Skip to main content
Log in

Off-Grid Sparse Bayesian Inference with Biased Total Grids for Dense Time Delay Estimation

基于偏移全网格的离格稀疏贝叶斯推理的密集时延估计研究

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

For dense time delay estimation (TDE), when multiple time delays are located within a grid interval, it is difficult for the existing sparse Bayesian learning/inference (SBL/SBI) methods to obtain high estimation accuracy to meet the application requirements. To solve this problem, this paper proposes a method named off-grid sparse Bayesian inference — biased total grid (OGSBI-BTG), where a mesh evolution process is conducted to move the total grids iteratively based on the position of the off-grid between two grids. The proposed method updates the off-grid dictionary matrix by further reconstructing an optimum mesh and offsetting the off-grid vector. Experimental results demonstrate that the proposed approach performs better than other state-of-the-art SBI methods and multiple signal classification even when the grid interval is larger than the gap of true time delays. In this paper, the time domain model and frequency domain model of TDE are studied.

摘要

对于密集时延估计,当多个真实时延都位于一个网格间隔内时,现有的稀疏贝叶斯学习/推理方法很难获得较高估计精度以满足应用要求。为了解决这个问题,本文提出一种称为偏移全网格的离格稀疏贝叶斯推理方法,此方法进行网格演进,根据离格在两个网格之间的位置迭代移动总网格。所提出的方法通过进一步重构最优网格并偏移离格向量来更新离格字典矩阵。实验结果表明:即使网格间隔大于真实时延间隙,该方法也比其他最先进的稀疏贝叶斯推理方法和多信号分类方法性能好。另外本文研究了时延估计的时域模型和频域模型。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PAN J J, LE BASTARD C, WANG Y D, et al. Time-delay estimation using ground-penetrating radar with a support vector regression-based linear prediction method [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2833–2840.

    Article  Google Scholar 

  2. THOMAS B, HUNTER A, DUGELAY S. Phase wrap error correction by random sample consensus with application to synthetic aperture sonar micronavigation [J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 221–235.

    Article  Google Scholar 

  3. FATTAHI H, SIMONS M, AGRAM P. InSAR time-series estimation of the ionospheric phase delay: An extension of the split range-spectrum technique [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5984–5996.

    Article  Google Scholar 

  4. LAGUNA P, GARDE A, GIRALDO B F, et al. Eigenvalue-based time delay estimation of repetitive biomedical signals [J]. Digital Signal Processing, 2018, 75: 107–119.

    Article  MathSciNet  Google Scholar 

  5. GUO Y R, LIU Z J. Time-delay-estimation-liked detection algorithm for LoRa signals over multipath channels [J]. IEEE Wireless Communications Letters, 2020, 9(7): 1093–1096.

    Article  Google Scholar 

  6. KOTHANDARAMAN M, LAW Z, GNANAMUTHU E M A, et al. An adaptive ICA-based cross-correlation techniques for water pipeline leakage localization utilizing acousto-optic sensors [J]. IEEE Sensors Journal, 2020, 20(17): 10021–10031.

    Article  Google Scholar 

  7. HASHEMI H S, RIVAZ H. Global time-delay estimation in ultrasound elastography [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64(10): 1625–1636.

    Article  Google Scholar 

  8. QUAZI A. An overview on the time delay estimate in active and passive systems for target localization [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3): 527–533.

    Article  Google Scholar 

  9. DEVI M, DHABALE N R, DEVISHREE. Active and passive radar-location systems for the calculation of coordinates [C]//2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). Bengaluru: IEEE, 2017: 770–773.

    Google Scholar 

  10. KLEMBOWSKI W, KAWALEC A, WIZNER W. Critical views on present passive radars performance as compared with that of active radars [C]//2013 14th International Radar Symposium (IRS). Dresden: IEEE, 2013: 131–135.

    Google Scholar 

  11. LI J, ZHU J D, FENG Z H, et al. Passive multipath time delay estimation using MCMC methods [J]. Circuits, Systems, and Signal Processing, 2015, 34(12): 3897–3913.

    Article  MathSciNet  MATH  Google Scholar 

  12. BOSSE J, KRASNOV O, YAROVOY A. Direct target localization and deghosting in active radar network [J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3139–3150.

