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Abstract: This study proposes two speed controllers based on a robust adaptive non-singular terminal sliding
mode control approach for the cooperative adaptive cruise control problem in a connected and automated vehicular
platoon. The delay-based spacing policy is adopted to guarantee that all vehicles in the platoon track the same
target velocity profile at the same position while maintaining a predefined time gap. Factors such as nonlinear
vehicle longitudinal dynamics, engine dynamics with time delay, undulating road profiles, parameter uncertainties,
and external disturbances are considered in the system modeling and controller design. Different control objectives
are assigned to the leading and following vehicles. Then, controllers consisting of a sliding mode controller with
parameter adaptive laws based on the ego vehicle’s state deviation and linear coupled state errors, and a Smith
predictor for time delay compensation are designed. Both inner stability and strong string stability are guaranteed
in the case of nonlinear sliding manifolds. Finally, the effectiveness of the proposed controllers and the benefits
of 44.73% shorter stabilization time, 11.20% less speed overshoot, and virtually zero steady-state inner vehicle
distance deviation are illustrated in a simulation study of a seven-vehicle platoon cooperative adaptive cruise
control and comparison experiments with a coupled sliding mode control approach.
Key words: cooperative adaptive cruise control, delay-based spacing policy, adaptive non-singular terminal sliding
control, string stability
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0 Introduction

Significant developments in connected and auto-
mated vehicle (CAV) technology have been realized
during the last decade. Intelligent CAVs integrated
by connectivity and automation can not only drive by
themselves with on-board computers and sensing sen-
sors, but also communicate with each other through
vehicle-to-vehicle (V2V) communications. Cooperative
adaptive cruise control (CACC) is one of the most
meaningful technologies for CAVs and has comple-
mented adaptive cruise control (ACC) with cooperative
maneuvers. In CACC systems, CAVs share their own
parameters and real-time state information (e.g., accel-
eration, speed, and position) with other CAVs in the
network through V2V communications.

Using CACC systems, potential benefits can be
achieved, such as increasing traffic capacity by reducing
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the gaps between vehicles, reducing energy consump-
tion due to unnecessary speed changes, and reducing
aerodynamic drag on the following vehicles, which can
achieve up to 10% energy conservation[1] and improve
driving safety[2-3].

In order to ensure the safe CACC operation of such
platoons with shorter vehicle-following gaps, coopera-
tive automation of vehicle longitudinal dynamics is re-
quired. The two fundamental aspects of the resulting
behavior are the spacing policy and cooperative control
approach.

Spacing policy, which specifies the desired (and not
necessarily static) inter-vehicular distance, is mainly
categorized into three policy types: constant spacing
(CS)[4], constant time-headway (CTH)[5], and delay-
based (D-B)[6].

Different control methods have been adopted in co-
operative controller design, including yet not limited
to linear feedback control[7-9], optimal control (OC)-
based approach[10], sliding mode control (SMC)[11-15],
and other methods such as model predictive control
(MPC)[16-17], H∞ control[18-20], intelligent method[21],
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and hybrid methods such as integrated OC with
SMC[22], MPC with SMC[23], and neural networks
(NNs) with SMC[24].

Among the above controller design approaches, SMC,
a well-known nonlinear method with robustness against
bounded matched uncertainties, has attracted consid-
erable attention and has been adopted by different
researchers to solve the CACC problem. Kwon and
Chwa[11] proposed a coupled SMC (CSMC) to improve
the performance and string stability of bidirectional
platoon control. The coupled sliding surfaces, which
are in the form of a linear combination of the ego
vehicle’s sliding surface and its adjacent vehicles, are
designed to guarantee string stability. Wu et al.[12]

proposed a distributed SMC method for homogeneous
vehicular platoons based on nonlinear dynamics and
generic topologies whose associated matrices are pos-
itive definite. The distributed SMC design is divided
into two parts: topological sliding surface and topolog-
ical reaching law designs. Considering uncertain and
time-varying driving resistance, Yan et al.[13] proposed
a distributed adaptive SMC for platoon control. Then,
an adaptive control method was applied to estimate the
uncertain resistance coefficients. A coupled sliding sur-
face, which is adopted to link two standalone sliding
surface of a single vehicle, ensures satisfactory conver-
gence and string stability.

The above studies are based on bi-level sliding sur-
faces, which are a lower-level sliding surface constructed
by a linear combination of ego-vehicle state errors and
an upper level sliding surface constructed by the linear
coupled lower sliding surfaces.

Based on the transformed error, two adaptive
SMC schemes based on leader-predecessor and leader-
bidirectional information flows were presented by Guo
and Li[14] to ensure string stability and strong string
stability, respectively. A new linear sliding surface with
the proposed transformed error, which is forced into the
allowable region, was adopted. Factors such as actua-
tor saturation nonlinearity, which is approximated by a
smooth hyperbolic tangent function, uncertain param-
eters, and unknown disturbances, are also considered.
A terminal SMC such as a switching nonlinear sliding
manifold was designed in Ref. [15]. The string stabil-
ity is guaranteed by using the proposed novel spacing
error of the vehicles when the sliding surface is reached
in finite time.

