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Abstract: To reduce the risk of infection in medical personnel working in infectious-disease areas, we proposed a
hyper-redundant mobile medical manipulator (HRMMM) to perform contact tasks in place of healthcare workers.
A kinematics-based tracking algorithm was designed to obtain highly accurate pose tracking. A kinematic model
of the HRMMM was established and its global Jacobian matrix was deduced. An expression of the tracking
error based on the Rodrigues rotation formula was designed, and the relationship between tracking errors and
gripper velocities was derived to ensure accurate object tracking. Considering the input constraints of the physical
system, a joint-constraint model of the HRMMM was established, and the variable-substitution method was used
to transform asymmetric constraints to symmetric constraints. All constraints were normalized by dividing by
their maximum values. A hybrid controller based on pseudo-inverse (PI) and quadratic programming (QP) was
designed to satisfy the real-time motion-control requirements in medical events. The PI method was used when
there was no input saturation, and the QP method was used when saturation occurred. A quadratic performance
index was designed to ensure smooth switching between PI and QP. The simulation results showed that the
HRMMM could approach the target pose with a smooth motion trajectory, while meeting different types of input
constraints.
Key words: input-constrained hybrid control, hyper-redundant mobile medical manipulator (HRMMM), pseudo-
inverse (PI), quadratic programming (QP), pose tracking
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Nomenclature

D— Normalized matrix
e—Pose error
ê— Joint position error
f—Coefficient vector
H—Coefficient matrix
J— Global Jacobian matrix
Jo— Jacobian matrix of the lifting manipulator
LP—Pose-error interaction matrix
LR—Rotating interaction matrix
pe— Initial gripper pose
p∗e— Target gripper pose
(px, py, pz)—Gripper position
q—Joint position vector
q0—Joint position vector at the previous moment

q̇— Joint velocity vector
¯̇q—Joint velocity vector with variable substitution
R— Rotation matrix
t—Position vector
T — Homogeneous transformation matrix
Uo—Normalized double-ended constraint
v—Linear velocity
Ve— Gripper velocity in the gripper coordinate system
Vg— Gripper velocity in the world coordinate system
α— Heading angle
ζ— State of the mobile platform
θ— Joint angle
θu—Rotation vector
ξ— Double-ended constraint
(φx, φy, φz)— Gripper attitude
ω—Angular velocity
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0 Introduction

Medical robots are robots used for medical treatment
or auxiliary medical care in medical scenarios. Medi-
cal robots can be divided into four categories: surgical
robots[1], rehabilitation robots[2], auxiliary robots[3],
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and service robots[4].
A mobile manipulator is an example of an auxiliary

robot. It includes a mobile platform and a manipulator.
The platform is capable of large-scale movement and
the manipulator can conduct delicate operations. An
important development trend in medical robots is that
the mobile manipulator greatly improves the working
range and flexibility of the manipulator[5].

The problem of coordinating the mobile-platform
control and manipulator control is caused by an in-
crease in the degrees of freedom (DOFs) of the mobile
manipulator. The current solution to this problem has
two branches: decentralized coordinated control and
integral control[6-7]. Decentralized coordinated control
refers to separately controlling the motions of the ma-
nipulator and mobile platform. The motion between
the manipulator and mobile platform must conform
to the physical connection. Current research meth-
ods include virtual vehicle[8], preferred manipulator
configuration[9], zero-moment point[10], and segmented-
motion planning[11].

In integral control, the manipulator and mobile plat-
form are controlled as a whole with high DOFs. In
general, the global Jacobian matrix of the mobile ma-
nipulator is first established, followed by a global kine-
matic and dynamic model[12-13]. The decentralized con-
trol method simplifies the system design but limits the
overall high-DOF motion capability of the system. The
integral control method can establish a comprehensive
index to optimize the system as a whole; however, it re-
quires extensive calculations because of the large num-
ber of DOFs[14].

The traditional inverse-kinematic methods of redun-
dant manipulators include Jacobian matrix transforma-
tion, pseudo-inverse (PI), and damped least-squares[15].
In practical applications, the physical input constraints
of the system must be considered in inverse kinematics,
including the position and velocity constraints of the
joints.

