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Abstract: Autonomous vehicles must pass effective standard tests to verify their reliability and safety. Accord-
ingly, it is very important to establish a complete scientific test and evaluation system for autonomous vehicles.
A comprehensive framework incorporating the design of test scenarios, selection of evaluation indexes, and estab-
lishment of an evaluation system is proposed in this paper. The aims of the system are to obtain an objective
and quantitative score regarding the intelligence of autonomous vehicles, and to form an automated process in
the future development. The proposed framework is built on a simulation platform to ensure the feasibility of the
design and implementation of the test scenarios. The design principle for the test scenarios is also presented. To
reduce subjective influences, the proposed framework selects objective indexes from four aspects: safety, comfort,
driving performance, and standard regulations. The order relation analysis method is adopted to formulate the
index weights, and fuzzy comprehensive evaluation is used to quantify the scores. Finally, a numerical example
is provided to visually demonstrate the evaluation results for the autonomous vehicles scored by the proposed
framework.
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0 Introduction

With the development of artificial intelligence, re-
search on autonomous driving technology has gradually
increased in recent years. Autonomous vehicles have
provided a new approach to solving the problems of
traditional cars, such as traffic jams and frequent acci-
dents. Research on the intelligence and networking of
autonomous vehicles is constantly advancing. However,
there are relatively few complete tests and standards
for evaluating the performance of autonomous vehicles,
such as in regard to their safety, comfort, and coordina-
tion. Autonomous vehicles must pass effective standard
tests to verify their reliability and safety. It is esti-
mated that autonomous vehicles have to be tested over
275 million miles to prove that they are as reliable as
human-controlled vehicles[1]. This mileage is too high
to be completed only using real vehicle testing. There-
fore, an increasing number of companies and research
institutions are testing autonomous driving technolo-
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gies through simulation platforms. Simulation testing
uses computer software to simulate real environments
and natural traffic. It can compensate for the short-
comings of real vehicle testing, such as long cycles, high
costs, high safety risks, and limited test scenarios.

Many competitions and projects of autonomous ve-
hicle testing have been conducted, such as the Euro-
pean AdaptIVe project, China Future Challenge of In-
telligent Vehicle, Defense Advanced Research Projects
Agency (DARPA) Grand Challenge, and DARPA Ur-
ban Challenge in America[1]. The importance of estab-
lishing a test and evaluation system for autonomous ve-
hicles has been recognized. However, there is no unified
standard for evaluating the performance of autonomous
vehicles. Researchers, companies, and related institutes
have proposed their own evaluation indexes and meth-
ods from different perspectives and application ranges.
For example, the “Autonomy Levels for Unmanned Sys-
tems” evaluation framework proposed by Huang et al.[2]

divided the intelligence of autonomous vehicles into 10
levels from three dimensions: task complexity, envi-
ronment complexity, and artificial independence. The
DARPA Urban Challenge[3], held in 2007, evaluated
participating vehicles according to the time and qual-
ity of their completed tasks. In 2010, the China Future
Challenge of Intelligent Vehicle evaluated vehicles from
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two aspects: basic ability tests (traffic signal recogni-
tion, curve driving, and fixed-point parking) and com-
plex environment comprehensive tests (recognition of
traffic signals during driving, integrated control, light-
ing use, and road traffic situation perception). Since
the fifth competition in 2013, the China Future Chal-
lenge of Intelligent Vehicle has evaluated vehicles from
the perspective of the “4S” performance measures (i.e.,
safety, smartness, smoothness, and speed). References
[4-7] proposed a hierarchical comprehensive evaluation
system for unmanned ground vehicles. They used the
expert evaluation method and fuzzy-extended analytic
hierarchy process to evaluate the intelligence of au-
tonomous vehicles from five aspects: basic vehicle con-
trol behavior, basic driving behavior, basic traffic be-
havior, advanced driving behavior, and advanced traffic
behavior. Son et al.[8] proposed a method for specify-
ing key performance indicators (KPIs) for different test
scenarios to evaluate the performance of autonomous
vehicles. For example, they selected KPIs such as time-
to-collision (TTC), acceleration and deceleration, and
fuel consumption for adaptive cruise control, and se-
lected corresponding KPIs based on map generation,
global planning, and vehicle control for automatic park-
ing. Wang et al.[9] proposed a three-dimensional evalu-
ation model based on perception, decision, and control
layers. The weights of the indexes in each dimension
were determined by the entropy method. The compre-
hensive score was obtained quantitatively through the
fuzzy comprehensive evaluation and “Technique for Or-
der Preference by Similarity to Ideal Solution” method.
Weng et al.[10] proposed a model predictive instanta-
neous safety metric for certain situations in which au-
tonomous vehicles were running in a multi-agent inter-
active high-dimensional continuous system. The pro-
posed metric expanded the traditional TTC indica-
tor, and improved the performance of the autonomous
vehicles in terms of operational safety status mainte-
nance. Li et al.[11] combined scenario-based testing
and function-based testing by adding test tasks. They
also proposed two evaluation methods, Boolean type
and numerical type. The numerical type could evaluate
from smoothness, safety, and smartness. In addition to
the research on evaluation systems, some scholars have
conducted research on test scenarios. Feng et al.[12-13]

proposed a general framework for generating test sce-
nario libraries. The proposed framework could generate
effective test scenarios for operational design domains,
autonomous vehicle models, and performance indica-
tors, thereby enriching the current research in the field
of test scenario generation.

It can be seen that there are several challenges in
the existing research on autonomous vehicle tests and
evaluation systems: ① Most existing evaluation sys-
tems rely on expert ratings, which are subjective and
require human intervention. This is not beneficial for

the development of automated processes. ② The scores
for autonomous vehicles should ideally be quantitative,
which can be more intuitive. ③ There is a lack of a
complete system framework for the test and evaluation
of autonomous vehicles. Because the performance of an
autonomous vehicle is closely related to the surround-
ing environment, the test and evaluation system should
also include a reasonable construction of test scenarios.
④ Many existing evaluation methods use a single in-
dex, which is only suitable for a certain function test or
a certain scenario test. Such an approach lacks univer-
sality and expandability.