Different approaches have been combined with SMC
methods. Guo and Li[22] integrated Pontryagin’s mini-
mum principle-based OC method with SMC for CACC
set-point optimization and tracking control. A two-
layered control architecture consisting of a fuel-time-
efficient speed-planning algorithm and distributed SMC
speed tracking is presented. Fesharaki et al.[23] inte-
grated MPC with SMC for constrained nonlinear sys-
tems. A tractable nonlinear MPC is designed based on

the nominal system, and the SMC provides the robust-
ness and recovery of the performance against model-
ing error and system uncertainties. Guo et al.[24] pro-
posed a Chebyshev NN (CNN)-based distributive inte-
gral SMC with special consideration for input satura-
tion. CNNs are used to approximate unknown nonlin-
ear functions in the followers online.

However, the majority of the above-mentioned works
use a time domain-based spacing policy such as CS
or CTH. Only limited studies[6,10] are based on D-B
policy. Motived by the fact that the slopes, curva-
tures, speed limits, and other infrastructure informa-
tion are all position-based, rather than time domain, a
D-B space policy that ensures the same velocity and ac-
celeration in the same location for each vehicle is more
desirable and reasonable to be chosen as the target pro-
file. In what follows, two scenarios where the CS or
CTH policies are adopted are chosen as an example,
explaining the reason for selecting the D-B policy. For
a platoon of heavy-duty vehicles traversing a hilly road
segment, owing to the length of the platoon, the lead-
ing vehicle could accelerate in level or downhill front
segments while the following vehicles pass through the
steep uphill segments. Not all of the following vehicles
can necessarily achieve speed acceleration owing to the
road geometry and limitation of their engine power, al-
though the two spacing policies command all vehicles
to maneuver synchronously. This scenario was recog-
nized in experiments of Ref. [1]. A lower speed limit can
frequently exist in curvature segments, ensuring safety
issues. However, the leading vehicle could accelerate
after passing through the curvature segment, forcing
the following vehicles to accelerate because of the two
policies, even though they remain in the curvature seg-
ments.

Furthermore, vehicle nonlinear dynamics, parame-
ter uncertainties, external disturbances, and pure de-
lay processes caused by communication delays and en-
gine actor lags are seldom considered simultaneously.
To resolve the above issue in CACC with D-B policy,
non-singular terminal SMC (NTSMC), which was first
proposed by Feng et al.[25] with features that ensure
states of the resulting closed-loop system converge to
the equilibrium point in finite time while avoiding the
singularity problem in conventional terminal SMC, is
adopted in this study.

In this paper, two controllers, for the leading vehicle
and following vehicles, are proposed for the different
control objectives. Factors such as the response pro-
cess with engine time delay, nonlinearities of the vehi-
cle dynamics, parameter uncertainties, and road verti-
cal profiles are all considered in the CACC controller
design.

The remainder of this paper is organized as follows:
Section 1 describes a space domain-based CACC prob-
lem and the longitudinal dynamics of vehicles in the
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platoon. Section 2 provides a detailed design of the
CACC controllers, including system structure, control
laws, parameter adaption laws, and proofs of the in-
ner and string stability. Section 3 provides numeri-
cal simulations and Section 4 compares the proposed
method with the CSMC approach. Section 5 concludes
the paper.

1 Problem Description and Vehicle
Model

1.1 Space Domain-Based CACC Problem and
Delay-Based Spacing Policy

Consider a vehicular platoon consisting of n het-
erogeneous CAVs that traverse on a horizontal road

on an undulate vertical segment profile with a prede-
fined distance-based speed profile. The predecessor-
leader following the information flow topology with
the optional last-to-ego vehicle communication link is
adopted, as displayed in Fig. 1.

Categorized by the different roles in the vehicular
platoon, different control objectives are adopted in the
driving of a vehicle.

(1) For the leading vehicle, the objective is to track
the predefined speed profile computed based on the ego
position of the current time as the independent variable:

x2,1(x1,1) → xr2,1(x1,1)
ẋ2,1(x1,1) → ẋr2,1(x1,1)

}
, (1)

Vehicle 1Vehicle 2Vehicle 3

Optional link Optional link

Vehicle n

......

Fig. 1 Information topology of CACC platoon with predecessor-leader following and optional last-to-ego vehicle link

where x1,1 and x2,1 are the position and velocity of
the leading vehicle, respectively, ẋ2,1 is the time deriva-
tive of the leading vehicle’s velocity (acceleration), and
xr2,1 and ẋr2,1 are the target speed and acceleration,
respectively. Without loss of generality, “→” denotes
the tracking process.

(2) For the following vehicles, the objective is to track
the D-B position and speed profile obtained from the
preceding or leading vehicle, while considering the dis-
tance gap between the preceding vehicle, leading vehi-
cle, and optional last vehicle. Thus, the target speed
profile for the ith following vehicle xr2,i in the D-B spac-
ing policy is given as

xr2,i(t) = xr2,i−1(t − tg,i−1)
or

xr2,i(t) = xr2,1

(
t −

i−1∑
j=1

tg,j

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (2)

i = 2, 3, · · · , n,

where tg,i−1 > 0 is the time gap between the ith vehicle
and its preceding vehicle.

(3) Stability performance: controllers for the lead-
ing and following vehicles must fulfill the inner stabil-
ity; controllers for the following vehicles must fulfill the
string stability.