A redundant manipulator uses the redundant charac-
teristics of the system to prevent the joint from reach-
ing its limit. The main methods are as follows: gra-
dient projection[16], weighted least-norm (WLN)[17-18],
quadratic programming (QP)[19-20], flexible-priority
solution[21], prediction[22], and null-space saturation[23].
The above studies are all oriented to the same type
of rotating-joint manipulator system, and the inverse
kinematics is solved within the symmetric physical con-
straints of the joint position and velocity.

Existing inverse-kinematic algorithms for mobile ma-
nipulators are mainly based on a direct application or
extension of the above methods[24-25]. However, con-
sidering the mobile manipulator as a complete system,
it has asymmetric input constraints, including posi-
tive linear velocities, a one-way lift-device displacement,
and asymmetric limits of joint velocities. An advanced

optimal algorithm can be used to deduce the asymmet-
ric constraints at the cost of complex calculations[26-27].
Therefore, it is difficult to achieve real-time target-
tracking control.

In this study, the kinematic equations of the manipu-
lator and mobile platform as a whole were established,
and the global Jacobian matrix of a hyper-redundant
mobile medical manipulator (HRMMM) was derived.
A physical-constraint model of the system was estab-
lished and the asymmetric physical constraints were
converted to symmetric. Thus, the standard QP could
be implemented to quickly solve the inverse kinematics.
Moreover, the symmetrized constraint variables were
normalized to unify the optimal function of the joint
variables for the QP solution. Then, a hybrid control
scheme based on PI and standard QP was proposed to
realize real-time target-pose tracking control within the
physical constraints.

1 Kinematics of HRMMM

1.1 Parameters of HRMMM
The HRMMM is composed of a two-wheeled differen-

tial mobile platform (IR-C100), a lifting platform (lift-
ing rod and holder), and a 7-DOF Gen3 manipulator
(Kinova). Thus, the entire system has 10 DOFs, as
shown in Fig. 1. The structural parameters of the ma-
nipulator can be found in the Gen3 user guide 1○, which
includes the link length di and joint offset ai.
1.2 Kinematics of Lifting Manipulator

The established coordinate systems for the HRMMM
are shown in Fig. 1. The lifting platform drives the
manipulator up and down, and the lifting platform and
manipulator can be combined into an 8-DOF lifting ma-
nipulator. In addition, the coordinate system osyszs is
denoted as {s}, and so on. The kinematic model of the
system is established as follows.

The transformation matrix between the coordinate
systems {s} and {a} is as follows:

s
aT =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1

⎤
⎥⎥⎥⎥⎦

. (1)

The transformation matrix between the coordinate
systems {a} and {1} is as follows:

a
1T =

⎡
⎢⎢⎢⎢⎣

cos θ1 − sin θ1 0 0

− sin θ1 − cos θ1 0 0

0 0 −1 da

0 0 0 1

⎤
⎥⎥⎥⎥⎦

. (2)

1○https://www.kinovarobotics.com/product/gen3-robots



350 J. Shanghai Jiao Tong Univ. (Sci.), 2023, 28(3): 348-359

0.
12

 m

IR-C100
Lifting

rod

Control
panel 1

2

3

4

5
6

7

H
ol

de
r

Kinova

zc

yc

y s

yaoa

za

o s

d
(d

m
ax

=
0.

3 
m

)

z s
oc

yw

y s

ye

o7y7

z7
z6o6

y6

y5
o5

z4o4
y4

y3 o3

z3

z2o2

y2

y1
o1

z1

z5
a4

a3

a2

a1
d 7

d 6
d 5

d 4
d 3

d 2
d 1

d a

oe

ze

z s
o s

ow
zw

0.
84

3 
m

Fig. 1 Structure of the HRMMM

The transformation matrix i−1
i T between the coordi-

nate systems of each link i of the manipulator is related
to the link parity. When the link i is even,

i−1
i T =

⎡
⎢⎢⎢⎢⎣

cos θi − sin θi 0 0

0 0 −1 ai−1

sin θi cos θi 0 −di−1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

. (3)

