class 2 hydrate accumulations in the permafost.” Paper SPE 110858 presented at the SPE Annual Technical Conference and Exhibition, Anaheim, California, USA, 11–14 November, DOI:10.2118/110858-MS.

  • Moridis G. J. and Sloan, E. D. (2007). “Gas production potential of disperse low-saturation hydrate accumulation in oceanic sediments.” Energy Conversion and Management, Vol. 48, pp. 1834–1849.

    Article  Google Scholar 

  • Mualem, Y. (1976). “A new model for predicting the hydraulic conductivity of unsaturated porous media.” Water Resources Research, Vol. 12, pp. 21–296.

    Google Scholar 

  • Park, Y. J., Cha, M. J., Cha, J. H., Shin, K. C., Lee, H., Park, K. P., Huh, D. G., Lee, H. Y., Kim, S. J., and Lee, J. H. (2008). “Swapping carbon dioxide for complex gas hydrate structures.” ICGH 6th International Conference on Gas Hydrates; ICGH: Vancouver, Canada.

    Google Scholar 

  • Rutqvist, J. and G. J. Moridis (2007). “Numerical studies of geomechanical stability of hydrate-bearing sediments.” The Offshore Technology Conference, Am. Assoc. of Pet. Geol., Houston, Tex., 30 April to 3 May.

    Google Scholar 

  • Rydzy, M. B., Schicks, J. M., Naumann, R., and Erzinger, J. (2007). “Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy.” J. Phys. Chem. B, Vol. 111, pp. 9539–9545, doi:10.1021/jp0712755.

    Article  Google Scholar 

  • Sen, P. N., Scala, C., and Coheni, M. H. (1981). “A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads.” Geophysics, Vol. 46, No. 5, pp. 781–795.

    Article  Google Scholar 

  • Sloan, E. D. (1998). Clathrate hydrates of natural gases, Marcel Dekker, NewYork, p. 705.

    Google Scholar 

  • Sloan, E. D. Jr. and Koh, C. A. (2008). Clathrate hydrates of natural gases, 3rd Ed., Boca Raton, Florida, USA: Chemical Industries, CRC Press, Vol. 119.

    Google Scholar 

  • Soloviev, V. A. (2002). “Global estimation of gas.” Russian Geology and Geophysics, Vol. 43, No. 7, pp. 609–624.

    Google Scholar 

  • Sultan, N., Cochonat, P., Foucher, J. P., and Mienert, J. (2004). “Effect of gas hydrates melting on seafloor slope instability.” Marine Geology, Vol. 213, No. 1–4, pp. 379–401.

    Article  Google Scholar 

  • Sultan, N., Voisset, M., Marsset, T., Vernant, A. M., Cauquil, E., Colliat, J. L., and Curinier, V. (2007). “Detection of free gas and gas hydrate based on 3D seismic data and cone penetration testing: An example from the Nigerian Continental Slope.” Mar. Geol., Vol. 240, pp. 235–255, doi:10.1016/j.margeo.2007.02.012.

    Article  Google Scholar 

  • Tomaru, H., Matsumoto, R, Coffin, R. B., Pohlman, J. W., and Spence, G. D. (2007). “Geochemical relation between gas hydrates and water venting in the seismic blanking zone on the northern Cascadia continental margin offshore Vancouber Island.” Canada, Journal of Geochemical Exploration, Vol. 95, pp. 40–47.

    Article  Google Scholar 

  • Trofimuk, A. A., Cherskiy, N. V., and Tsarev, V. P. (1977). “Future supply of nature-made petroleum and gas.” (R.F.Meyer, Ed.), 919, Pergamon Press, New York.

  • van Genuchten, M. T. (1980), “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J, Vol. 44, No. 5, pp. 892–898.

    Article  Google Scholar 

  • Vogt, P. R. and Jung, W. Y. (2002). “Holocene mass wasting on upper non-Polar continental slopes — due to post-Glacial ocean warming and hydrate dissociation?.” Geophysical Research Letters, Vol. 29, No. 9, p. 1341, DOI:10.1029/2001GL013488.

  • Waite, W. F., Stern, L. A., Kirby, S. H., Winters, W. J., and Mason, D. H. (2007). “Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate.” Geophys. J. Int., Vol. 169, pp. 767–774, doi:10.1111/j.1365-246X.2007.03382.x.

    Article  Google Scholar 

  • Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., Jang, J., Jung, J. W., Kneafsey, T. J., Shin, H., Soga, K., Winters, W. J., and Yun, T.-S. (2009). “Physical properties of hydrate-bearing sediments.” Rev. Geophys., Vol. 47, RG4003, DOI: 10.1029/2008RG000279.

    Article  Google Scholar 

  • Yun, T. S., Santamarina, J. C., and Ruppel, C. (2007). “Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate.” J. Geophys. Res., Vol. 112, B04106, DOI:10.1029/2006JB004484.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.Y., Ryu, B.J., Yun, T.S. et al. Review on the gas hydrate development and production as a new energy resource. KSCE J Civ Eng 15, 689–696 (2011). https://doi.org/10.1007/s12205-011-0009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-011-0009-3

Keywords

Navigation