1.2 Longitudinal Dynamics of a Vehicle
The longitudinal dynamics of the ith vehicle in a pla-

toon can be obtained by Newton’s second law as follows:

ẋ1,i = x2,i

miẋ2,i = ue,i − fR,i + di

}
, (3)

fR,i = fb,i + fg,i

fb,i = mi(c0,i + c1,ix2,i + c2,ix
2
2,i)

fg,i = migα(x1,i)

⎫⎪⎬
⎪⎭ , (4)

where x1,i and x2,i are the position and velocity of the
vehicle, mi is the static mass of the vehicle, ue,i is the
actual driving force that the engine outputs, di is the
unknown external disturbances such as model errors,
uncertainties of the vehicle, road profiles and unpre-
dicted wind gusts, and fR,i is the total resistance of
the vehicle which is attributed to the basic resistance
fb,i and road vertical profile-based resistance fg,i. The
basic resistance fb,i is a consequence of the rolling and
speed-related aerodynamic resistances. The road ver-
tical profile-based resistance fg,i is a consequence of
the road slope α(x1,i). In Eq. (4), c0,i = rig where
ri is the rolling resistance coefficient, c1,i = 0, and
c2,i = ha,iAiCd,i/(2mi) where ha,i is the air density, Ai

is the vehicle front area, Cd,i is the air drag coefficient,
and g is the acceleration due to gravity. Typically, the



J. Shanghai Jiao Tong Univ. (Sci.), 2021, 26(5): 634-646 637

grade of the slope on the road is small, and approxima-
tions of α ≈ tan α ≈ sin α and cosα ≈ 1 are used above.
In this study, we assume that the unknown disturbance
satisfies |di| � d̄i, where d̄i is the upper bound of the
disturbance.

Owing to the system inertia, mechanical properties,
and transmission delay, the engine dynamics are mod-
eled as a first-order plus dead time (FOPDT) process:

u̇e,i(t) = − 1
Ti

ue,i(t) +
1
Ti

uc,i(t − τi), (5)

where u̇e,i is the time derivative of ue,i, uc,i is the con-
trol command input such as the throttle/brake com-
mand, Ti is the engine time constant, and τi is the pure
delay time (including the wireless communication net-
work owing to the queuing, contention, transmission,
and propagation) for the control command.

2 CACC Controller Design

2.1 Controller Structure
The proposed controller is composed of two main

parts: the adaptive NTSMC-based trajectory track-
ing controller and Smith predictor (SP), as indicated
in Fig. 2. Based on the different roles of the vehicles,
different data are chosen as the target input, such as
target speed and acceleration based on the position of
the leading vehicle, and D-B target and state profile
of the leading, preceding, and last vehicles. In every
control cycle, the control command computed by the
adaptive NTSMC is sent to the simulation (or real)
vehicle, as well as the two nominal models with and
without the engine delay process. Then, a modified
state, xwo + (x − xwd), is sent back to the adaptive
NTSMC controller, where xwo is the vehicle state com-
puted by the nominal model without delay, xwd is the
vehicle state from the nominal model with delay, and
x is the real vehicle state. If the nominal model is the
same as the real model, the correct term x−xwd equals
zero and the pure delay process has no influence on the
controller design.

Thus, the pure delay effects in the engine dynamics

Adaptive NTSMC
controller for CAVs

Nominal vehicle model
without delay: Eqs. (3)
and (5) with di=0, τi=0

Nominal vehicle model
with delay: Eqs. (3)
and (5) with di=0

Vehicle dynamics model:
Eqs. (3) and (5)

Vehicle state
x=[x1,i  x2,i]

T
Target input

Smith predictor

+

+

+

+

+ +

−

−

Disturbance di

xwo

xwd

Fig. 2 Framework of proposed CACC controller for CAVs

model are ignored in the following adaptive NTSMC
controller design: Consider a third-order vehicle model
with engine dynamics based on Eqs. (3) and (5) with
τi = 0, define the auxiliary vectors θi = (mic0,i +
fg,i, mic1,i, mic2,i) and ζi = (1, x2,i, x

2
2,i); then, the

total resistance of the vehicle can be rewritten as
fR,i = θiζ

T
i (x). With unknown disturbance terms di

neglected, the vehicle dynamic model for the adaptive
NTSMC design is then described as

ẋ1,i = x2,i

ẋ2,i =
ue,i − θiζ

T
i (x)

mi

⎫⎬
⎭ , (6)

and

u̇e,i = − 1
Ti

ue,i +
1
Ti

uc,i. (7)

2.2 Cruise Controller for Leading Vehicle
2.2.1 Control Law Design for Leading Vehicle

For the leading vehicle (i = 1), based on the
three-order model in Eqs. (6) and (7) with a prede-
fined distance-based reference speed profile xr2,i and
its derivative ẋr2,i given, the speed tracking error e2,i

and its derivative, acceleration tracking error, e3,i of
the leading vehicle are defined as

e2,i = x2,i − xr2,i

e3,i = ẋ2,i − ẋr2,i

}
. (8)

Thus, a non-singular terminal sliding manifold for the
leading vehicle is defined as

si = ewi

3,i − k0,ie2,i, (9)
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where the sliding manifold parameters satisfy

0 < wi = pi/qi < 1,

pi and qi are constants of positive odd integers, and
k0,i < 0 is a constant. Thus, the time derivative of the
sliding manifold in Eq. (9) is

ṡi = wie
wi−1
3,i ė3,i − k0,iė2,i, (10)

where ė3,i = ẍ2,i − ẍr2,i is the vehicle jerk error and
jerk of the target speed profiles, and ẍr2,i is the deriva-
tive of the target acceleration profile. Define the time
derivative of the total resistance as

ḟR,i = θ1,iζ
T
1,i(x),

θ1,i = (ḟg,i, mic1,i, 2mic2,i),
ζ1,i(x) = (1, ẋ2,i, x2,iẋ2,i).

