Skip to main content
Log in

Synthesis and Applications of Porous Glass

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Porous materials have received significant attention for catalyst, electrochemical energy storage, sensing and compound capture. Large surface area and connected inner channel make porous materials outstanding in the applications of catalyst, batteries and biomedicine. Glass is a traditional material and has the advantages of high stability and other physical properties. By combining the advantages of porous materials and glass, porous glass has been researched widely and applied to many leading-edge fields, such as batteries and sensors. This review presents common methods for synthesizing porous glass, including phase separation process (PSP), direct leaching process (DLP) of acid, sintering and so on. Three main steps for fabrication of each process are concluded. The recent applications are support, capturer and matter transport, and they are highlighted in this review. Future directions for preparing these materials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ENKE D, OTTO K, JANOWSKI F, et al. Twophase porous silica: Mesopores inside controlled pore glasses [J]. Journal of Materials Science, 2001, 36(9): 2349–2357.

    Article  Google Scholar 

  2. TOLDRA F, JANSEN N B, TSAO G T. Use of porous glass fiber as a support for biocatalyst immobilization [J]. Biotechnology Letters, 1986, 8(11): 785–790.

    Article  Google Scholar 

  3. NORDBERG M E. Properties of some vycor-brand glasses [J]. Journal of the American Ceramic Society, 1944, 27(10): 299–305.

    Article  Google Scholar 

  4. JANOWSKI F, ENKE D. Porous glasses [C]//Handbook of Porous Solids. Weinheim: Wiley-VCH Press, 2002: 1432–1542.

    Book  Google Scholar 

  5. SIEBERS F, GREULICH N, KIEFER W. Manufacture, properties and application of open-pore sintered glasses and open-pore sintered glass-ceramics [J]. Glastechnische Berichte, 1989, 62(2): 63–73.

    Google Scholar 

  6. UNGER K K. Porous silica: Its properties and use as a support in column liquid chromatography [J]. Journal of Chromatography Library, 1979, 16: 336.

    Google Scholar 

  7. ENKE D, JANOWSKI F, SCHWIEGER W. Porous glasses in the 21st century: A short review [J]. Microporous and Mesoporous Materials, 2003, 60(1): 19–30.

    Article  Google Scholar 

  8. ELMER T H. Leaching of E-glass [J]. Journal of the American Ceramic Society, 1984, 67(12): 778–782.

    Article  Google Scholar 

  9. SIMONOVA L G, PAUKSHTIS E A, DOVLITOVA L S, et al. Study of leaching of sodium aluminosilicate fiberglass materials [J]. Russian Journal of Inorganic Chemistry, 2015, 60(9): 1052–1058.

    Article  Google Scholar 

  10. REINHARDT B, HERWIG J, RANNABAUER S, et al. Hierarchically structured glass monoliths based on polyurethane foams as template [J]. Journal of the European Ceramic Society, 2014, 34(5): 1465–1470.

    Article  Google Scholar 

  11. VELEV O D, JEDE T A, LOBO R F, et al. Porous silica via colloidal crystallization [J]. Nature, 1997, 389(6650): 447–448.

    Article  Google Scholar 

  12. INAYAT A, REINHARDT B, UHLIG H, et al. Silica monoliths with hierarchical porosity obtained from porous glasses [J]. Chemical Society Reviews, 2013, 42(9): 3753–3764.

    Article  Google Scholar 

  13. KAMEGAWA T, ISHIGURO Y, SETO H, et al. Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification [J]. Journal of Materials Chemistry A, 2015, 3(5): 2323–2330.

    Article  Google Scholar 

  14. KUANG D, BREZESINSKI T, SMARSLY B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates [J]. Journal of the American Chemical Society, 2004, 126(34): 10534–10535.

    Article  Google Scholar 

  15. XIONG J, ZHU W S, DING W J, et al. Controllable synthesis of functionalized ordered mesoporous silica by metal-based ionic liquids, and their effective adsorption of dibenzothiophene [J]. RSC Advances, 2014, 4(76): 40588–40594.

    Article  Google Scholar 

  16. INAYAT A, REINHARDT B, HERWIG J, et al. Recent advances in the synthesis of hierarchically porous silica materials on the basis of porous glasses [J]. New Journal of Chemistry, 2016, 40(5): 4095–4114.