Therefore, this study proposes an integrated frame-
work for the test and evaluation of autonomous vehi-
cles. It includes the design of test scenarios, selection of
evaluation indexes, and establishment of an evaluation
system. The proposed framework is established on a
simulation platform, ensuring the feasibility of the de-
sign, implementation of the test scenarios, and realiza-
tion of comprehensive tests. The main contributions of
this study are as follows: ① Principles are established
for test scenario design. The entire testing process is
based on a complete test scenario, rather than on a sin-
gle scenario test. ② Appropriate objective evaluation
indexes are selected based on four aspects: safety, com-
fort, driving performance, and standard regulations. ③
The priorities of functional safety and collision safety
are considered, and the safety indexes adopt surrogate
safety measures commonly used in traffic research. ④
The universality and expandability of the evaluation in-
dexes and system are enhanced. More other evaluation
indicators and dimensions can be added into the overall
framework in future research.

The remainder of this paper is organized as follows.
Section 1 introduces the overall framework and pro-
cess of the proposed test and evaluation system for au-
tonomous vehicles. Section 2 introduces the construc-
tion of test scenarios, selection of evaluation indexes,
and establishment of the evaluation system. Section 3
provides an intuitive digital example of the proposed
framework. Finally, Section 4 concludes the paper.

1 Comprehensive Framework

There are many standard definitions for the classi-
fication of autonomous vehicles. The autonomous ve-
hicle classification system developed by the Society of
Automotive Engineers[14] is a recognized standard. It
divides autonomous vehicles into six levels, from L0 to
L5. The autonomous vehicles discussed in this article
refer to vehicles at L3 and above. This means that the
testing vehicles should complete all driving tasks in a
specific scenario, and human drivers basically do not
need to be involved.

The test and evaluation system for autonomous ve-
hicles considered in this study is mainly conducted on
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a simulation test platform, and uses a continuously de-
veloping scenario-based simulation test. The scenario-
based testing method tests the autonomous vehicle by
allowing the vehicle to complete specific tasks in a pre-
set scenario. On the premise of completing the tasks,
the autonomous vehicle can independently choose a way
to manage an encountered situation. It has a high de-
gree of freedom and can test the comprehensive perfor-
mance of autonomous vehicles, and is therefore suitable
for testing high-level autonomous vehicles[15].

The test and evaluation system proposed in this
study aims to carry out a comprehensive automated
test on autonomous vehicles. The vehicles under test-
ing can obtain a score by running in a selected test sce-
nario. The scores are objective and quantitative. The
entire evaluation process does not require humans to
observe and evaluate the behavior of the test vehicles;
rather, it scores according to the indexes formulated in
the system.

Therefore, this simulation test and evaluation system

contains two important parts: the construction of the
test scenarios and establishment of the evaluation sys-
tem, as shown in Fig. 1. In preliminary work, a scenario
library is constructed by various atomic scenarios com-
posed of a static environment and dynamic elements.
These atomic scenarios are constructed through feature
extraction and data analysis from naturalistic driving
data, traffic accident databases, standard regulations,
expert experience, and other data sources. The test
scenarios used in the test and evaluation system are
complete test scenarios which are composed of required
atomic scenarios. These atomic scenarios are randomly
selected from the scenario library. The test vehicle runs
in the test scenarios, which can be model-in-loop (MIL),
software-in-loop (SIL), or hardware-in-loop (HIL). The
simulation platform records related data, and the tested
vehicle is scored according to the evaluation indexes
formulated in the evaluation system. Finally, a quan-
titative score is obtained, including the score for each
index and overall total score.
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Fig. 1 Simulation test and evaluation system for autonomous vehicles

In contrast to the widely used expert evaluation
method, this study adopts a joint index evaluation sys-
tem composed of objective indexes. By scoring the ob-
jective measurement values in segments, the subjectiv-
ity is reduced, and automatic scoring can be achieved.
The proposed evaluation system scores vehicles from
four aspects: safety, comfort, driving performance, and
standard regulations.

The overall process of the proposed test and eval-
uation system is shown in Fig. 2. First, determine p
functional scenarios required to form the test scenario,

and then randomly select q specific scenarios for each
functional scenario from the scenario library. Thus, qp

test scenarios are formed. Then, the test vehicle at-
tempts to pass each test scenario in turn on the simula-
tion platform, and it is judged whether to pass each test
scenario without collision. If the vehicle passes the en-
tire test scenario set with no collision, the performance
of the vehicle is then classified on each evaluation index.
If the vehicle has a crash during driving, the number
of collisions is recorded. If the vehicle’s pass rate of
scenarios (passing scenarios without collision) is found
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Fig. 2 Autonomous vehicle test evaluation flowchart

to be less than 90% during the entire test process, the
vehicle is considered to be an unqualified vehicle, and
there is no need to continue scoring. If the pass rate of
scenarios is greater than or equal to 90%, the total score
and sub-scores are calculated according to the evalua-
tion system and vehicle performance on each evaluation
index.

In the entire test process, the scenario library and
the evaluation system are two important points, and
are explained in further detail below.

2 Methodology

2.1 Construction of Scenario
In this scenario-driven autonomous driving test and

evaluation system, the scientific and orderly construc-
tion of test scenarios can effectively support the sub-
sequent test and evaluation. Therefore, the scenarios

should be as complete and realistic as possible, and
cover typical and critical scenarios in the real world.

In the PEGASUS project[16] carried out in Germany,
scenarios are defined and classified as functional sce-
narios, logical scenarios, and concrete scenarios, owing
to the different requirements for scenarios in different
stages of autonomous driving product development[17].
Their abstraction degree goes from high to low, respec-
tively, and the number of scenarios goes from fewer to
greater, respectively. This standard can be referred to
when designing a scenario library. The construction
process of the scenario library is shown in the upper
part of Fig. 1. First, features are extracted and sum-
marized from naturalistic driving data, traffic accident
databases, standard regulations, and expert experience.
Then, common functional scenarios are selected, such
as parking, lane changing on highways, and pedestrian
avoidance at intersections. According to the definition
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in the PEGASUS project, the construction of scenarios
can be divided into six layers[16,18].

Layer 1: road attributes such as geometry, topology,
and quality.

Layer 2: traffic infrastructure such as boundaries and
traffic signs.