Then from Eq. (6), the jerk of the leading vehicle is

ẍ2,i =
u̇e,i − θ1,iζ

T
1,i(x)

mi
, (11)

and the actual driving force that the engine outputs is

ue,i = miẋ2,i + θiζ
T
i (x). (12)

By substituting Eqs. (7) and (12) into Eq. (11), we
obtain

ẍ2,i =
1

mi

[ 1
Ti

uc,i − 1
Ti

(miẋ2,i + θiζ
T
i (x))−

θ1,iζ
T
1,i(x)

]
. (13)

Then, Eq. (10) can be rewritten as

ṡi = wie
wi−1
3,i

{ 1
mi

[ 1
Ti

uc,i − 1
Ti

(miẋ2,i + θiζ
T
i (x))−

θ1,iζ
T
1,i(x)

]
− ẍr2,i

}
− k0,ie3,i. (14)

Based on the nature of the SMC, the control law
includes two terms:

uc,i = ueq,i + usw,i, (15)

where ueq,i is the equivalent control law for the lead-
ing vehicle and usw,i is the nonlinear switching term.
By deriving from ṡi = 0, the equivalent control law is
designed as

ueq,i = miẋ2,i + θiζ
T
i (x) + Tiθ1,iζ

T
1,i(x)+

Timiẍr2,i +
Timik0,ie

2−wi

3,i

wi
, (16)

and a constant rate reaching law is adopted here for the
nonlinear switching term:

usw,i = −Kisgn(si), (17)

where Ki > 0 is a parameter greater than the norm
bound of the total matched disturbance, satisfying the
condition Ki �

∣∣d̄i

∣∣.
Proof:
We choose the Lyapunov candidate function for the

leading vehicle as

Vi =
1
2
Timis

2
i . (18)

Then, the time derivative of Eq. (18) is

V̇i = Timisiṡi. (19)

Then, by substituting Eq. (14) into Eq. (19), the time
derivative of the Lyapunov candidate function can be
changed to

V̇i = si{wie
wi−1
3,i [uc,i − miẋ2,i − θζT(x)−

Tiθ1ζ
T
1 (x) − Timiẍr2,i] − Timik0,ie3,i}. (20)

Substituting the designed control law Eq. (15) into
Eq. (20), we obtain

V̇i = −Kiwie
wi−1
3,i sgn(si)si, (21)

where ewi−1
3,i > 0 for ∀e3,i �= 0 owing to the odd integers

pi and qi, and sgn(si)si = |si| > 0 for ∀si �= 0. Thus,
V̇i < 0, the system is stable and can reach the sliding
manifold si = 0 in a finite time.

End of Proof.
2.2.2 Parameter Adaptation for Leading Vehicle

Owing to model uncertainties, the parameter adap-
tive law is designed as follows. Based on the con-
trol law designed in Eq. (15), two auxiliary variables,
μθ,i = Tiθ1,i and μm,i = Timi are defined. The param-
eters for the adaptive updates are chosen as follows:

mi = m̂i + Δmi

θi = θ̂i + Δθi

μθ,i = μ̂θ,i + Δμθ,i

μm,i = μ̂m,i + Δμm,i

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (22)

where m̂i, θ̂i, μ̂θ,i, and μ̂m,i are the estimated values,
and Δmi, Δθi, Δμθ,i, and Δμm,i are the errors be-
tween the estimations and their real values. Then, the
designed control law can be rewritten based on the pa-
rameter estimation as

uc,i = m̂iẋ2,i + θ̂iζ
T
i (x) + μ̂θ,iζ

T
1,i(x)+

μ̂m,iẍr2,i +
μ̂m,ik0,ie

2−wi

3,i

wi
− Kisgn(si). (23)

Choose the new Lyapunov candidate function with
parameter uncertainties:

Vi =
1
2
Timis

2
i +

1
2
λ−1

m,i(Δm)2 +
1
2
Δθiλ

−1
θ,i (Δθi)T+

1
2
Δμθ,iλ

−1
μθ,i(Δμθ,i)T +

1
2
λ−1

μm,i(Δμm,i)2, (24)
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where λm,i, λθ,i = diag(λθ1,i, λθ2,i, λθ3,i), λμθ,i =
diag(λμθ1,i, λμθ2,i, λμθ3,i), and λμm,i are the designed
constants of the adaptive learning rate. Then, the time
derivative of Eq. (24) is

V̇i =Timisiṡi + λ−1
m,iΔmiΔṁi + Δθ̇iλ

−1
θ,i (Δθi)T+

Δμ̇θ,iλ
−1
μθ,i(Δμθ,i)T + λ−1

μm,iΔμm,iΔμ̇m,i. (25)

Considering the time derivative of the sliding mani-
fold in Eq. (14), we obtain

Timiṡi =wie
wi−1
3,i [uc,i − (m̂i + Δmi)ẋ2,i−

(θ̂i + Δθi)ζT
i (x) − (μ̂θ,i + Δμθ,i)ζT

1,i(x)−
(μ̂m,i + Δμm,i)ẍr2,i]−
(μ̂m,i + Δμm,i)k0,ie3,i. (26)