    Article  Google Scholar 

  17. IZUMI K, UTIYAMA M, MARUO Y Y. Colorimetric NOx sensor based on a porous glass-based NO2 sensing chip and a permanganate oxidizer [J]. Sensors and Actuators B: Chemical, 2015, 216: 128–133.

    Article  Google Scholar 

  18. FANG X E, WEI S S, KONG J L. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays [J]. Lab on a Chip, 2014, 14(5): 911–915.

    Article  Google Scholar 

  19. MAURATH J, DITTMANN J, SCHULTZ N, et al. Fabrication of highly porous glass filters using capillary suspension processing [J]. Separation and Purification Technology, 2015, 149: 470–478.

    Article  Google Scholar 

  20. GAO H C, GUO B K, SONG J, et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries [J]. Advanced Energy Materials, 2015, 5(9): 1402235.

    Article  Google Scholar 

  21. RAHAMAN M N, DAY D E, SONNY BAL B, et al. Bioactive glass in tissue engineering [J]. Acta Biomaterialia, 2011, 7(6): 2355–2373.

    Article  Google Scholar 

  22. FU Q, SAIZ E, TOMSIA A P. Bioinspired strong and highly porous glass scaffolds [J]. Advanced Functional Materials, 2011, 21(6): 1058–1063.

    Article  Google Scholar 

  23. GULYAEVA Y K, KAICHEV V V, ZAIKOVSKII V I, et al. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts [J]. Catalysis Today, 2015, 245: 139–146.

    Article  Google Scholar 

  24. PAUKSHTIS E A, SIMONOVA L G, ZAGORUIKO A N, et al. Oxidative destruction of chlorinated hydrocarbons on Pt-containing fiber-glass catalysts [J]. Chemosphere, 2010, 79(2): 199–204.

    Article  Google Scholar 

  25. KIWI-MINSKER L, YURANOV I, SLAVINSKAIA E, et al. Pt and Pd supported on glass fibers as effective combustion catalysts [J]. Catalysis Today, 2000, 59(1/2): 61–68.

    Article  Google Scholar 

  26. HOFFMANN M, KREFT S, GEORGI G, et al. Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration [J]. Applied Catalysis B: Environmental, 2015, 179: 313–320.

    Article  Google Scholar 

  27. NICHOLAS D M, SHAH Y T. Carbon monoxide oxidation over a platinum-porous fiber glass supported catalyst [J]. Industrial & Engineering Chemistry Product Research and Development, 1976, 15(1): 35–40.

    Article  Google Scholar 

  28. ENKE D, JANOWSKI F, GILLE W, et al. Structure and texture analysis of colloidal silica in porous glasses [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187/188: 131–139.

    Article  Google Scholar 

  29. SUN Y W, WANG Y J, YANG L, et al. Heavy metal ion sorption properties of porous glass beads with a core-shell structure [J]. Solvent Extraction and Ion Exchange, 2008, 26(5): 672–685.

    Article  Google Scholar 

  30. IMAKITA K, KAMADA T, KAMATANI J I, et al. Room temperature direct imprinting of porous glass prepared from phase-separated glass [J]. Nanotechnology, 2015, 26(25): 255304.

    Article  Google Scholar 

  31. NOJI T, KAWAKAMI K, SHEN J R, et al. Oxygenevolving porous glass plates containing the photosynthetic photosystem II pigment-protein complex [J]. Langmuir, 2016, 32(31): 7796–7805.

    Article  Google Scholar 

  32. HWANG C, KIM J, RYU B K, et al. Preparation of porous glass films using phase separation phenomenon and growth behavior of phase-separated structure [J]. Journal of Materials Science, 2013, 48(23): 8068–8076.

    Article  Google Scholar 

  33. BAL'ZHINIMAEV B S, SUKNEV A P, GULYAEVA Y K, et al. Silicate fiberglass catalysts: From science to technology [J]. Catalysis in Industry, 2015, 7(4): 267–274.

    Article  Google Scholar 

  34. REINHARDT B, ENKE D, SYROWATKA F. Preparation of porous, hierarchically organized glass monoliths via combination of sintering and phase separation [J]. Journal of the American Ceramic Society, 2012, 95(2): 461–465.

    Article  Google Scholar 

  35. POOLOGASUNDARAMPILLAI G, LEE P D, LAM C, et al. Compressive strength of bioactive sol-gel glass foam scaffolds [J]. International Journal of Applied Glass Science, 2016, 7(2): 229–237.