Layer 3: temporary manipulations of Layers 1 and 2.
Layer 4: static or dynamic objects and their maneu-

vers and interactions.
Layer 5: environmental conditions like weather and

lighting.
Layer 6: digital information such as vehicle-to-

everything information or digital maps.
Through data analysis of typical road scenarios (such

as those from the highD dataset[19], or the Safety Pilot
Model Deployment Program conducted by the Univer-
sity of Michigan[20-21]), traffic accident databases (such
as the EU “ASSESS” data and China In-Depth Acci-
dent Study database), and standard regulations (such
as advanced driver assistance systems (ADAS) regu-
lations, International Organization for Standardization
(ISO) 15622, and ISO 21201), the ranges of the related
parameters (such as the type, location, target speed,
and acceleration) of the traffic facilities and partici-
pants in each functional scenario (such as traffic sig-
nals, lanes, test vehicles, object vehicles, pedestrians,
and obstacles) are determined. Thus, logical scenar-
ios are formed. The specific value of each parameter in
the logical scenarios can be determined based on expert
experience and/or on probability distributions calcu-
lated from the above data sources. In this way, a large
number of concrete scenarios are obtained, and can be
stored in general file formats to construct a scenario
library. Finally, through the relevant simulation soft-
ware (such as Virtual Test Drive (VTD)), the required
scenario file is run, and the test scenario is obtained.
Figure 3 shows an example of a concrete scenario from
the scenario library.

Fig. 3 Example of concrete scenario

In general, the scenarios in the library are concrete
scenarios generalized from a single functional scene. To
test autonomous vehicles at L3 and above, the test sce-
nario should be a complete enclosed test field, covering

natural driving scenarios, dangerous scenarios, and ac-
cident scenarios. Therefore, it is necessary to determine
the functional scenarios required for the test accord-
ing to the test objects (autonomous vehicles of differ-
ent levels) and test purposes (driving performance on
the highway, parking performance, etc.). Then, sev-
eral concrete scenarios of each functional scenario are
randomly selected from the library to form a complete
test scenario. During the test, the tested vehicle passes
through each test area and completes the corresponding
tasks. The simulation platform records the data of the
tested vehicle during the entire test process (such as its
trajectory, speed, acceleration, distance to surrounding
vehicles or pedestrians, and driving time). These data
are used in the following evaluation system.

Figure 4 shows an example of a designed test sce-
nario. The content of the test is autonomous parking
in the test area. The test vehicle is required to start
from the starting point and go through five scenarios
in sequence to complete six tasks: obstacle detection,
lane changing, car following, left turn at intersection,
pedestrian avoidance, and parking.

The test scenario constructed above includes a vari-
ety of working conditions. Different evaluation indexes
are set according to different working conditions to form
a reasonable evaluation system for the test vehicle, as
explained in Subsection 2.2.
2.2 Evaluation System

As shown in the schematic diagram and flowchart
of the proposed test and evaluation system described
in Section 1 (Figs. 1 and 2), the evaluation system is
an important part of the entire framework. Although
there is no unified evaluation standard for autonomous
vehicles and the evaluation methods in different stud-
ies are not identical, most are based on the idea of a
comprehensive evaluation. The first step of the com-
prehensive evaluation is to clarify the evaluation pur-
pose(s) and object(s). The second step is to choose
different evaluation dimensions and specific evaluation
indexes. The third step is to determine the weights
of the indexes, and to select the aggregation model.
The final step is to integrate the results from all of the
evaluation indexes to obtain a total result that can re-
flect the performance of the autonomous vehicle. This
study also establishes an evaluation system based on
this idea. Based on domestic and foreign evaluation
experiences in autonomous driving and the test scenar-
ios designed as described in the previous section, the
evaluation system is chosen to score autonomous vehi-
cles from four aspects: safety, comfort, driving perfor-
mance, and standard regulations. The index weights
are determined by the order relation analysis method,
and comprehensive scores are calculated using the fuzzy
comprehensive evaluation.
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2.2.1 Evaluation Model
The aim of the evaluation system proposed in this

study is to comprehensively reflect the intelligence lev-
els of autonomous vehicles, and to realize an automated
process. Therefore, a joint index evaluation system
composed of objective indexes is adopted. The pro-
posed evaluation system scores vehicles from four as-
pects: safety, comfort, driving performance, and stan-
dard regulations.

Safety usually refers to functional safety and colli-
sion safety. Functional safety refers to whether the ve-
hicle safety can be guaranteed in the event of a vehicle
system failure. Collision safety refers to whether an
autonomous vehicle will collide with surrounding vehi-
cles, traffic facilities, or other traffic participants while
driving. These two points are the most important, and
should be first guaranteed. If these two points can-
not be met, the vehicle should not be allowed to drive
on the road. However, the current evaluation systems
proposed by some scholars place functional safety and
collision safety at the same levels as other indexes. In
the framework proposed herein, we choose to prioritize
functional safety and collision safety. According to the
framework mentioned in Section 1, if the test vehicle
cannot pass 90% of the test scenarios without collision,
the vehicle is considered to be unqualified, and there
is no need for further scoring. Under this premise, in
the proposed evaluation system, the safety indexes are

different from those commonly used in previous work
(e.g., whether a collision occurs or whether it is safe
when the vehicle has a system failure). A surrogate
safety measure is adopted. Surrogate safety measures
are often applied to evaluate the risks of crashes in road
networks and traffic flows[22]. This is because crashes
are rare events, and crash-free car-following algorithms
are often used in traffic simulation software. This is
similar to the evaluation system proposed in this study.
Therefore, two commonly used safety indexes in sur-
rogate safety measures are selected here: the time ex-
posed time-to-collision (TET) and number of critical
jerks (NCJ). The specific meanings of these two indexes
are explained in Subsection 2.2.2.

Comfort mainly concerns the experience of the driver
and passengers while driving. For autonomous vehi-
cles, the main evaluation is whether the control algo-
rithm can control the vehicle smoothly, and without fre-
quent intense maneuvers. In the simulation platform,
the maximum acceleration and deceleration, maximum
jerk, maximum yaw rate, quickness, headway distance
in seconds, and lane deviation during the driving pro-
cess can be recorded to determine whether the vehicle
is driving and turning smoothly. The specific meanings
of the above indexes are explained in Subsection 2.2.3.

Driving performance mainly concerns the time and
quality of the tasks completed by the test vehicle.
The time required to complete the tasks reflects the
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efficiency of the autonomous driving control algorithm,
and the quality of the tasks reflects the control perfor-
mance of the vehicle control algorithm.

Standard regulations mainly evaluate the degree of
compliance of the tested vehicle with the national traf-

fic laws.
The above four aspects form the evaluation system

for autonomous vehicles through a hierarchical struc-
ture, as shown in Fig. 5.