Then, substituting Eqs. (23) and (26) into Eq. (25),
we obtain

V̇i = si{wie
wi−1
3,i [−Δmiẋ2,i − Δθiζ

T
i (x)−

Δμθ,iζ
T
1,i(x) − Δμm,iẍr2,i − Kisgn(si)]−

Δμm,ik0,ie3,i} + λ−1
m,iΔmiΔṁi+

Δθ̇iλ
−1
θ,i (Δθi)T + Δμ̇θ,iλ

−1
μθ,i(Δμθ,i)T+

λ−1
m,iΔμm,iΔμ̇m,i. (27)

Note that Δṁi = − ˙̂mi, Δθ̇i = − ˙̂
θi, Δμ̇θ,i =

− ˙̂μθ,i, and Δμ̇m,i = − ˙̂μm,i, and substituting them into
Eq. (27), we obtain

V̇i = − siwie
wi−1
3,i Kisgn(si)−

Δmi(siwie
wi−1
3,i ẋ2,i + λ−1

m,i
˙̂mi)−

Δθi(siwie
wi−1
3,i ζT

i (x) + λ−1
θ,i

˙̂
θi)−

Δμθ,i(siwie
wi−1
3,i ζT

1,i(x) + λ−1
μθ,i

˙̂μθ,i)−
Δμm,i(siwie

wi−1
3,i ẍr2,i+

sik0,ie3,i + λ−1
μm,i

˙̂μm,i). (28)

Thus, the adaptive law is designed as

˙̂mi = −λm,isiwie
wi−1
3,i ẋ2,i

˙̂
θi = −λθ,isiwie

wi−1
3,i ζT

i (x)
˙̂μθ,i = −λμθ,isiwie

wi−1
3,i ζT

1,i(x)
˙̂μm,i = −λμm,i(siwie

wi−1
3,i ẍr2,i + sik0,ie3,i)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (29)

and the time derivative of the Lyapunov candidate func-
tion becomes

V̇i = − siwie
wi−1
3,i Kisgn(si) =

− wie
wi−1
3,i Ki |si| < 0, (30)

which guarantees the stability of the system.

2.3 Cooperative Controller for Following Vehi-
cles

Because the sliding manifold designed for the leading
vehicle in Eq. (9) with the inner stability derived from
Eqs. (18)—(21) cannot guarantee strong string stabil-
ity, we introduce another NTSMC and its associated
parameter adaption laws for the following vehicles in
the platoon to ensure strong string stability with a non-
linear sliding manifold based on the modified input er-
ror idea.
2.3.1 Control Law Design for Following Vehicles

For the following vehicles (i = 2, 3, · · · , n), based
on the same three-order model, Eqs. (6) and (7), and
with a D-B reference position profile and real-time po-
sition information from the known leading, preceding,
and last vehicles, the modified position error from the
ego (ith) vehicle to its preceding vehicle is defined as

σ1,i = x1,i − x1,i−1 − (xr1,i − xr1,i−1). (31)

Similarly, we have the modified position error be-
tween the ego vehicle and leading vehicle as

σ1,(1,i) = x1,i − x1,1 − (xr1,i − xr1,1), (32)

and the error between the ego vehicle and last vehicle
of the platoon as

σ1,(n,i) = x1,n − x1,i − (xr1,n − xr1,i). (33)

Then, we define a linear combination of Eqs. (31)—
(33) as the input error z1,i for the closed-loop system
for the following vehicles:

z1,i = σ1,i + ασ1,(1,i) + βσ1,(n,i), (34)

where α > β � 0 are the coefficients of the linear cou-
pling. It is worth noting that the case of β = 0 indicates
that the transformed input error regards only the ego
vehicle itself and the leading vehicle, which also means
that the optional communication link with the last ve-
hicle mentioned in Subsection 1.1 is not activated.

Based on the same idea as in controller design for the
leading vehicle, a non-singular terminal sliding manifold
is also adopted and designed with new input errors as

si = zwi

2,i − k0z1,i, (35)

where z2,i = ż1,i is the time derivative of the input
error z1,i. Then, we define an auxiliary variable πi and
its derivative π̇i as

πi =αx2,1 + x2,i−1 − βx2,n − αxr2,1−
xr2,i−1 + (1 + α − β)xr2,i + βxr2,n

π̇i =αẋ2,1 + ẋ2,i−1 − βẋ2,n − αẋr2,1−
ẋr2,i−1 + (1 + α − β)ẋr2,i + βẋr2,n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (36)
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Thus, we have

z2,i = (1 + α − β)x2,i − πi

ż2,i = (1 + α − β)ẋ2,i − π̇i

}
. (37)

Then, the time derivative of the sliding manifold for
following vehicles is

ṡi = wiz
wi−1
2,i [(1 + α − β)ẋ2,i − π̇i] − k0,iz2,i. (38)

Taking steps that are similar to those described in
Subsection 2.2, we can obtain the time derivative of
the sliding manifold:

ṡi = wiz
wi−1
2,i

{
(1 + α − β)

1
mi

[uc,i − Ti(miẍ2,i+

θ1,iζ
T
1,i(x)) − θiζ

T
i (x)] − π̇i

}
− k0,iz2,i. (39)

Therefore, the equivalent control law for the sliding
manifold of the following vehicles, designed by assuming
that ṡi = 0 is

ueq,i = Timiẍ2,i + Tiθ1,iζ
T
1,i(x) + θiζ

T
i (x)+

miπ̇i

1 + α − β
+

mik0,iz
2−wi

2,i

(1 + α − β)wi
. (40)