    Article  Google Scholar 

  36. MARANGONIM, ARNOUT L, MACHIELS L, et al. Porous, sintered glass-ceramics from inorganic polymers based on fayalite slag [J]. Journal of the American Ceramic Society, 2016, 99(6): 1985–1991.

    Article  Google Scholar 

  37. TSYGANOVA T A, ANTROPOVA T V, RAKHIMOVA O V, et al. Specific features of the formation of a porous structure in products of leaching of twophase sodium borosilicate glasses in acid-salt solutions [J]. Glass Physics and Chemistry, 2007, 33(2): 122–129.

    Article  Google Scholar 

  38. PORTER H H, EMERY N M. Method of treating borosilicate glasses: US2215039 [P]. 1940-07-17 [2018-05-12].

    Google Scholar 

  39. CHAPMAN I D, ELMER T H. Porous high silica glass: US3485687 [P]. 1969-12-23 [2018-05-12].

  40. EATON D L. Porous glass support material: US3904422 [P]. 1975-09-09 [2018-05-12].

    Google Scholar 

  41. CHE T M, CARNEY R V, DOTSON D L. Porous glass monoliths: US4810674 [P]. 1989-03-07 [2018-05-12].

    Google Scholar 

  42. ELMER T H, NORDBERG M E, CARRIER G B, et al. Phase separation in borosilicate glasses as seen by electron microscopy and scanning electron microscopy [J]. Journal of the American Ceramic Society, 1970, 53(4): 171–175.

    Article  Google Scholar 

  43. YANG P D, DENG T, ZHAO D Y, et al. Hierarchically ordered oxides [J]. Science, 1998, 282(5397): 2244–2246.

    Article  Google Scholar 

  44. YUN H S, KIM S E, HYEON Y T. Design and preparation of bioactive glasses with hierarchical pore networks [J]. Chemical Communications, 2007 (21): 2139–2141.

    Article  Google Scholar 

  45. HALLER W. Rearrangement kinetics of the liquidliquid immiscible microphases in alkali borosilicate melts [J]. The Journal of Chemical Physics, 1965, 42(2): 686–693.

    Article  Google Scholar 

  46. CAHN JW. Phase separation by spinodal decomposition in isotropic systems [J]. The Journal of Chemical Physics, 1965, 42(1): 93–99.

    Article  Google Scholar 

  47. CAHN JW, HILLIARD J E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid [J]. The Journal of Chemical Physics, 1959, 31(3): 688–699.

    Google Scholar 

  48. YAZAWA T, KURAOKA K, DU W-F. Effect of cooling rate on pore distribution in quenched sodium borosilicate glasses [J]. The Journal of Physical Chemistry B, 1999, 103(45): 9841–9845.

    Article  Google Scholar 

  49. KUKIZAKI M, NAKASHIMA T. Acid leaching process in the preparation of porous glass membranes from phase-separated glass in the Na2O-CaOMgO- Al2O3-B2O3-SiO2 system [J]. Membrane, 2004, 29(5): 301–308.

    Article  Google Scholar 

  50. PORTER H H, EMERY N M. Treated borosilicate glass: US2106744 [P]. 1938-02-01 [2018-05-12].

    Google Scholar 

  51. IZUMI K, UTIYAMA M, MARUO Y Y. A porous glass-based ozone sensing chip impregnated with potassium iodide and a-cyclodextrin [J]. Sensors and Actuators B: Chemical, 2017, 241: 116–122.

    Article  Google Scholar 

  52. SHEN C, WANG Y J, XU J H, et al. Synthesis of TS- 1 on porous glass beads for catalytic oxidative desulfurization [J]. Chemical Engineering Journal, 2015, 259: 552–561.

    Article  Google Scholar 

  53. SHEN C, WANG Y J, XU J H, et al. Oxidative desulfurization of DBT with H2O2 catalyzed by TiO2/porous glass [J]. Green Chemistry, 2016, 18(3): 771–781.

    Article  Google Scholar 

  54. JONES J R. New trends in bioactive scaffolds: The importance of nanostructure [J]. Journal of the European Ceramic Society, 2009, 29(7): 1275–1281.