Evaluation system of autonomous vehicles
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Fig. 5 Evaluation system for autonomous vehicles

Owing to the different test scenarios and purposes,
the relative importance of each evaluation index is
also different. Therefore, each evaluation index must
be weighted. There are two main methods for assign-
ing weights: objective and subjective[23]. The objective
weighting method assigns a weight by analyzing the ac-
tual values of the indexes, and is not affected by human
factors. For example, in the entropy method[24], the
greater the degree of the difference between test vehi-
cles on a certain index, the greater the weight of the in-
dex. However, the objective weighting method depends
on the test results, and the index weight is not univer-
sal. In the subjective weighting method, experts first
judge the importance of each index by experience, and
then use certain mathematical methods to obtain con-
crete weight values. It is suitable for an autonomous
driving evaluation, which has a wide range of evalua-
tion objects and purposes, many test indexes, and un-
certain test results. The analytic hierarchy process and
order relation analysis method are two commonly used
subjective weighting methods. The order relation anal-
ysis method has a small amount of calculation, and
is suitable for evaluation systems with many indexes.
Thus, the order relation analysis method is selected for
the proposed evaluation system to assign weights to in-
dexes. The specific principle of the order relation anal-
ysis method is explained in Subsection 2.2.6.

After determining the evaluation indexes and the cor-
responding weights, the next step is to select an ap-

propriate aggregation model to integrate the values of
the indexes into an overall evaluation result. Here, the
fuzzy comprehensive evaluation is chosen. This method
uses fuzzy set theory for evaluation, which can integrate
qualitative and quantitative subjective and objective
indexes, and can effectively solve the problems of am-
biguity and uncertainty. It is easy to implement, and
is suitable for multi-level index systems. Therefore, it
is applicable to the evaluation system proposed above.
The specific principle of the fuzzy comprehensive eval-
uation is explained in Subsection 2.2.7.
2.2.2 Safety Indexes

As mentioned in Subsection 2.2.1, the safety in-
dexes in the proposed evaluation system adopt surro-
gate safety measures. There are two types of safety
indexes in surrogate safety measures: time proximity-
based indexes (such as the TTC) and evasive action-
based indexes (such as the yaw rate)[22]. Here, two
indexes are chosen, as mentioned above: the TET and
NCJ.

(1) TET. The TTC is a commonly used surrogate
safety measure. It represents the time required for
two vehicles to collide when the following vehicle drives
faster than the leading vehicle, and their speed differ-
ence is constant[22]. This can be expressed by[22]

TTCf(t) =

⎧
⎨

⎩

xl(t) − xf(t) − Ll

vf(t) − vl(t)
, vf(t) > vl(t)

∞, vf(t) � vl(t)
, (1)
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where TTCf(t) is the TTC value of the following vehicle
at time t, x1(t) and vl(t) are the longitudinal position
and speed of the leading vehicle at time t, respectively,
xf(t) and vf(t) are the longitudinal position and speed
of the following vehicle at time t, respectively, and Ll

is the length of the leading vehicle.
A smaller TTC indicates a greater hazard to vehicles.

When the TTC value is less than a certain value, it is
considered dangerous. According to the standards ISO
15623 and GB/T 33577—2017[26], the TTC threshold
can be selected as 2.4 s. The TET[27] is derived from
this, and represents the total time when the vehicle is
in a dangerous situation. It is determined based on the
TTC value below the TTC threshold (TTC∗), and is
expressed by

TET =
T∑

t=1

δtΔt

δt =

{
1, 0 < TTCf(t) � TTC∗

0, otherwise

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (2)

where δ is the switching variable, Δt is the time step,
and T is the total simulation time.

(2) NCJ. Jerk is defined as the derivative of acceler-
ation. It is an evasive action-based indicator that can
be used to measure the severity of conflict, and can be
calculated by

Jerk(t) = ȧ(t) = v̈(t), (3)

where a(t) is the acceleration at time t, and v(t) is the
velocity at time t.

Bagdadi and Várhelyi[28] found that there is a pro-
portional relationship between critical or dangerous
jerks (i.e., jerk less than or equal to −9.9 m/s3) and the
number of crashes. Therefore, jerkiness during driving
can reflect dangerous driving behaviors and a higher
accident rate. Therefore, some scholars have used the
number of jerks which are less than or equal to −9.9
m/s3 as an index for evaluating safety-critical driving
behaviors[22]. Here, we also consider the NCJ as a
safety index.
2.2.3 Comfort Indexes

Comfort is another important aspect of vehicle eval-
uation. Traditional cars have mainly been evaluated
based on vehicle vibrations, seat comfort, etc. In this
study, the test and evaluation of autonomous vehicles
are conducted on a simulation platform, and the test
and evaluation system mainly focuses on the control al-
gorithms; this is different from traditional vehicle eval-
uations. Therefore, the corresponding specific indexes
are formulated according to the different working condi-
tions in the designed test scenario, as shown in Table 1.

The human vestibular system is sensitive to acceler-
ation and jerk, which affects the judgment of vehicle

Table 1 Comfort indexes and corresponding work-
ing conditions

Comfort index Corresponding conditions

Maximum acceleration All working conditions

Maximum deceleration All working conditions

Maximum jerk All working conditions

Maximum yaw rate All working conditions

Quickness Car following, lane changing

Headway distance in seconds Car following

Lane deviation Cruising, car following

comfort. Therefore, the maximum acceleration, maxi-
mum deceleration, maximum jerk, and maximum yaw
rate are the most important indexes for comfort evalu-
ation. The jerk is calculated as shown in Eq. (3).

Quickness describes the swiftness of vehicle’s certain
maneuvers[29]. This index was originally used to eval-
uate the flight quality of aircraft. During the study of
the objective indexes of comfort for autonomous vehi-
cles, Bellem et al.[29] adjusted the calculation method
of quickness and divided it into longitudinal quickness
qlong and lateral quickness qlat:

qlong =
ā

Δv
, (4)

qlat =
vlat

dlat
, (5)

where ā is the mean longitudinal acceleration, Δv is
the change in longitudinal velocity, vlat is the lateral
velocity, and dlat is the lateral offset.

Longitudinal quickness can be used for car following,
and lateral quickness can be used for lane changing.
A higher quickness indicates that lane changes occur
faster, as shown in Fig. 6.