When the link i is odd,

i−1
i T =

⎡
⎢⎢⎢⎢⎣

cos θi − sin θi 0 0

0 0 1 −di−1

− sin θi − cos θ3 0 −ai−1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

. (4)

The transformation matrix between the coordinate
systems {7} and {e} is as follows:

7
eT =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 −1 −d7

0 0 0 1

⎤
⎥⎥⎥⎥⎦

. (5)

By multiplying the transformation matrix obtained
above, the transformation matrix s

iT of the joint co-

ordinate system {i}, relative to the lifting-platform co-
ordinate system {s}, is as follows:

s
iT =

[
ni oi ai ti

0 0 0 1

]
=

s
aT

a
1T

1
2T · · · i−2

i−1T
i−1
i T . (6)

1.3 Global Jacobian Matrix
The state of the mobile platform is ζ = (x0, y0, α)T,

where (x0, y0) is the position of the mobile platform in
the world coordinate system and α is the heading angle,
as shown in Fig. 2. In addition, vc and ωc are defined as
the linear and angular velocities of the mobile platform
in the world coordinate system, respectively. Assuming
that the contact motion between the driving wheel of
the mobile platform and the ground is purely rolling,
the motion equation is as follows:

ζ̇ =

⎡
⎢⎢⎣
ẋ0

ẏ0

α̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
cosα 0

sin α 0

0 1

⎤
⎥⎥⎦
[
vc

ωc

]
. (7)
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Fig. 2 Kinematic model of the mobile platform

The Jacobian matrix of the 8-DOF lifting manipula-
tor is represented by the following vector-product con-
struction method:

Jo =

[
aa a1 × r1 · · · a6 × r6 a7 × r7

0 a1 · · · a6 a7

]
, (8)

where, ri = te − ti represents the displacement vector
between the origin of the gripper coordinate system {e}
and the origin of the joint coordinate system {i}; ai and
ti can be obtained from Eq. (6).

If the position of the gripper in the coordinate sys-
tem {s} is (ps

x, ps
y, ps

z)
T, its position in the mobile-

platform coordinate system {c} is (pc
x, pc

y, pc
z)

T, where
(pc

x, pc
y, p

c
z)

T = (ps
x, ps

y, p
s
z + 0.843)T. Thus, its position
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in the world coordinate system {w} can be expressed
as follows:⎡

⎢⎢⎣
pw

x

pw
y

pw
z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosα − sinα 0

sin α cosα 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ps

x

ps
y

ps
z

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

x0

y0

lo

⎤
⎥⎥⎦ , (9)

where lo = 0.12m is the distance between the origin of
{c} and that of {w}, as shown in Fig. 1.

The transformation relationship between the veloc-
ity of the gripper in the world coordinate system and
that in the base coordinate system can be obtained by
deriving Eq. (9), as follows:
⎡
⎢⎢⎣
ṗw

x

ṗw
y

ṗw
z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−α̇ sin α −α̇ cosα 0

α̇ cosα −α̇ sin α 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ps
x

ps
y

ps
z

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
cosα − sinα 0

sin α cosα 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ṗs

x

ṗs
y

ṗs
z

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
ẋ0

ẏ0

0

⎤
⎥⎥⎦ . (10)

Similarly, the relationship between the gripper angu-
lar velocity (φ̇w

x , φ̇w
y , φ̇w

z )T in the world coordinate sys-
tem and (φ̇s

x, φ̇s
y, φ̇s

z)T in the base coordinate system is
⎡
⎢⎢⎣
φ̇w

x

φ̇w
y

φ̇w
z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosα − sinα 0

sin α cosα 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

φ̇s
x

φ̇s
y

φ̇s
z

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0

0

α̇

⎤
⎥⎥⎦ . (11)

By combining Eqs. (7)—(11), when T1 = cosα, T2 =
−ps

x sinα − ps
y cosα, T3 = sin α, and T4 = ps

x cosα −
ps

y sin α, the gripper velocity in the world coordinate
system is defined as Vg = (ṗw

x , ṗw
y , ṗw

z , φ̇w
x , φ̇w

y , φ̇w
z )T,

the general joint-velocity vector of the HRMMM q̇ =
(vc, ωc, ḋ, θ̇1, θ̇2, · · · , θ̇7)T, and the following can be
obtained:

Vg = Jq̇. (12)

The global Jacobian matrix is as follows:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 T2

T3 T4

0 0 Rz 0(3×3)

0 0 0(3×3) Rz

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
I(2×2) 0(2×8)

0(6×2) Jo(6×8)

]
,

(13)

where

Rz =

⎡
⎢⎢⎣
cosα − sinα 0

sin α cosα 0

0 0 1

⎤
⎥⎥⎦ . (14)

2 Tracking-Controller Design

2.1 Pose-Tracking Strategy
The current and target poses of the gripper in the

world coordinate system are pe = (pw
x , pw

y , pw
z , φw

x , φw
y ,

φw
z )T and p∗e = (∗pw

x , ∗pw
y , ∗pw

z , ∗φw
x , ∗φw

y , ∗φw
z )T, re-

spectively, as shown in Fig. 3. Assuming that the target
pose is used for grasping, the transformation matrices
of the current pose pe and target pose p∗e within the
world coordinate system are w

e T and w∗eT , respectively.
Then, the transformation matrix of the target pose to
the current pose e∗eT is obtained, and the position vec-
tor e∗et and rotation matrix e∗eR are extracted from e∗eT .

xw

ow
yw

zw

w
et

w
*et

e
*e

{*e}

{e}

t

Fig. 3 Current and target poses of the gripper

The control objective is to make the gripper’s cur-
rent pose pe consistent with the target grasping pose
p∗e; that is, e∗et approaches the zero vector and e∗eR
approaches the unit matrix.

To simplify the number of variables, the Rodrigues
equivalent rotation vector θu = (rx, ry, rz)T is used to
represent the rotation transformation e∗eR. The norm
of (rx, ry, rz)T represents the size of the equivalent rota-
tion angle and the unit vector of (rx, ry , rz)T represents
the equivalent rotation axis u. The conversion between
the equivalent rotation vector θu and the rotation ma-
trix R can be obtained using the following Rodrigues
rotation formula[28]:

R =

⎡
⎢⎢⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎥⎥⎦

θ = arccos
tr(R) − 1

2

u =
1

2 sin θ

⎡
⎢⎢⎣

r32 − r23

r13 − r31

r21 − r12

⎤
⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15)

Therefore, the error between the current and target
poses of the gripper can be expressed as e = (e∗et, θu)T,
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and the control objective is e → 0. Assuming that
the velocities of the gripper in the world coordinate
system and the current gripper coordinate system are
Vg = (vg, ωg)T and Ve = (ve, ωe)T, respectively,

Ve = LRVg, (16)

where LR is a rotating interaction matrix expressed as
follows:

LR =

[
w
e RT 0

0 w
e RT

]
. (17)

Based on Fig. 3,

w
∗et = w

e R e
∗et + w

e t. (18)

By taking the derivative of Eq. (18), the target posi-
tion is fixed to the world coordinate system. Therefore,
w∗eṫ = 0 and w

e Ṙ e∗et = w
e Rωe × e∗et;

w
e ṫ = w

e R(ωe × e
∗et + e

∗eṫ), (19)

where ωe denotes the instantaneous angular velocity of
the gripper in the gripper coordinate system, and the
following expression is obtained:

e
∗eṫ = −Ve − ωe × e

∗et. (20)

Equation (20) provides the relationship between the
derivative of the position error e∗et and Ve.

Similarly, taking the derivative of θu gives the fol-
lowing expression:

d(θu)
dt

= Lwωe. (21)

In Eq. (21), Lw satisfies L−1
w θeue = θeue and can be

obtained by[29]

Lw = I3 − θ

2
(u)× +

(
1 − sinc(θ)

sinc2
(θ

2

)
)

(u)2×, (22)

where (u)× represents the antisymmetric matrix of the
rotation axis u, and sinc is defined as

sinc(θ) =

⎧
⎨
⎩

sin θ

θ
, θ �= 0

1, θ = 0
. (23)

According to Eqs. (20) and (21), the relationship be-
tween Ve and the derivative of the tracking error ė can
be obtained as

ė = LpVe, (24)

where Lp represents the pose-error interaction matrix,
expressed as follows:

Lp =

[
−I (e∗et)×
0 Lw

]
. (25)

Assuming that the error is reduced exponentially and
the derivative of the error satisfies ė = −ke, it is sub-
stituted into Eq. (24) to reach the target position as
quickly as possible and expressed as follows:

Ve = −kL−1
p e. (26)

Combined with Eq. (16), the tracking velocity of the
gripper can be obtained as follows:

Vg = −kL−1
R L−1

p e. (27)

The logical block diagram of the entire control sys-
tem is shown in Fig. 4. After the tracking velocity of
the gripper Vg is obtained, the inverse kinematics of the
HRMMM system is calculated, and the velocity con-
trol variable q̇ of the system is obtained. The position-
control variable q of the mobile manipulator is also ob-
tained by integration, and the pose of the gripper s

eT
is obtained by the forward kinematics of the HRMMM.
The pose matrix w

e T relative to the world coordinate
system was updated, and the pose error e∗eT was ob-
tained using the coordinate transformation matrix w∗eT
of the target.

Rodrigues transformation

Inverse kinematics

Kinematics

∫

e=(*et,θu)T

p*e

e=−ke Ve=Lp  e

e

*eTw
*ete

*eTe
*eRe

eTw eTs

−1 Vg=LR Ve

pe

q

−1

Fig. 4 Structure of the position-tracking guidance system

2.2 Physical-Constraint Model

The physical constraints of the HRMMM include the
velocity constraints of the mobile platform, velocity and

displacement constraints of the lifting platform, and po-
sition and velocity constraints of the manipulator joints.
To expand the workspace of the medical manipulator,
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the displacement and azimuth of the mobile platform
were unlimited and replaced by ±∞ in the simulation.

The physical-constraint limits of the linear velocity
vc and angular velocity ωc of the mobile platform were
±2m/s and ±2 rad/s, respectively. The displacement
range of the lifting platform was 0—0.3m and the phys-
ical limit of the lifting speed was ±0.1m/s. The limits
of each joint of the manipulator can be found in the
Gen3 user guide.

The constraints have different dimensions (angle and
distance), levels (position and velocity), and asymme-
try. For the integral-controller design of the HRMMM
system, the physical constraints must be symmetrized
and normalized to establish a unified optimization per-
formance index, and a simple optimization algorithm
must be adopted to solve the inverse kinematics.
2.2.1 Position-Constraint Transformation

The system kinematic model in Eq. (12) was solved
at the velocity level. Therefore, the position con-
straint was transferred to the velocity level for consider-
ation. For example, a generalized position variable q =
(l, α, d, θ1, θ2, · · · , θ7)T is defined, where l =

√
x2

0 + y2
0

is the distance between the mobile platform and the
initial position. During movement, the position limit
can be expressed as follows:

qmin � q + q̇Δt � qmax, (28)

where Δt denotes the control period. Using μ = 1/Δt,
the above equation can be rewritten as follows:

μ(qmin − q) � q̇ � μ(qmax − q). (29)

Considering the joint-velocity limits of the HRMMM
q̇min and q̇max, a unified velocity constraint can be ob-
tained as follows:

ξmin � q̇ � ξmax. (30)

Here, ξmin and ξmax are double-ended constraints, and
the ith element can be obtained using the following
formula:

ξi min = max{q̇i min, μ(qi min − qi)}
ξi max = min{q̇i max, μ(qi max − qi)}

}
. (31)

2.2.2 Asymmetric-Constraint Transformation
The constraint of the velocity q̇ obtained from

Eq. (29) is asymmetric. Therefore, it must be changed
into a symmetric constraint in order to facilitate the
solution of subsequent QP problems. The variable-
substitution method was used to transform the asym-
metric constraints[30].

With q̇i ∈ [ξi min, ξi max], Uoi = (ξi max − ξi min)/2,
δi = (ξi min + ξi max)/2, and q̇i = ¯̇qi+δi, for each control
variable:

¯̇qi =

⎧
⎪⎨
⎪⎩

Uoi, ¯̇qi > Uoi

¯̇qi, − Uoi � ¯̇qi � Uoi

− Uoi, ¯̇qi < −Uoi

. (32)

The above Eq. (32) transforms the asymmetric vari-
able constraint [ξmin, ξmax] into a symmetric constraint
[−Uo, Uo]. Thus, q̇i is replaced by a new variable ¯̇qi,
and an additional constant term δi is generated.