    Article  Google Scholar 

  55. REICHELT E, HEDDRICH M P, JAHN M, et al. Fiber based structured materials for catalytic applications [J]. Applied Catalysis A: General, 2014, 476: 78–90.

    Article  Google Scholar 

  56. SRIVASTAVA S K, GUIX M, SCHMIDT O G. Wastewater mediated activation of micromotors for efficient water cleaning [J]. Nano letters, 2016, 16(1): 817–821.

    Article  Google Scholar 

  57. SUN M H, HUANG S Z, CHEN L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine [J]. Chemical Society Reviews, 2016, 45(12): 3479–3563.

    Article  Google Scholar 

  58. JACOB K, STOLLE A, ONDRUSCHKA B, et al. Cu on porous glass: An easily recyclable catalyst for the microwave-assisted azide-alkyne cycloaddition in water [J]. Applied Catalysis A: General, 2013, 451: 94–100.

    Article  Google Scholar 

  59. LI J T, MAU A W H, STRAUSS C R. The use of palladium on porous glass for catalytic coupling reactions [J]. Chemical Communications, 1997 (14): 1275–1276.

    Article  Google Scholar 

  60. SCHMÖGER C, SZUPPA T, TIED A, et al. Pd on porous glass: A versatile and easily recyclable catalyst for Suzuki and Heck reactions [J]. Chem-SusChem, 2008, 1(4): 339–347.

    Google Scholar 

  61. TAKAHASHI T, YAMASHITA K, KAI T, et al. Hydrogenation of benzene, mono-, di-, and trimethylbenzenes over nickel catalysts supported on porous glass [J]. The Canadian Journal of Chemical Engineering, 1986, 64(6): 1008–1013.

    Article  Google Scholar 

  62. YAMASHITA H, HONDA M, HARADA M, et al. Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ionimplantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water [J]. The Journal of Physical Chemistry B, 1998, 102(52): 10707–10711.

    Article  Google Scholar 

  63. NAKAGAKI S, RAMOS A R, BENEDITO F L, et al. Immobilization of iron porphyrins into porous vycor glass: Characterization and study of catalytic activity [J]. Journal of Molecular Catalysis A: Chemical, 2002, 185(1/2): 203–210.

    Article  Google Scholar 

  64. SHEN C, WANG Y J, XU J H, et al. Size control and catalytic activity of highly dispersed Pd nanoparticles supported on porous glass beads [J]. Langmuir, 2012, 28(19): 7519–7527.

    Article  Google Scholar 

  65. HAYASHIM, OCHIAI T, TAGO S, et al. Influence of dissolved ions on the water purification performance of TiO2-impregnated porous silica tubes [J]. Catalysts, 2017, 7(5): 158.

    Article  Google Scholar 

  66. OCHIAI T, TAGO S, HAYASHI M, et al. TiO2- Impregnated porous silica tube and its application for compact air- and water-purification units [J]. Catalysts, 2015, 5(3): 1498–1506.

    Article  Google Scholar 

  67. PELTOLA S M, MELCHELS F P W, GRIJPMA D W, et al. A review of rapid prototyping techniques for tissue engineering purposes [J]. Annals of Medicine, 2008, 40(4): 268–280.

    Article  Google Scholar 

  68. HUTMACHER D W. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2000, 21(24): 2529–2543.

    Article  Google Scholar 

  69. BAINO F, FIORILLI S, VITALE-BROVARONE C. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances [J]. Acta Biomaterialia, 2016, 42: 18–32.

    Article  Google Scholar 

  70. ZHANG X D, ZENG D L, LI N, et al. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration [J]. Scientific Reports, 2016, 6: 19361.

    Article  Google Scholar 

  71. ELSAYED H, ROMERO A R, FERRONI L, et al. Bioactive glass-ceramic scaffolds from novel ‘inorganic gel casting’ and sinter-crystallization [J]. Materials, 2017, 10(2): 171.

    Article  Google Scholar 

  72. JONES J R, EHRENFRIED L M, HENCH L L. Optimising bioactive glass scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27(7): 964–973.

    Article  Google Scholar 

  73. WU C T, XIA L G, HAN P P, et al. Europiumcontaining mesoporous bioactive glass scaffolds for stimulating in vitro and in vivo osteogenesis [J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11342–11354.

    Article  Google Scholar 

  74. HENDRIKX S, KASCHOLKE C, FLATH T, et al. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration: Effects of organic crosslinker valence, content and molecular weight on mechanical properties [J]. Acta Biomaterialia, 2016, 35: 318–329.