(a) High quickness

(b) Low quickness

Fig. 6 Illustration of lateral quickness[29]

In car following and cruising, the distance from the
leading vehicle and deviations from the lane line also af-
fect the comfort of the driver and passengers. Driving
too close to the leading vehicle or lane boundaries will
cause people to feel nervous. Therefore, the headway
distance in seconds and lane deviations are also con-
sidered. The lane deviation is defined as the distance
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between the vehicle and the centerline of the lane, and
can be obtained using sensors. The headway distance
in seconds is calculated by

tHD(t) =
xl(t) − xf(t)

vf(t)
, (6)

where tHD is the headway distance in seconds, xl is
the longitudinal position of the leading vehicle, and xf

and vf are the longitudinal position and speed of the
following vehicle, respectively.
2.2.4 Driving Performance Indexes

The driving performance index mainly evaluates the
time and quality of the tasks completed by the test ve-
hicle. If the time to pass the entire scenario is shorter,
it indicates that the efficiency of completing the test
tasks is higher, and that the driving performance is
better. The quality of task completion will have dif-

ferent evaluation focuses according to different working
conditions. For example, in car following, the response
time (the interval between the time the target vehicle
changes velocity and the time the test vehicle starts to
follow) and speed control accuracy (the maximum dif-
ference between the steady velocities of the test vehi-
cle and target vehicle) are considered. During cruising,
the evaluation should be based on the speed control ac-
curacy. In parking conditions, the number of parking
attempts, parking attitudes, and parking positions are
considered. For example, the “CCRT (Smart Electric
Vehicle) Management Rules (2020 Edition)” issued by
the China Automotive Technology and Research Center
and “Intelligent Parking Assist Rating Protocol” issued
by the Intelligent Vehicle Integrated System Test Area
have established specific indexes for related content, as
can be seen in Table 2.

Table 2 Example of a score table for vertical parking with static vehicles on both sides

Evaluation content Score

Successfully identify the target parking space 10

Parking times n n � 4 20

4 < n � 6 15

6 < n � 9 10

n > 9 0

Parking attitude α −1◦ � α � 1◦ 25

1◦ < |α| � 2◦ 20

2◦ < |α| � 3◦ 15

|α| > 3◦ 0

Park accurately into the target area Horizontal evaluation (distance from the two
boundaries of the parking space)

Δd � 0.2m 15

Longitudinal evaluation (distance from the
rear line of the parking space)

Δd � 0.4m 10

Avoid crashing into the curb, etc. 20

2.2.5 Standard Regulation Indexes

The standard regulation index mainly evaluates the
degree of compliance of the tested vehicle to national
traffic laws, that is, whether it can accurately identify
traffic lights, speed limit signals, lane lines, and other
signals, and correctly comply with them. This part is
evaluated based on the number of violations, accord-
ing to the atomic results recorded on the simulation
platform.

Using the definitions and concrete equations of the
above indexes, the values of each index can be obtained.
However, the relationship between the objective mea-
surements and the intelligence level of an autonomous
vehicle is not one-to-one, but rather is a many-to-one
relationship. This means that the objective measure-
ments within a range can correspond to the same in-
telligence level. Therefore, in the proposed evaluation
system, the objective measurements are divided into

five grades, according to the concrete data: very good,
good, normal, poor, and very poor. This is also con-
venient for the fuzzy comprehensive evaluation used in
the subsequent procedure to calculate the scores. The
segmentation range for each index is different for differ-
ent test scenarios. Thus, specific and reasonable stan-
dards should be formulated according to previous test
situations.
2.2.6 Order Relation Analysis Method (G1-Method)

The performance values reflected by different indexes
sometimes present contradictory situations. For exam-
ple, reducing the acceleration for comfort increases the
task completion time. In this situation, the comfort
score increases, but the driving performance score de-
creases. The scores of the vehicles cannot be evalu-
ated from a single perspective. Therefore, an overall
evaluation must be achieved by adjusting the index
weights. An index with greater importance (such as
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the safety index) and difference usually has a higher
weight. Here, the order relation analysis method[30] is
used to decide the weight, and the detailed process is
as follows.

(1) Experts or decision makers sort the indexes in the
index set {u1, u2, · · · , um}(m is the number of indexes)
according to a certain criterion (such as the importance
of the index or the complexity of the task reflected) to
form an order relationship:

u∗
1 > u∗

2 > · · · > u∗
m, (7)

where u∗
i (i = 1, 2, · · · , m) indicates the index after

sorting.
(2) The ratio of the importance between index u∗

i−1

and index u∗
i is given as βi = w∗

i−1/w∗
i , where w∗

i repre-
sents the weight coefficient corresponding to the sorted
index. The assignment reference values for βi are listed
in Table 3.

Table 3 Assignment reference table of βi

βi Explanation

1.0 u∗
i−1 is as critical as u∗

i .

1.2 u∗
i−1 is slightly more critical than u∗

i

1.4 u∗
i−1 is evidently more critical than u∗

i

1.6 u∗
i−1 is strongly more critical than u∗

i

1.8 u∗
i−1 is extremely more critical than u∗

i

(3) The weight coefficient w∗
i is calculated by

w∗
m =

(
1 +

m∑

i=2

m∏

k=i

βk

)−1

, (8)

w∗
i−1 = βiw

∗
i , i = 2, 3, · · · , m. (9)

2.2.7 Fuzzy Comprehensive Evaluation
The fuzzy comprehensive evaluation is used in the

proposed evaluation system to integrate the scores of
each index into an overall evaluation result[4,31-32]. The
process is as follows.

(1) After determining the evaluation index set
U = (u1, u2, · · · , um) and evaluation level set V =
(v1, v2, · · · , vn) (n is the number of levels), judge the
membership degree rij of a certain index ui (i =
1, 2, · · · , m) at each evaluation level vj (j = 1, 2, · · · , n).
An evaluation matrix R is composed of the evaluation
results of the m indexes, which reflects the fuzzy rela-
tionship between U and V :

R = (rij)m×n =

⎡

⎢
⎢
⎣

r11 · · · r1n

...
. . .

...

rm1 · · · rmn

⎤

⎥
⎥
⎦ . (10)

Generally, R needs normalizing by row or column.
(2) The evaluation matrix R is combined with the

weight set A = (w1, w2, · · · , wm) (m is the number

of indexes) determined by the order relation analysis
method to obtain the membership degree set C of the
upper-level evaluation index:

C =AR =
[

w1 · · · wm

]

⎡

⎢
⎢
⎣

r11 · · · r1n

...
. . .