The constant rate reaching law is also chosen as the
nonlinear switch part of the control law, which is

usw,i = −Kisgn(si), (41)

where Ki > 0 is a parameter greater than the norm
bound of the total matched disturbance, satisfying the
condition Ki �

∣∣d̄i

∣∣.
Thus, the control law is designed as the summation

of the equivalent control law in Eq. (40) and nonlinear
switch part Eq. (41) as

uc,i = ueq,i + usw,i. (42)

Proof:
Like the proof in Subsection 2.2.1, a Lyapunov can-

didate function is chosen as

Vi =
1
2
mis

2
i , (43)

and the time derivative of Eq. (43) is

V̇i = misiṡi. (44)

By substituting Eq. (39) into Eq. (44), the time
derivative of the Lyapunov candidate function can be
changed to

V̇i = si

(
wiz

wi−1
2,i

{
(1 + α − β)

1
mi

[uc,i − Ti(miẍ2,i+

θ1,iζ
T
1,i(x)) − θiζ

T
i (x)] − π̇i

}
− k0,iz2,i

)
, (45)

and by substituting the designed control law in Eq. (42)
into Eq. (45), the time derivative of Eq. (43) can be ob-
tained as

V̇i = −Kiwiz
wi−1
2,i sgn(si)si, (46)

where zwi−1
2,i > 0 for ∀z2,i �= 0, owing to the odd integers

pi and qi, and sgn(si)si = |si| > 0 for ∀si �= 0. Thus
V̇i < 0, the system is stable and can reach the sliding
manifold si = 0 in a finite time.

End of Proof.
2.3.2 Parameter Adaptation for Following Vehicles

Similarly, parameter adaptation is designed for the
following vehicles. Using the same definition of param-
eter uncertainties as in Eq. (22), the new Lyapunov can-
didate function is designed as

Vi =
1
2
mis

2
i +

1
2
λ−1

m,i(Δmi)2 +
1
2
Δθiλ

−1
θ,i (Δθi)T+

1
2
Δμθ,iλ

−1
μθ,i(Δμθ,i)T +

1
2
λ−1

μm,i(Δμm,i)2, (47)

where λm,i, λθ,i, λμθ,i, and λμm,i are the parameters
of the adaptive learning rate with the same definition
as in Subsection 2.2.2 and the proper dimension.

Then, the time derivative of Eq. (47) becomes

V̇i = misiṡi + λ−1
m,iΔmiΔṁi + Δθ̇iλ

−1
θ,i (Δθi)T+

Δμ̇θ,iλ
−1
μθ,i(Δμθ,i)T + λ−1

μm,iΔμm,iΔμ̇m,i. (48)

We consider the time derivative of the sliding mani-
fold with parameter uncertainties:

miṡi =wiz
wi−1
2,i {(1 + α − β)[uc,i − (μ̂m,i + Δμm,i)ẍ2,i−

(μ̂θ,i + Δμθ,i)ζT
1,i(x) − (θ̂i + Δθi)ζT

i (x)]−
(m̂i + Δmi)π̇i} − (m̂i + Δmi)k0,iz2,i. (49)

Then, the designed control law with parameter uncer-
tainties is

uc,i = μ̂m,iẍ2,i + μ̂θ,iζ
T
1,i(x) + θ̂iζ

T
i (x)+

m̂iπ̇i

1 + α − β
+

m̂ik0,iz
2−wi

2,i

(1 + α − β)wi
− Kisgn(si). (50)

We substitute Eqs. (49) and (50) into Eq. (48). Then,
the time derivative of Eq. (47) can be obtained:

V̇i = si

[
wiz

wi−1
2,i

(
− Δμm,iẋ2,i

1 + α − β
− Δθiζ

T
i (x)

1 + α − β
−

Δμθ,iζ
T
1,i(x)

1 + α − β
− Δmiπ̇i − Kisgn(si)

)
−

Δmik0,iz2,i

]
+ λ−1

m,iΔmiΔṁi + Δθ̇iλ
−1
θ,i (Δθi)T+

Δμ̇θ,iλ
−1
μθ,i(Δμθ,i)T + λ−1

μm,iΔμm,iΔμ̇m,i. (51)
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Similarly, note that Δṁi = − ˙̂mi, Δθ̇i = − ˙̂
θi,

Δμ̇θ,i = − ˙̂μθ,i, and Δμ̇m,i = − ˙̂μm,i, and substituting
them into Eq. (51), we obtain

V̇i = − siwiz
wi−1
2,i Kisgn(si)−

Δmi(siwiz
wi−1
2,i π̇i + sik0,iz2,i + λ−1

m,i
˙̂mi)−

Δθi

(siwiz
wi−1
2,i ζT

i (x)
1 + α − β

+ λ−1
θ,i

˙̂
θi

)
−

Δμθ,i

(siwiz
wi−1
2,i ζT

1,i(x)
1 + α − β

+ λ−1
μθ,i

˙̂μθ,i

)
−

Δμm,i

(siwiz
wi−1
2,i ẋ2,i

1 + α − β
+ λ−1

μm,i
˙̂μm,i

)
. (52)

Thus, the adaptive law is designed as

˙̂mi = −λm,i(siwiz
wi−1
2,i π̇i + sik0,iz2,i)

˙̂
θ = −λθ,isiwiz

wi−1
2,i ζT

i (x)
1 + α − β

˙̂μθ = −λμθ,isiwiz
wi−1
2,i ζT

1,i(x)
1 + α − β

˙̂μm = −λμm,isiwiz
wi−1
2,i ẋ2,i

1 + α − β

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (53)