    Article  Google Scholar 

  75. TSAI S W, CHANG Y H, YU J L, et al. Preparation of nanofibrous structure of mesoporous bioactive glass microbeads for biomedical applications [J]. Materials, 2016, 9(6): 487.

    Article  Google Scholar 

  76. WU C T, CHANG J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors [J]. Journal of Controlled Release, 2014, 193: 282–295.

    Article  Google Scholar 

  77. YANG S B, ZHAN L, XU X Y, et al. Graphenebased porous silica sheets impregnated with polyethyleneimine for superior CO2 capture [J]. Advanced Materials, 2013, 25(15): 2130–2134.

    Article  Google Scholar 

  78. NUGENT P, BELMABKHOUT Y, BURD S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation [J]. Nature, 2013, 495(7439): 80–84.

    Article  Google Scholar 

  79. GAO X, ZOU X Q, MA H P, et al. Highly selective and permeable porous organic framework membrane for CO2 capture [J]. Advanced Materials, 2014, 26(22): 3644–3648.

    Article  Google Scholar 

  80. CHEN C, YANG S T, AHN W S, et al. Amineimpregnated silica monolith with a hierarchical pore structure: Enhancement of CO2 capture capacity [J]. Chemical Communications, 2009(24): 3627–3629.

    Article  Google Scholar 

  81. ALKHABBAZMA, BOLLINI P, FOO G S, et al. Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines [J]. Journal of the American Chemical Society, 2014, 136(38): 13170–13173.

    Article  Google Scholar 

  82. SPENIK J L, SHADLE L J, BREAULT R W, et al. Cyclic tests in batch mode of CO2 adsorption and regeneration with sorbent consisting of immobilized amine on a mesoporous silica [J]. Industrial & Engineering Chemistry Research, 2015, 54(20): 5388–5397.

    Article  Google Scholar 

  83. ZELEŇ ÁK V, BADANIČOVÁ M, HALAMOVÁ D, et al. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture [J]. Chemical Engineering Journal, 2008, 144(2): 336–342.

    Article  Google Scholar 

  84. MINJU N, ABHILASH P, NAIR B N, et al. Amine impregnated porous silica gel sorbents synthesized from water-glass precursors for CO2 capturing [J]. Chemical Engineering Journal, 2015, 269: 335–342.

    Article  Google Scholar 

  85. ZELENAK V, HALAMOVA D, GABEROVA L, et al. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties [J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 358–364.

    Article  Google Scholar 

  86. CHANG F Y, CHAO K J, CHENG H H, et al. Adsorption of CO2 onto amine-grafted mesoporous silicas [J]. Separation and Purification Technology, 2009, 70(1): 87–95.

    Article  Google Scholar 

  87. MELLO M R, PHANON D, SILVEIRA G Q, et al. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture [J]. Microporous and Mesoporous Materials, 2011, 143(1): 174–179.

    Article  Google Scholar 

  88. CHAIKITTISILP W, KHUNSUPAT R, CHEN T T, et al. Poly(allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air [J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203–14210.

    Article  Google Scholar 

  89. BRUNELLI N A, DIDAS S A, VENKATASUBBAIAH K, et al. Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture [J]. Journal of the American Chemical Society, 2012, 134(34): 13950–13953.

    Article  Google Scholar 

  90. FAUTH D J, GRAY M L, PENNLINE H W, et al. Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture [J]. Energy & Fuels, 2012, 26(4): 2483–2496.

    Article  Google Scholar 

  91. JI C C, HUANG X, LupI} L, et al. Pentaethylenehexamine-loaded hierarchically porous silica for CO2 adsorption [J]. Materials, 2016, 9(10): 835.

    Article  Google Scholar 

  92. SHEN C, WANG Y J, XU J H, et al. Porous glass beads as a new adsorbent to remove sulfur-containing compounds [J]. Green Chemistry, 2012, 14(4): 1009–1015.

    Article  Google Scholar 

  93. SHEN C, WANG Y J, XU J H, et al. Chitosan supported on porous glass beads as a new green adsorbent for heavy metal recovery [J]. Chemical Engineering Journal, 2013, 229: 217–224.