The normalization process eliminates the influence
of different types of physical variables. The variables
in the symmetric constraint system can be easily pro-
cessed by dividing them by the upper limit of their con-
straints for normalization, as follows:

¯̇qnorm =
¯̇qi

Uoi
. (33)

2.3 Hybrid Motion-Controller Design
After the gripper-tracking velocity Vg was obtained,

the required joint velocity was calculated using the in-
verse kinematics of the manipulator. The kinematic
model in Eq. (12) can be directly used to solve the PI
of the Jacobian matrix to obtain the joint velocity and
then control the manipulator, as follows:

q̇ = J+Vg, (34)

where J+ = JT(JJT)−1 represents the PI of the Ja-
cobian matrix J [13]. However, it is difficult to consider
complex joint constraints in calculations based on a tra-
ditional PI solution. Thus, it is restricted in practical
applications.

For a redundant manipulator, the input-constraint
saturation is typically considered in the null space,
which can be compensated by an anti-saturation func-
tion or by using an optimization method. The anti-
saturation function of the asymmetric constraints is dif-
ficult to design, and the resulting solutions may not be
optimal[23]. An optimal solution method can handle the
inequality-constraint problem well and ensure that the
obtained solution is consistent with the optimal perfor-
mance index.

Among the many numerical optimal algorithms, QP
is considered a rapid constrained optimization algo-
rithm with a small amount of computation[26-27]. How-
ever, the optimal problem must be solved within sym-
metric constraints. Based on the results of Subsection
1.2, QP can be used as an alternative to PI to solve the
constrained inverse kinematics of the HRMMM. There-
fore, a hybrid control system for the HRMMM was pro-
posed. A logic block diagram of the tracking-control
system is shown in Fig. 5.

When the input was not saturated, all joint positions
and velocities of the mobile manipulator were within
their double-ended constraints, and the PI method was
used to solve the inverse kinematics. When saturation
occurred, the position or velocity of certain joints could
exceed its double-ended constraint. The QP method
was used, and the PI solution was taken as the initial
condition of the QP to improve the convergence speed.
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A quadratic performance index was designed to en-
sure smooth switching between the two methods and to
ensure that the kinematics was solved within the joint
constraints, which could meet the requirements of real-
time control.

The performance index of the QP was designed
to minimize the change in the joint variables of the
HRMMM during the control process to inhibit the
switch oscillation of the two controllers. The perfor-
mance index is as follows:

eindex = min ‖q − q0‖2
2 , (35)

where q is the joint variable of the HRMMM at the cur-
rent moment, and q0 is the joint variable at the previous
moment. In addition, the joint-position error function
is defined as follows:

ê = q − q0. (36)

According to the exponential-descent convergence
principle[31], the time derivative of the tracking control
error ê is

˙̂e =
dê

dt
= −λ(q − q0). (37)

Because the time derivative of Eq. (36) is ˙̂e = q̇, sub-
stituting it into Eq. (37) yields

q̇ + λ(q − q0) = 0. (38)

Combining Eq. (38) with the equivalent optimal func-
tion Eq. (35) produces the following:

1
2
(q̇ + λ(q − q0))T(q̇ + λ(q − q0)) = 0. (39)

Then, the variable ¯̇qi in Eq. (32) is substituted into
Eq. (39). With c = λ(q − q0), the mathematical model
of QP can be obtained as

min
1
2
¯̇qT ¯̇q + (c + δ)T ¯̇q +

1
2
(c + δ)T(c + δ)

s.t. J(¯̇q + δ) = b

− Uo � ¯̇q � Uo

⎫
⎪⎪⎬
⎪⎪⎭

, (40)

where
1
2
(c+δ)T(c+δ) is a nonnegative term that does

not affect the results. Thus, after the equation is nor-
malized in accordance with Eq. (33), the QP optimiza-
tion scheme is described as follows:

min
1
2
¯̇qTH ¯̇q + fT ¯̇q

s.t. J ¯̇q = b − Jδ

− Uo � ¯̇q � Uo

⎫⎪⎪⎬
⎪⎪⎭

, (41)

where ¯̇q = q̇ − δ ∈ R
n is the variable to be solved,

b ∈ R
m represents the generalized velocity at the end

of the HRMMM, J ∈ R
m×n is the Jacobian matrix,

and f = D(c + δ) ∈ R
n is the coefficient vector. In

addition, H ∈ R
n×n is the coefficient matrix, which

can be designed as follows:

H = DTD, (42)

where, D = diag
( 1

Uo

)
∈ R

n×n denotes the normalized

matrix.

3 Medical-Application Example

In the context of the COVID-19 pandemic, the med-
ical staff working in the isolation area are at risk of in-
fection. The HRMMM could help medical staff deliver
or retrieve items, thereby effectively reducing the risk
of exposure to COVID-19 or other biological hazards.
3.1 Pose-Tracking Results

To meet the physical constraints, this section pro-
vides the simulation results of target tracking based
on a hybrid control algorithm with an individual QP
for comparison. Figure 6(a) illustrates an experimen-
tal situation in which the HRMMM moves with a given
bottle from an initial pose and throws it into a rubbish
bin with the target pose.

The initial joint state of the HRMMM is

q =(0, 0, 0, 3.14 rad,−1.386 rad, 0,−2.086 rad, 0,

1.756 rad, 1.571 rad)T.

Furthermore, the initial pose is deduced from the for-
ward kinematics:

pe = (0.675 m, 0.024 6 m, 0.856 m, 1.716 rad,

0, 1.571 rad)T,
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and the target pose is set as

p∗e =(0.8 m, 0.5 m, 1.843 m,−0.426 rad,−0.227 rad,

− 0.971 rad)T.

The control period is 0.1 s, and the other design pa-
rameters of the tracking controller are μ = 10, λ = 0.2,
and k = 0.2. The termination condition of the algo-
rithm was set as the modulus of the final target-pose
error vector; that is, ‖e‖ < 0.05.

The tracking trajectories of the two algorithms are
shown in Figs. 6(b) and 6(c). Figure 6(b) shows the
trajectory of the gripper position, and Fig. 6(c) shows
the trajectory of the gripper attitude expressed by the
Euler angles. The hybrid and QP methods obtained
similar position and attitude tracking results, owing to
the same pose-tracking strategy.

After the tracking was completed, the moduli of the
position and attitude errors of the gripper were found
to be 0.015 and 0.047, respectively. The tracking results
for the target object were satisfactory and the motion
trajectory at the end of the manipulator was smooth
and stable.

The joint-position variations of the two algorithms
are compared in Fig. 7. The double-ended position con-
straints of Joints 2, 4, and 6 and the vertical displace-
ment d in the tracking process are shown in Figs. 7(b),
7(d), 7(f), and 7(h), respectively. Joint 4 reached

−2.548 7 rad at 1.7 s, which is close to its position limit
of −2.58 rad. The final values of the two algorithms
stabilized at −1.562 rad and −1.312 rad, respectively.
Joint 6 reached its limit position of 2.1 rad at 2.7 s
and lasted till 3.4 s, but gradually left the limit posi-
tion. The final values of the two algorithms stabilized
at 2.065 rad and 1.855 rad, respectively.

The joint-velocity variations in the HRMMM are
shown in Fig. 8. The double-ended velocity constraints
of all the joints are described. Joints 3 and 4 reached
their maximum of 1.39 rad/s at 2.6 s, as shown in
Figs. 8(c) and 8(d). However, they quickly withdrew
from the saturation state and finally stabilized at ap-
proximately 0 rad/s. Joint 4 reached 0.084 7 rad/s at
1.7 s, and its joint position was close to the lower limit
around 1.7 s (Fig. 7(d)).

Joint 6 was at the upper limit of the joint-velocity
constraint from 2.5 s to 3.4 s, but it gradually withdrew
from the limit and stabilized at around 0 rad/s. Joint
7 reached 1.1771 rad/s at 1.8 s, which is close to its up-
per limit of 1.22 rad/s, and finally stabilized at around
0 rad/s (Fig. 8(g)). The other joint velocities are far
from their limits.