    Article  Google Scholar 

  13. MURPHY S M, SCRUTTON J G E, HINES P C. Experimental implementation of an echo repeater for continuous active sonar [J]. IEEE Journal of Oceanic Engineering, 2016, 42(2): 289–297.

    Article  Google Scholar 

  14. ZHANG Q Q, ZHANG L H. An improved delay algorithm based on generalized cross correlation [C]//2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference. Chongqing: IEEE, 2017: 395–399.

    Google Scholar 

  15. TOFEL G, CZOPIK G, KAWALEC A. Signal time delay estimation using square correlation method and wavelet analysis [C]//2018 19th International Radar Symposium (IRS). Bonn: IEEE, 2018: 1–9.

    Google Scholar 

  16. GE F X, SHEN D X, PENG Y N, et al. Superresolution time delay estimation in multipath environments [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, 54(9): 1977–1986.

    Article  Google Scholar 

  17. OZIEWICZ M. On application of MUSIC algorithm to time delay estimation in OFDM channels [J]. IEEE Transactions on Broadcasting, 2005, 51(2): 249–255.

    Article  Google Scholar 

  18. SHUTIN D, BUCHGRABER T, KULKARNI S R, et al. Fast variational sparse Bayesian learning with automatic relevance determination for superimposed signals [J]. IEEE Transactions on Signal Processing, 2011, 59(12): 6257–6261.

    Article  MathSciNet  MATH  Google Scholar 

  19. YANG Z, XIE L H, ZHANG C S. Off-grid direction of arrival estimation using sparse Bayesian inference [J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43.

    Article  MathSciNet  MATH  Google Scholar 

  20. DAI J S, BAO X, XU W C, et al. Root sparse Bayesian learning for off-grid DOA estimation [J]. IEEE Signal Processing Letters, 2017, 24(1): 46–50.

    Article  Google Scholar 

  21. DAI J S, SO H C. Sparse Bayesian learning approach for outlier-resistant direction-of-arrival estimation [J]. IEEE Transactions on Signal Processing, 2018, 66(3): 744–756.

    Article  MathSciNet  MATH  Google Scholar 

  22. ZHANG Y, YE Z F, XU X. Off-grid direction of arrival estimation based on weighted sparse Bayesian learning [C]//2014 International Conference on Audio, Language and Image Processing. Shanghai: IEEE, 2014: 547–550.

    Google Scholar 

  23. TAN Z, NEHORAI A. Sparse direction of arrival estimation using co-prime arrays with off-grid targets [J]. IEEE Signal Processing Letters, 2014, 21(1): 26–29.

    Article  Google Scholar 

  24. ZHANG P, BA B, CUI W J. High-resolution time of arrival estimation with small samples considering time-varying channel fading coefficient correlation in OFDM [J]. IEEE Access, 2019, 7: 19579–19589.

    Article  Google Scholar 

  25. CHEN F F, DAI J S, HU N, et al. Sparse Bayesian learning for off-grid DOA estimation with nested arrays [J]. Digital Signal Processing, 2018, 82: 187–193.

    Article  Google Scholar 

  26. MCLACHLAN G J, KRISHNAN T. The EM algorithm and extensions [M]. Hoboken, NJ: John Wiley & Sons, Inc., 2008.

    Book  MATH  Google Scholar 

  27. MAEDA S I, ISHII S. Convergence analysis of the EM algorithm and joint minimization of free energy [C]//2007 IEEE Workshop on Machine Learning for Signal Processing. Thessaloniki: IEEE, 2007: 318–323.

    Google Scholar 

  28. LI Y Y. Research on time delay estimation technologies for extremely weak signal in multipath environments [D]. Wuhan: Huazhong University of Science and Technology, 2009 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Su  (苏颖).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 61401145), and the Natural Science Foundation of Shanghai (No. 19ZR1437600)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Li, W., Su, Y. et al. Off-Grid Sparse Bayesian Inference with Biased Total Grids for Dense Time Delay Estimation. J. Shanghai Jiaotong Univ. (Sci.) 28, 763–771 (2023). https://doi.org/10.1007/s12204-022-2464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2464-z

Key words

关键词

CLC number

Document code

Navigation