    Article  Google Scholar 

  94. LI L Y, CHEN L, SHI H R, et al. Evaluation of mesoporous bioactive glass (MBG) as adsorbent for removal of methylene blue (MB) from aqueous solution [J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 1451–1459.

    Article  Google Scholar 

  95. ZADAKA D, MISHAEL Y G, POLUBESOVA T, et al. Modified silicates and porous glass as adsorbents for removal of organic pollutants from water and comparison with activated carbons [J]. Applied Clay Science, 2007, 36(1): 174–181.

    Article  Google Scholar 

  96. PASETA L, SIMÓN-GAUDÓ E, GRACIA-GORRÍA F, et al. Encapsulation of essential oils in porous silica and MOFs for trichloroisocyanuric acid tablets used for water treatment in swimming pools [J]. Chemical Engineering Journal, 2016, 292: 28–34.

    Article  Google Scholar 

  97. DOU J, ZENG H C. Integrated networks of mesoporous silica nanowires and their bifunctional catalysis-sorption application for oxidative desulfurization [J]. ACS Catalysis, 2014, 4(2): 566–576.

    Article  Google Scholar 

  98. ZHANG F, SONG J, CHEN M, et al. Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres [J]. Physical Chemistry Chemical Physics, 2016, 18(48): 32903–32909.

    Article  Google Scholar 

  99. REUILLARD B, LY K H, HILDEBRANDT P, et al. High performance reduction of H2O2 with an electron transport decaheme cytochrome on a porous ITO electrode [J]. Journal of the American Chemical Society, 2017, 139(9): 3324–3327.

    Article  Google Scholar 

  100. MÜLLER R, ANDERS N, TITUS J, et al. Ultrathin porous glass membranes: An innovative material for the immobilization of active species for optical chemosensors [J]. Talanta, 2013, 107: 255–262.

    Article  Google Scholar 

  101. DE EULATE E A, STRUTWOLF J, LIU Y, et al. An electrochemical sensing platform based on liquid-liquid microinterface arrays formed in laserablated glass membranes [J]. Analytical Chemistry, 2016, 88(5): 2596–2604.

    Article  Google Scholar 

  102. ZHANG X D, XU X L, HE W, et al. LiFePO4/NaFe3V9O19/porous glass nanocomposite cathodes for Li+/Na+ mixed-ion batteries [J]. Journal of Materials Chemistry A, 2015, 3: 22247–22257.

    Article  Google Scholar 

  103. GASPERA E D, BUSO D, GUGLIELMI M, et al. Comparison study of conductometric, optical and SAW gas sensors based on porous sol-gel silica films doped with NiO and Au nanocrystals [J]. Sensors and Actuators B: Chemical, 2010, 143(2): 567–573.

    Article  Google Scholar 

  104. DE STEFANO L, MALECKI K, DELLA CORTE F G, et al. A microsystem based on porous silicon-glass anodic bonding for gas and liquid optical sensing [J]. Sensors, 2006, 6(6): 680–687.

    Google Scholar 

  105. ABDELGHANI A, CHOVELON J M, JAFFREZICRENAULT N, et al. Optical fibre sensor coated with porous silica layers for gas and chemical vapour detection [J]. Sensors and Actuators B: Chemical, 1997, 44(1/2/3): 495–498.

    Article  Google Scholar 

  106. RAYSS J, SUDOLSKI G. Ion adsorption in the porous sol-gel silica layer in the fibre optic pH sensor [J]. Sensors and Actuators B: Chemical, 2002, 87(3): 397–405.

    Article  Google Scholar 

  107. SARMA T V S, TAO S Q. An active core fiber optic sensor for detecting trace H2S at high temperature using a cadmium oxide doped porous silica optical fiber as a transducer [J]. Sensors and Actuators B: Chemical, 2007, 127(2): 471–479.

    Article  Google Scholar 

  108. ESTELLA J, DE VICENTE P, ECHEVERRÍA J C, et al. A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element [J]. Sensors and Actuators B: Chemical, 2010, 149(1): 122–128.

    Article  Google Scholar 

  109. CHEN Y Z, LI X J, ZHOU H S, et al. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating [J]. Journal of Physics D: Applied Physics, 2016, 49(35): 355102.

    Article  Google Scholar 

  110. ECHEVERRÍA J C, FAUSTINI M, GARRIDO J J. Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs [J]. Sensors and Actuators B: Chemical, 2016, 222: 1166–1174.