...

rm1 · · · rmn

⎤

⎥
⎥
⎦ =

[

c1 · · · cn

]
. (11)

For a multi-level evaluation system, the calculation
starts from the lowest level. The result calculated using
Eq. (11) forms the evaluation matrix of the upper-level
evaluation index and so on, until the membership de-
gree set Ct of the target level is obtained.

(3) The comprehensive evaluation score is calcu-
lated. By quantifying the evaluation levels (for ex-
ample, very good, good, normal, poor, very poor)
into the corresponding score set µ (for example, µ =
[100 80 60 40 20]), a comprehensive score G under a
hundred-mark system can be calculated by

G = CµT =
[

c1 c2 · · · cn

] [

μ1 μ2 · · · μn

]T

. (12)

As discussed in Subsections 2.2.2—2.2.5, the perfor-
mance values of vehicles on the different indexes are
divided into five levels, according to the concrete val-
ues. As described in Section 1, the autonomous vehicle
is tested in a number of test scenarios. The results from
each test belong to one of five levels. Thus, the mem-
bership degree rij of each evaluation level is equal to
the average times that this evaluation level is obtained,
and the evaluation matrix R is thus normalized by row:

rij =
eij

N
, (13)

where N is the total number of test scenarios, eij is the
times that the index ui is divided into the evaluation
level vj in the N tests, and ei1 + ei2 + · · · + ein = N .

3 Numerical Example

In this section, a numerical example is presented to
show the evaluation results of an autonomous vehicle
scored using the framework of the test and evaluation
system proposed in this study.

The example was run on the VTD simulation plat-
form. VTD is a complete modular simulation tool chain
for ADAS and autonomous driving, and was developed
by the German company VIRES. VTD runs on Linux.
It can realize road simulations, traffic scenario model-
ing, weather and environment simulations, sensor sim-
ulations, scenario simulation management, and high-
precision real-time screen rendering. It can also be co-
simulated with third-party tools and plugins, such as
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the joint simulation of VTD and CarSim. The simula-
tion process of VTD mainly consists of three steps: road
network construction, dynamic scenario configuration,
and simulation operation. VTD uses a road network ed-
itor (ROD) to build static elements for test scenarios,
including road networks, lanes, and surrounding envi-
ronments. The ROD generates high-precision maps in
the OpenDrive format. VTD uses Scenario Editor to
build dynamic scenarios. It adds user-defined traffic
entities or continuous traffic flows based on OpenDrive
to form the final test scenarios. The scenario files are
stored in the OpenScenario format. In addition to us-
ing the VTD custom language or graphical editor to
define vehicle behaviors or using VTD’s default vehicle
controllers, VTD can be co-simulated with third-party
tools, such as in the joint simulation of VTD and Car-
Sim mentioned above. In this case, VTD provides the
test scenarios, and CarSim, as a simulation software
specifically for vehicle dynamics, provides controller al-
gorithms for the test vehicles. In CarSim, the algo-
rithms are written using MATLAB/Simulink.

The test scenario shown in Fig. 4 was constructed on
the VTD simulation platform. In the test scenario, the
tested vehicle was required to complete six test tasks:

obstacle detection, lane changing, car following, left
turn at intersection, pedestrian avoidance, and parking.
The ranges of the parameters in the test scenario were
set as follows: in the preparation part, the steady veloc-
ity of the test vehicle was 30—40km/h; in the obstacle
detection and lane changing part, the initial distance
between the tested vehicle and obstacle was 40—70m
and the speed of the object car was 30—40km/h; in the
car-following part, the changes of the object car’s speed
were 40km/h—60km/h—30km/h—40km/h, and the
acceleration was 3—6m/s2. In the pedestrian avoid-
ance part, the speed of the pedestrian was 3—5km/h,
and he started to cross the intersection when he was
8—10m away from the vehicle. Specific parameters
within the ranges mentioned above were selected, and
10 concrete test scenarios were generated. The tested
vehicle was run in these scenarios. The control algo-
rithm of the tested vehicle was set as the default driver
control algorithm in the VTD as a demonstration. The
tested vehicle passed each test scenario without colli-
sions. Then, the indexes were calculated according to
the driving data of the vehicle. Each index was classi-
fied according to its value, and the probability of each
grade was obtained. The statistics are listed in Table 4.

Table 4 Example of fuzzy evaluation table of a test vehicle

Index &

corresponding weight

Sub-index &

corresponding weight

Rank level

Very good Good Normal Poor Very poor

Safety 0.36 TET 0.58 0 0.6 0.4 0 0

NCJ 0.42 0 0.6 0.2 0.2 0

Comfort 0.21 Maximum acceleration 0.24 0.1 0.6 0.3 0 0

Maximum deceleration 0.20 0.1 0.5 0.4 0 0

Maximum jerk 0.17 0 0.6 0.4 0 0

Maximum yaw rate 0.14 0 0.6 0.3 0.1 0

Quickness 0.09 0 0.5 0.4 0.1 0

Headway distance in seconds 0.08 0.6 0.2 0.2 0 0

Lane deviation 0.08 0.6 0.3 0.1 0 0

Driving performance 0.17 Scenario passing time 0.42 0 0.8 0.2 0 0

Task completion quality 0.58 0.1 0.7 0.2 0 0

Standard regulations 0.26 Number of traffic violations 1 0.2 0.7 0.1 0 0

The index for task completion quality can be taken as
an example to illustrate how the indexes were scored.
In the built test scenario, there were two main parts
related to the task completion quality, namely the per-
formance (response time and speed control accuracy)
in car following and the performance in parking. In
10 tests, the response time was approximately 3 s, and
the speed control accuracy was ±1 km/h. There was
not much difference. Therefore, the main impact on
the task completion quality was in the parking perfor-
mance. In one test, the test vehicle successfully identi-

fied the parking space, and after adjusting three times,
it reversed into the parking space. However, the angle
with the center line of the parking space was 2.45◦, and
it was too close to the right vehicle, at less than 0.2m.
In the longitudinal direction, the vehicle was within
0.4m from the front and rear lines of the parking space.
The tested vehicle did not crash into the surrounding
vehicles and roadsides during the entire reversal pro-
cess. According to Table 2, the parking performance of
the test vehicle was scored as 75, which belongs to the
second level, that is, the good level. Therefore, in this
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test, the task completion quality of the test vehicle was
considered as good. In each test, the rating was per-
formed in this manner, and finally, 10 rating evaluations
were obtained. After normalization, the probability of
each level of task completion quality was obtained, as
presented in Table 4. The remaining indexes were eval-
uated in the same way. Owing to space reasons, other
processes are not repeated here.