Figures 8(d) and 8(f) show that the double-ended
velocity constraint of joint 4 is asymmetric because it
is related to the current joint positions, as described
in Eq. (31). The upper limits of the two algorithms of
joint 6 are inconsistent from 4.3 s, as shown in Fig. 8(f),
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Fig. 7 HRMMM positions

because the hybrid control switches to PI from 4.3 s
(Fig. 9(b)). Thus, the solution of the hybrid is different
from that of QP, similar to the joint-velocity limits. The
vertical velocity of the manipulator reaches its limit of
0.1m/s at 2.6 s, as shown in Fig. 8(h).

The simulation results in Figs. 7 and 8 prove that all
the joint positions and velocities of the HRMMM are
within their limit constraints; that is, both methods can
effectively satisfy input constraints of different types
and levels.
3.2 Computational-Efficiency Analysis

The computer processor used in the simulation is a
2.50GHz Intel CoreTM i5-7300HQ CPU with 16GB of
memory. The CPU calculation time for the two algo-
rithms is shown in Fig. 9(a). In this simulation, the
CPU calculation time of the hybrid algorithm is much

shorter than that of the QP algorithm.
Two other target poses are selected to verify the com-

putational advantages of the hybrid algorithm over the
QP algorithm. Each target pose is traced ten times,
and the average CPU calculation time is calculated.
The calculation results for the two algorithms are pre-
sented in Table 1. The average CPU calculation time
of the hybrid algorithm is one-third that of QP.

The switching flag of the two solution schemes in the
hybrid algorithm is shown in Fig. 9(b). Owing to the
large pose error at the initial tracking stage, the physi-
cal constraint of the HRMMM reaches saturation, and
the hybrid algorithm chooses QP to solve the inverse
kinematics. Thus, the simulation results are the same
as those of the QP algorithm.

From 4.3 s, all joints of the system withdrew from
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Table 1 Calculation-time comparison

Target pose
CPU time/s

QP Hybrid

(0.8 m, 0.5 m, 1.843 m,−0.426 rad,−0.227 rad,−0.971 rad)T 2.469 0.802

(0.8 m, 0.5 m, 1.843 m,−0.597 rad,−0.058 1 rad,−0.188 rad)T 2.393 0.884

(0.7 m, 0.5 m, 1.7 m,−0.426 rad,−0.227 rad,−0.971 rad)T 2.428 0.766

saturation, and the hybrid control system switched to
PI for the inverse kinematic calculation. An evident
switching oscillation can be observed in the vertical
velocity, as shown in Fig. 8(h). However, no obvious

switching oscillation of the joint position was observed,
as shown in Fig. 7. Thus, the performance index per-
formed well in suppressing the switching oscillation.

The performance index is a quadratic function of
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Fig. 9 Controller states

the joint-position variation representing the energy con-
sumption. The performances of the two algorithms are
shown in Fig. 9(c). The function values of the two al-
gorithms were essentially the same in the initial stage
because they both used the QP method. Moreover,
the function value of the hybrid algorithm was slightly
larger than that of QP when reaching saturation (at
4.3 s), but without a significant difference.

In the entire control process, the system spends only
a small amount of time in saturation. Therefore, it is
not necessary to use an optimization algorithm to solve
the inverse kinematics, thereby proving the superiority
of the hybrid algorithm.

4 Conclusion

The anti-saturation tracking control algorithm based
on hybrid optimization ensured that the HRMMM com-
pleted the target tracking within the joint physical con-
straints, which is important for real applications. The
variable-substitution method was used to transform
asymmetric constraints into symmetric constraints. A
quadratic performance index was designed to ensure
smooth switching between the two hybrid controller al-
gorithms. The hybrid algorithm proposed in this study
was the same as QP, in terms of tracking performance
and energy consumption. However, its computational
efficiency was significantly improved.

The limitation of the proposed hybrid control algo-
rithm is that the acceleration constraints are not consid-
ered. Future research should include dynamic control
for safe force interactions in medical applications.
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