    Article  Google Scholar 

  111. CRAMP J H W, MURRAY R T, REID R F, et al. Fibre optic sensor with bonded dye: US4560248 [P]. 1985-12-24 [2018-05-12].

  112. SIGEL JR G, SHAHRIARIM, ZHOU Q. Fibre optic sensor with bonded dye: US4560248 [P]. 1993-10-05 [2018-05-12].

  113. BURNS A A, HERZ E, ZEDAYKO T C, et al. Photoluminescent silica-based sensors and methods of use: US8084001 [P]. 2011-12-27 [2018-05-12].

  114. XU P C, LI X X, YU H T, et al. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules [J]. Sensors, 2014, 14(10): 19023–19056.

    Article  Google Scholar 

  115. WAGNER T, KROTZKY S, WEI S S A, et al. A high temperature capacitive humidity sensor based on mesoporous silica [J]. Sensors, 2011, 11(3): 3135–3144.

    Article  Google Scholar 

  116. ADDANKI S, NEDUMARAN D. Fabrication of ozone sensors on porous glass substrates using gold and silver thin films nanoislands [J]. Optik, 2017, 150: 11–21.

    Article  Google Scholar 

  117. IZUMI K, UTIYAMA M, MARUO Y Y. A porous glass-based KI/a-CD chip for ozone sensing: Improvement in the humidity response of the chip through optimizing reagent concentrations in the impregnation process [J]. Sensors and Actuators B: Chemical, 2018, 268: 1–6.

    Article  Google Scholar 

  118. ZHU X B, ZHAO T S, WEI Z H, et al. A novel solidstate Li-O2 battery with an integrated electrolyte and cathode structure [J]. Energy & Environmental Science, 2015, 8(9): 2782–2790.

    Article  Google Scholar 

  119. LI G X, SUN J H, HOU WP, et al. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithiumsulfur batteries [J]. Nature Communications, 2016, 7: 10601.

    Article  Google Scholar 

  120. YUAN Z Z, DUAN Y Q, ZHANG H Z, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries [J]. Energy & Environmental Science, 2016, 9(2): 441–447.

    Article  Google Scholar 

  121. WANG G L, BOHATY A K, ZHAROV I, et al. Photon gated transport at the glass nanopore electrode [J]. Journal of the American Chemical Society, 2006, 128(41): 13553–13558.

    Article  Google Scholar 

  122. SORGE M, BEAN T, WOODLAND T, et al. Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates [J]. Journal of Power Sources, 2014, 266: 496–511.

    Article  Google Scholar 

  123. LU J, FAN Y S, HOWARD M D, et al. Singlemolecule electrochemistry on a porous silica-coated electrode [J]. Journal of the American Chemical Society, 2017, 139(8): 2964–2971.

    Article  Google Scholar 

  124. SCHADECK U, KYRGYZBAEV K, GERDES T, et al. Porous and non-porous micrometer-sized glass platelets as separators for lithium-ion batteries [J]. Journal of Membrane Science, 2018, 550: 518–525.

    Article  Google Scholar 

  125. KIM J, LEE S, SHIN D. Preparation of a hybrid solid glass electrolyte using a nano-porous sodium borosilicate glass membrane for lithium batteries [J]. Journal of Ceramic Processing Research, 2007, 8(3): 208–212.

    Google Scholar 

  126. WU L P, ZHANG W, ZHANG D. Engineering gyroidstructured functional materials via templates discovered in nature and in the lab [J]. Small, 2015, 11(38): 5004–5022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Zhang  (张旺) or Yu Wu  (吴昱).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 51572169), the National Key Research and Development Program of China (Nos. 2017YFE0113000, 2016YFB0701201 and YS2017YFGH000385), the Shanghai Rising-Star Program (No. 16QA1402400), the Shanghai Natural Science Foundation (No. 18ZR1420900), and the Fund of Shanghai Science and Technology Committee (Nos. 18JC1410500, 18ZR1420900, 15ZR1422400, 14JC1403300 and 14520710100)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Zhang, Z., Zhang, W. et al. Synthesis and Applications of Porous Glass. J. Shanghai Jiaotong Univ. (Sci.) 24, 681–698 (2019). https://doi.org/10.1007/s12204-019-2131-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-019-2131-1

Key words

CLC number

Document code

Navigation