Then, the time derivative of the Lyapunov candidate
function becomes

V̇i = − siwiz
wi−1
2,i Kisgn(si) =

− wiz
wi−1
2,i Ki|si| < 0, (54)

which guarantees the stability of the system.
2.4 String Stability

String stability is a vital requirement for intercon-
nected systems such as vehicular platoons to attenuate
state errors in the upstream direction. The definition
of strong string stability derived in Ref. [7] is adopted
in this study, expressed in such a way that the Laplace

transforms of the error propagation Gi(s) =
Ei+1(s)
Ei(s)

satisfy ‖Gi(s)‖ � 1 for all following vehicles ∀i ∈ [2, n].
Based on the inner stability in Subsection 2.3, for

the following vehicles, the sliding manifold converges
to zero in a finite time. Thus, we have

z1,i = σ1,i + ασ1,(1,i) + βσ1,(n,i) = 0. (55)

According to the definition of the modified position
error, Eqs. (31)—(33), we obtain

σ1,(1,i) − σ1,(1,i−1) = σ1,i

σ1,(n,i) − σ1,(n,i−1) = −σ1,i

}
. (56)

Inserting Eq. (56) into Eq. (55), we obtain

(1 + α − β)σ1,i + ασ1,(1,i−1) + βσ1,(n,i−1) = 0. (57)

Considering z1,i−1 = σ1,i−1 + ασ1,(1,i−1) +
βσ1,(n,i−1) = 0, we have

ασ1,(1,i−1) + βσ1,(n,i−1) = −σ1,i−1. (58)

Then, inserting Eq. (58) into Eq. (57), we obtain

σ1,i−1 + ασ1,(1,i−1) + βσ1,(n,i−1) = 0,

which is

σ1,i

σ1,i−1
=

1
1 + α − β

. (59)

If we choose the coupling parameters satisfying α >

β � 0, then
1

1 + α − β
< 1. Hence, we obtain

‖E(σ1,i)‖
‖E(σ1,i−1)‖ =

1
1 + α − β

< 1, (60)

where E(σ1,i) and E(σ1,i−1) are the Laplace transforms
of σ1,i and, σ1,i−1, respectively, which guarantees the
string stability of the vehicle platoon system.

3 Numerical Simulation

In this section, numerical simulations are conducted
to illustrate the effectiveness of the developed control
schemes. A vehicular platoon with seven CAVs was
configured. The parameters of the simulated vehicles
were obtained from Ref. [14], with mi = 1 607kg, ci =
0.414, fi = 236.229, Ti = 0.25 s, and τi = 0.3 s. The ac-
celeration and jerk of the vehicles were bounded within
±2 m/s2 and ±4 m/s3, respectively. The undulate road
profile, target velocity, and target acceleration trajec-
tories for the vehicular platoon are indicated in Fig. 3.
We selected the vehicle position and speed with random
errors as the initial state for the simulation to test the
proposed adaptive NTSMC controller in a more general
condition. The initial state of the leading vehicle was
set as (x1,1, x2,1) = (300, 14). The states of the other six
following vehicles were set as (x1,2, x2,2) = (250, 13.3),
(x1,3, x2,3) = (200, 12.7), (x1,4, x2,4) = (140, 12.0),
(x1,5, x2,5) = (90, 11.3), (x1,6, x2,6) = (40, 10.6), and
(x1,7, x2,7) = (0, 10.0). The time gap between each suc-
cessive vehicle was selected as 5 s.

The simulation and control cycles were both 0.1 s and
the numerical integrations in the simulation were com-
puted by the Runge-Kutta method. The parameters of
the adaptive NTSMC were set to pi = 15, qi = 13, and
k0,i = −0.1 for the leading vehicle and k0,i = −0.5 for
the following vehicles. These are based on the require-
ments for pi and qi to be positive odd integers and the
sliding manifold reaching time tr given from Ref. [25],

tr =
pi

−k0,i(pi − qi)
|e(0)|

(
1− qi

pi

)
, (61)
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Fig. 3 Simulation scenario

where e(0) = e2,1(0) is for the leading vehicle, and
e(0) = σ1,i(0) is for the following vehicles. The switch-
ing gain was designed as Ki = mid̄i = 160.7, based on
the bounded acceleration caused by the unknown dis-
turbance, which was assumed to be d̄i = 0.1 m/s2 mul-
tiplied by the vehicle mass. The linear coupling coeffi-

cients for the following vehicles were selected as α = 0.9
and β = 0.6, which satisfy the string stable condition
α > β � 0. The adaptive learning rates were chosen
as λm = 0.5 and (λθ1, λθ2, λθ3) = (0.005, 0.002, 0.001)
based on the magnitude of each parameter.

The simulation results are presented in Figs. 4—7.
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The stabilization time (ST), after which the speed error
for each vehicle is within a predefined range, is intro-
duced as one of the measures of effectiveness (MOEs).
In this study, the threshold of the ST speed error bound
was set as ±0.05m/s. As indicated in Fig. 4(a), the
ST was 112.5 s, which is represented by the vertical
gray dashed line. In Figs. 4(b) and 4(c), the velocity
and time profiles for each vehicle in the platoon are

presented with respect to their position owing to the
adopted D-B policy. Stabilized by the proposed adap-
tive NTSMC controllers, different initial velocity errors
converge after 1 500m, as indicated in Fig. 4(b). All
vehicle trajectories remained the same in the space do-
main. Figure 4(c) indicates that the time gaps tended
to be consistent with the predefined value, which is re-
flected by a set of parallel time profiles after the position
at 1 000m.