The order relation analysis method was used to de-
termine the weight of each index. The specific process
is briefly described as follows.

The order relationship between safety, comfort, driv-
ing performance, and standard regulations was safety
> standard regulations > comfort > driving perfor-
mance. The importance ratios were 1.4, 1.2, and 1.2,
respectively. Through Eqs. (8) and (9), the weight set
for safety, comfort, driving performance, and standard
regulations was determined as [0.36 0.21 0.17 0.26].

The order relationship between TET and NCJ was
TET > NCJ. The importance ratio was 1.4. Thus, the
weight set for TET and NCJ was [0.58 0.42].

The order relationship between the indexes of com-
fort was maximum acceleration > maximum decel-
eration > maximum jerk > maximum yaw rate >
quickness > headway distance in seconds > lane de-
viation. The importance ratios were 1.2, 1.2, 1.2,
1.4, 1.2, and 1, respectively. Thus, the weight set
for the maximum acceleration, maximum decelera-
tion, maximum jerk, maximum yaw rate, quickness,
headway distance in seconds, and lane deviation was
[0.24 0.20 0.17 0.14 0.09 0.08 0.08].

The order relationship between scenario passing time
and task completion quality was task completion qual-
ity > scenario passing time. The importance ratio was
1.4. Thus, the weight set for the scenario passing time
and task completion quality was [0.42 0.58].

Table 4 lists the weights and grades of each index.
The importance of each index varies according to the
different test purposes and objects, so the weights are
different in different tests.

The scores for each index and total score were ob-
tained by fuzzy comprehensive evaluation, as shown in
Table 5. Tables 4 and 5 show that the test vehicle may
have low safety and comfort scores, owing to its exces-
sive speed changes and yaw angle changes. The control
algorithm can be optimized in this respect.

Table 5 Example of vehicle scores

Index Score

Safety 70.32

Comfort 75.44

Driving performance 77.16

Standard regulations 82.00

Total score 75.60

The following is a brief description of the advantages
of the framework proposed in this article relative to
those from previous research.

In Ref. [31], a set of evaluation indicators and an
evaluation system were constructed for L2 level au-
tonomous vehicles. However, the indicators could not
cover the advanced performance of L3 level autonomous
vehicles and above. Expert scoring was used for scoring.
Compared with the evaluation method in Ref. [31], one
of the biggest advantages of the framework proposed
herein is that the evaluation system is composed of ob-
jective indicators, rather than being scored by experts,
and therefore facilitates the development of subsequent
automated processes. In addition, it is more reasonable
to prioritize the functional safety and collision safety.

Reference [1] defined four indexes: safety index, effi-
ciency index, rationality index, and comfort index. The
four indexes were calculated from an energy perspec-
tive, and were calculated through defined mathemat-
ical formulas. After comparison with human driving
data, the indexes were normalized to form a score be-
tween 0 and 1, and were divided into intelligence lev-
els. Compared with the evaluation method proposed in
Ref. [1], the indicators selected by the framework pro-
posed herein are more intuitive, and the final scores
are also more intuitive, making it convenient for algo-
rithm developers to find out which part of the vehicle
performance needed to be improved. The evaluation
index mentioned in Ref. [1] is too abstract; the final to-
tal score combines four evaluation indexes which only
reflect the predefined vehicle intelligence, but do not
provide directions for improvement. In addition, there
is no scalability. Therefore, it is difficult to add new
evaluation indicators.

The unmanned ground vehicle evaluation system pro-
posed in Ref. [4] used an expert evaluation method and
fuzzy-extended analytic hierarchy process to evaluate
the intelligence of autonomous vehicles from five as-
pects. Compared with Ref. [4], the indicators and per-
spectives evaluated by the framework proposed herein
are no longer basic vehicle function tests, but are con-
sidered from a more holistic perspective, and can bet-
ter reflect the intelligence of autonomous vehicles. Ref-
erence [4] also used expert scoring and the extended
analysis hierarchy method to determine weights, and
therefore required a large amount of calculation. This
study uses the order relation analysis method to deter-
mine the weights. The calculation amount is relatively
small, and is suitable for a framework with many indi-
cators, such as that proposed herein.

4 Conclusion

This paper proposes a complete and comprehensive
test and evaluation framework for autonomous vehicles,
including the design of test scenarios, the selection of
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evaluation indexes, and the establishment of an evalu-
ation system. It aims to form an objective and quanti-
tative score for the intelligence of autonomous vehicles,
and can be used to form an automated process in the
future development. The proposed framework is built
on a simulation platform to ensure the feasibility of the
design and implementation of the test scenario. A nu-
merical example is finally provided to visually demon-
strate the evaluation results for the autonomous vehicle
as scored by the proposed framework.

There are four main contributions of this study. ①
Principles are established for test scenario design. The
entire testing process is based on a complete test sce-
nario, rather than on a single function test or a specific
scenario test, making the testing process more reason-
able. ② Appropriate evaluation indexes are selected.
A comprehensive evaluation of autonomous vehicles is
conducted based on four aspects: safety, comfort, driv-
ing performance, and standard regulations. The se-
lected indexes are all objective, which can reduce sub-
jective influences and provide automatic scoring with-
out external human intervention. ③ The priorities
of functional safety and collision safety are considered.
Considering that the priority levels of these two indexes
are significantly higher than those of other indexes, in
the proposed framework, it is necessary to pass a sce-
nario without failure and collision before performing
subsequent evaluations. Therefore, the safety indexes
adopt surrogate safety measures commonly used in traf-
fic research; this is a different approach from previous
research. ④ The universality and expandability of the
evaluation indexes and system are enhanced. The fi-
nal evaluation result is given in a quantitative form
through fuzzy comprehensive evaluation, rather than
using a grade classification. Thus, the final result is
more intuitive. In future research, other evaluation in-
dicators and dimensions can be added without affecting
the overall framework.

For example, the coordination, learning abilities, and
communication abilities of intelligent vehicles can also
be evaluated. Coordination can be evaluated by de-
signing special traffic scenarios and observing whether
the vehicle performs a preset operation. Learning abil-
ities can be evaluated by observing the increases in the
scores of a vehicle over two tests. The communication
ability can be evaluated based on the communication
efficiency between the test vehicle and surrounding ve-
hicles. Additional research is needed for the testing and
selection of corresponding concrete indexes.

Open Access This article is licensed under a Creative

Commons Attribution 4.0 International License, which per-

mits use, sharing, adaptation, distribution and reproduc-

tion in any medium or format, as long as you give ap-

propriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and in-

dicate if changes were made. The images or other third

party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a

credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence,

visit http://creativecommons.org/licenses/by/4.0/.

References

[1] HUANG H, ZHENG X, YANG Y, et al. An integrated
architecture for intelligence evaluation of automated
vehicles [J]. Accident Analysis & Prevention, 2020,
145: 105681.

[2] HUANG H M, PAVEK K, NOVAK B, et al. A frame-
work for autonomy levels for unmanned systems (AL-
FUS) [C]//AUVSI’s Unmanned Systems North Amer-
ica. Baltimore: NIST, 2005: 1-9.

[3] DARPA. Urban challenge rules [DB/OL]. (2007-10-27)
[2020-11-20]. https://www.grandchallenge.org/ grand-
challenge/docs/Urban Challenge Rules 102707.pdf.

[4] SUN Y, CHEN H. Research on test and evaluation
of unmanned ground vehicles [J]. Acta Armamentarii,
2015, 36(6): 978-986 (in Chinese).

[5] SUN Y, XIONG G, CHEN H. Evaluation of the in-
telligent behaviors of unmanned ground vehicles based
on fuzzy-EAHP scheme [J]. Automotive Engineering,
2014, 36(1): 22-27 (in Chinese).

[6] SUN Y. Quantitative evaluation of intelligence levels
for unmanned ground vehicles [D]. Beijing: Beijing In-
stitute of Technology, 2014 (in Chinese).

[7] XIONG G M, GAO L, WU S B, et al. Intelligent be-
haviors and test and evaluation for unmanned ground
vehicles [M]. Beijing: Beijing Institute of Technology
Press, 2015 (in Chinese).

[8] SON T D, BHAVE A, VAN DER AUWERAER H.
Simulation-based testing framework for autonomous
driving development [C]//2019 IEEE International
Conference on Mechatronics(ICM ). Ilmenau: IEEE,
2019: 576-583.

[9] WANG G, DENG W, ZHANG S, et al. A comprehen-
sive testing and evaluation approach for autonomous
vehicles [J]. SAE Technical Paper, 2018: 2018-01-0124.

[10] WENG B, RAO S J, DEOSTHALE E, et al. Model
predictive instantaneous safety metric for evaluation of
automated driving systems [C]//IEEE Intelligent Ve-
hicles Symposium (IV ). Las Vegas: IEEE, 2020: 1899-
1906.

[11] LI L, HUANG W, LIU Y, et al. Intelligence testing
for autonomous vehicles: A new approach [J]. IEEE
Transactions on Intelligent Vehicles, 2016, 1(2): 158-
166.

[12] FENG S, FENG Y, YU C, et al. Testing scenario li-
brary generation for connected and automated vehi-
cles, part I: Methodology [J]. IEEE Transactions on



712 J. Shanghai Jiao Tong Univ. (Sci.), 2021, 26(5): 699-712

Intelligent Transportation Systems, 2021, 22(3): 1573-
1582.

[13] FENG S, FENG Y, SUN H, et al. Testing scenario
library generation for connected and automated vehi-
cles, part II: case studies [J]. IEEE Transactions on
Intelligent Transportation Systems, 2021, 22(9): 5635-
5647.

[14] SAE International. Taxonomy and definitions for
terms related to driving automation systems for on-
road motor vehicles: J3016 [R]. Warrendale: SAE,
2018.

[15] YU Z, XING X, CHEN J. Review on automated vehi-
cle testing technology and its application [J]. Journal
of Tongji University (Natural Science), 2019, 47(4):
540-547 (in Chinese).

[16] PEGASUS. PEGASUS joint project [DB/OL].
(2019-05-14) [2020-11-20]. http://www.pegasuspro-
jekt.de/en/.

[17] MENZEL T, BAGSCHIK G, MAURER M. Scenar-
ios for development, test and validation of automated
vehicles [C]//2018 IEEE Intelligent Vehicles Sympo-
sium(IV ). Changshu: IEEE, 2018: 1821-1827.

[18] WATANABE H, TOBISCH L, ROST J, et al. Sce-
nario mining for development of predictive safety func-
tions [C]//2019 IEEE International Conference on Ve-
hicular Electronics and Safety(ICVES). Cairo: IEEE,
2019: 1-7.

[19] HighD Dataset. HighD dataset [DB/OL]. [2020-11-20].
https: //www.highd-dataset.com/.

[20] DATA.GOV. Safety pilot model deployment data
[DB/OL]. (2020-08-21) [2020-11-20]. https://catalog.
data.gov/dataset/safety-pilot-model-deployment-data.

[21] UMTRI. Safety pilot model deployment. [DB/OL].
[2020-11-20]. http://safetypilot.umtri.umich.edu/.

[22] RAHMAN M S, ABDEL-ATY M, LEE J, et al. Safety
benefits of arterials’ crash risk under connected and
automated vehicles [J]. Transportation Research Part
C: Emerging Technologies, 2019, 100: 354-371.

[23] CHEN J, LI R, XING X, et al. Survey on intelli-
gence evaluation of autonomous vehicles [J]. Journal
of Tongji University (Natural Science), 2019, 47(12):
1785-1790 (in Chinese).

[24] ZHAO Y N, MENG K W, GAO L. The entropy-
cost function evaluation method for unmanned ground
vehicles [J]. Mathematical Problems in Engineering,
2015, 2015: 1-6.

[25] HAYWARD J C. Near-miss determination through use
of a scale of danger [C]//51st Annual Meeting of the
Highway Research Board. Washington, DC: Highway
Research Board, 1972: 24-34.

[26] Standardization Administration. Intelligent trans-
portation systems: Forward vehicle collision warning
systems: Performance requirements and test proce-
dures: GB/T 33577—2017 [S]. Beijing: Standards
Press of China, 2017 (in Chinese).

[27] MINDERHOUD M M, BOVY P H L. Extended time-
to-collision measures for road traffic safety assessment
[J]. Accident Analysis & Prevention, 2001, 33(1): 89-
97.
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