Because different controllers were adopted in the
leading and following vehicles, the tracking perfor-
mances described by the state deviations and sliding
manifolds are separately presented in Figs. 5 and 6 in
the time domain, presenting the convergence proper-
ties of the proposed controllers. The initial speed error
of the leading vehicle converged to a zero-state within
30 s, which is faster than the converging process for the
following vehicle position errors because the modified
position errors of the following vehicles are not only
based on ego error, but also considering the error be-
tween the leading, preceding, and last vehicles. The
sliding manifolds of the following vehicles converged to
the zero-state after 100 s.
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The control command inputs for all vehicles are
displayed in Fig. 7. It can be observed that the com-
mand inputs are smooth and no clear collisions or chat-
tering phenomena occurred. The control input of a ve-
hicle is a time-delay similar to its preceding vehicle after
approximately the first 30 s of the stabilizing process,
which consists of the D-B policy adoption for the target
profile generation. Thus, it can be perceived that the
realized controllers can potentially be used in practice.

4 Comparison Experiment

Because studies based on SMC for D-B policy are
rare, a scenario with a constant target speed and zero
acceleration was adopted for the simulation compari-
son. In a constant target speed setting, the reference
speed and desired inner vehicle distance for the follow-
ing vehicles exhibit the same behavior under both the
CS and D-B policies.

The CSMC method proposed in Ref. [11] was cho-
sen as the comparative following vehicle controller. In
this comparison scenario, the constant target speed was
set to 16m/s and the total simulation time was 500 s.
Other than these two modifications, the initial state

of each vehicle and other configurations remained un-
changed, as described in Section 3. The desired inner
vehicle distance was set to 80m in the CS policy, which
is equivalent to the 5 s time gap in the D-B policy.

In addition to ST, the maximum speed overshoot
(MSO), the integrals of time multiplied by the abso-
lute value of error (ITAEs) for the vehicle speed and
acceleration which are defined as

J
(ITAE)
Speed =

n∑
i=1

∫ tf

t0

t |e2,i(t)| dt

J
(ITAE)
Accel =

n∑
i=1

∫ tf

t0

t |e3,i(t)| dt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (62)

and the maximum absolute desired distance deviation
(MADDD) after ST were chosen as the other MOE in-
dices. In Eq. (62), t0 and tf are the start and end time
for the ITEA computation. MADDD is defined as the
difference between the inner vehicle distance and de-
sired distance, which was 80m.

The simulation results of the proposed controller are
displayed in Figs. 8 and 9, and the results of the CSMC
controller are presented in Figs. 10 and 11.
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Fig. 9 Control inputs using proposed method

By comparing Figs. 8 and 9 with Figs. 10 and 11, re-
spectively, it can be seen that with the same initial
states, the proposed controller required approximately
44.73% less time to stabilize the vehicle platoon. The
speed overshoot was 11.20% less than that of the CSMC
controller, and the maximum steady-state inner vehi-
cle distance deviation was virtually zero for the pro-
posed controller, whereas the CSMC controller had a
maximum steady-state error of approximately 1.94% of
the desired distance. The control command inputs us-
ing the proposed method were smooth and exhibited
no clear chattering phenomena. The five MOE indices
listed in Table 1 indicate the performance of the pro-
posed controller.
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Table 1 Comparison of key performance

Controller ST/s J
(ITAE)
Speed J

(ITAE)
Accel MSO/(m · s−1) MADDD/m

Proposed 153.1 42 865.142 2 165.127 0.848 0.173

CSMC 277.0 109 621.406 4 391.282 0.955 1.548

0 100 200 300 400 500
Time/s

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

C
on

tr
ol

 i
np

ut
/k

N

Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5
Vehicle 6
Vehicle 7

Fig. 11 Control inputs using CSMC

5 Conclusion

The CACC control problem in a vehicular platoon
was studied. Two new CACC controllers based on the
robust adaptive NTSMC approach were proposed for
the leading and following vehicles. The D-B policy was
adopted to ensure the same target speed tracking in the
space domain and target time headway for all vehicles
in the platoon. Different control objectives, which were
the given speed and acceleration profile tracking for
the leading vehicle, and proper distance and headway
maintenance for the following vehicles were designed.
By considering the engine dynamics modeled as the
FOPDT process, a three-order nonlinear vehicle longi-
tudinal dynamics model was adopted. To compensate
and eliminate the influence of pure command delay, an

SP consisting of nominal vehicle models with and with-
out time delay was connected in parallel in the control
loop. A nonlinear non-singular terminal sliding mani-
fold was designed for the leading vehicle based on its
speed and acceleration errors, and the control and pa-
rameter adaptive laws were derived by Lyapunov func-
tions that ensured the inner stability and vehicle veloc-
ity tracking performance. Using the predecessor-leader
following and optional last-to-ego vehicle information
topology, the string stability was guaranteed in a sim-
ilar nonlinear sliding manifold for the following vehi-
cles through a linear coupled position error. Finally,
numerical simulation results of a seven-CAV platoon
and comparison experiments with a CSMC controller
confirmed the effectiveness and outperformance of the
proposed approach.
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