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Abstract
The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional 
method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp 
the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary 
approach to study the topological systems in real space through combining the information entropy and topological photonics. 
As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing 
does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase 
conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su–Schrieffer–
Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This 
work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze 
the physical properties by taking advantage of interdisciplinarity.
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1 Introduction

The topological photonics plays an important role in the fields 
of fundamental physics and photonic devices. The Kagome 
model, the Su–Schrieffer–Heeger (SSH) model and the other 
topological models are used as a platform to study the novel 
physics phenomenon [1–5], and guide to design novel pho-
tonic devices such as topologically protected laser [6–9] 
and robust transmission device [10, 11]. Till now, research-
ers usually judge the topological states in a photonic crystal 
based on three criterions. The topological invariant, including 
Chern Number, winding number and Z2 topological invariant 
[12–17]; the eigenvalue distributions or gaps in the band of 
photonics crystal [18–21]; the electric field distributions of 
the topological states [3, 22]. Almost all the previous methods 
rely on the band structures in the momentum spaces. How-
ever, it is generally complicated to analyze the topological 

properties in momentum space, especially if there are per-
turbations in the system. The perturbations will even cause 
the bandgap closing of topological system, which will bring 
difficulty to analyze the topological in momentum space.

Here, we propose an interdisciplinary approach to study 
the topological systems through the information entropy (IE) 
in real space. Meanwhile, we reveal that the bandgap closing 
does not correspond to the topological states disappearing. 
As a proof of concept, the Kagome model is used as an 
example of theoretical calculation, and the disappearing pro-
cess of its topological edge states (TESs) is observed with 
IE. Our method can be used to analyze the TESs mode dis-
tributions and topological phase transition. This method can 
also be extended to SSH model and the valley-Hall photonic 
crystal. We provide a universal method to study topologi-
cal photonics and disordered systems based on information 
entropy theory.
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2  Results

2.1  Model establishment

Generally, a topological system is a coupled system, like the 
Kagome model, in which variations in the coupling coef-
ficients significantly impact the emergence of topological 
states [23, 24]. Figure 1(a) shows the perturbative Kagome 
model. Assume that there are M coupling coefficients in the 
coupled system by introducing IE, and these M coupling 
coefficients form a set S, denoted as S =

{
�1, �2,… , �

M

}
 , 

where each coupling coefficient is an element of the set, the 
Hamiltonian of the system thus can be written as

where A and B represents arbitrary different atoms, 
respectively.

It is necessary to establish discrete information sources 
(ISs) in this set before understanding the IE. The ISs send 
out random messages, but the number of all possible output 
messages is finite. The information sent by such an ISs has 
a certain uncertainty, therefore the concept of IE can be used 
to describe the ISs. The discrete ISs are shown in Fig. 1(b). 
All the coupling coefficients in the set S are normalized, and 
the normalization factor is G =

∑
i �i , then all the elements 

in the set S after normalization can be written as �i
G

 . Moreo-
ver, by taking N subsets of the set S, each subset can be 
denoted by BINi , for short Bi , where I = 1, 2, 3,… ,N . Since 
the magnitude of all coupling coefficients in the set S is 
located in this interval 

[
0,
(

�Max

G
−

�Min

G

)]
 after normalization, 

the interval width of the set S can be denoted as 
HS =

(
�Max

G
−

�Min

G

)
 , where �Max and �Min represents the maxi-

mal and minimal elements in the set S, respectively.
The elements can be defined in a subset Bi . All the ele-

ments in the set  S  that  are in the interval [
i−1

N

(
�Max

G
−

�Min

G

)
,
i

N

(
�Max

G
−

�Min

G

)]
 are placed in the i ( i ≠ N ) 

subset Bi . When i = N , all elements of the set S that are in 
the interval 

[
i−1

N

(
�Max

G
−

�Min

G

)
,
i

N

(
�Max

G
−

�Min

G

)]
 are placed in 

the i ( i = N ) subset Bi . Then all the elements of the set S are 
assigned to this N subset Bi , and it is easy to know that the 
i n t e r v a l  w i d t h  o f  e a c h  s u b s e t  Bi  i s 
Hi =

(
i

N
−

i−1

N

)(
�Max

G
−

�Min

G

)
=

1

N

(
�Max

G
−

�Min

G

)
 . Any cou-

pling coefficient �i in the set S is random in a coupling sys-
tem, but all possible coupling coefficient �i do not exceed the 
range determined by the N subsets Bi above. In other words, 
all the possible coupling coefficients �i are finite under the 
range constraints of the N subsets Bi above. Then the discrete 
ISs are established. The coupling terms of the Hamiltonian 
of the system are rearranged in these subsets Bi , and the 
arrangement results are shown as follows:

Ĥ =
�M

i=1
�i(�B⟩⟨A� + h.c.),

Fig. 1  a Diagram of the Kagome model and the perturbations causes 
the system to disorder. b Diagram of the discrete sources



Frontiers of Optoelectronics           (2024) 17:11  Page 3 of 9    11 

By establishing N subsets Bi in the set S, the discrete 
source can be established. The normalizing factor term G in 
the above equation is a constant when the coupling system 
is determined, and term 

∑card(Bi)

j=1

�j

G
(�B⟩⟨A� + h.c.) describes 

the contribution of each subset Bi to the whole coupling 
system. The probability of each subset Bi can be defined as 
pi =

card(Bi)
card(S)

 , and the probability of each subset pi =
card(Bi)
card(S)

 
is the probability pi in the IE expression � = −

∑
i pilogpi 

[25–28].
Through this method, the IE of different coupling struc-

tures can be solved, and the IE obtained in this way is 
referred to as the physical entropy (PE). Table 1 shows the 
50 random coefficients and statistical results of those coef-
ficients. According to the probability of each subset obtained 
by statistics, the IE of the coupling system can be calculated.

2.2  Physical entropy

In Kagome model (the SSH and the valley-Hall model is also 
analyzed in the Supplementary Materials (SM) III), when 
some small perturbations are applied to the topological sys-
tem, the coupling relationship will change but the mode dis-
tributions can change slightly because of its robustness. How-
ever, if these perturbations are large enough, the TESs will 
be transformed into bulk states, then the topological phase 
transition occurs in the system. To describe the perturbation 
size of the system, we define two physical quantities as the 
perturbation scale (denoted as Length, representing the ratio 
of the position offset of a lattice to the lattice constant) and 
the perturbation rate (denoted as Weight, representing the 
ratio of the number of deviated lattices to the total number 
of lattices in the system). Assuming that the position offset of 
all lattices caused by perturbations cannot exceed the lattice 
constant, the value range of Length is [0, 1] , and the range of 
Weight is [0, 1) . The Weight is determined before perturba-
tions occur, and the lattices are shifted to random directions 
in a certain amount according to the size of the Length. We 
show that the size of the Length directly affects the bandgap 
state of the Kagome system, as shown in Fig. 2(c).

By calculating the influences of various disturbances on 
the Kagome model, the disturbance that applied randomly 
has a certain probability of closing the band gap of the 
topological system. For each set of determined Length and 
Weight, there can be an infinite number of possible perturba-
tions in coupling system. Here, the eigenvalue distributions 

Ĥ = G

M�

i=1

�i

G
(�B⟩⟨A� + h.c.)

= G

N�

i=1

card(Bi)�

j=1

�j

G
(�B⟩⟨A� + h.c.).

of 50 Kagome systems are analyzed after adding different 
random perturbations with the same Length and Weight. Due 
to the different lattices randomly selecting for each distur-
bance, the band structures of each disturbance will also be 
different. However, by taking these 50 systems as a statistical 
global system, no matter how the random perturbations are 
applied, the system as a global system reflects the charac-
teristics of band gap closing when the Length of Kagome 
system is greater than a certain value.

The statistical results show that when the Length is 
greater than 0.024, the band gap of Kagome system tend to 
close, meaning that the disappearing of TESs. However, the 
corner states still remain. This phenomenon can be reflected 
in the IE characteristics of the coupled system. Figure 2(a) 
shows that the PE will decrease quickly at Length = 0.024, 
meaning that the coupling system have a huge change. More-
over, the corner-state gap of Kagome model will tend to 
close in the case of Length > 0.08. The PE decreases again 
at Length = 0.088. For other topological systems, the details 
on the phenomenon of band gap closing caused by perturba-
tions can refer to SM II, including the SSH system and the 
valley-Hall photonics crystal.

Since the PE is a statistical analysis of the coupling 
parameters, some small perturbations will cause new cou-
pling parameters in the system. Since the Length changes 
from 0 to a small value at the beginning, this process will 
inevitably lead to the generation of new coupling param-
eters, and the PE increases at the moment when the system 
begins to be disturbed. However, when the Length contin-
ues to change there are no new coupling parameter gener-
ated. The PE tends to be a stable value. Furthermore, this 
phenomenon can be illustrated by analyzing the PE change 
of the system, the total PE change of the system Δ� is as 
follows:

Table 1  Statistics for coupling coefficients in a coupled system with a 
random distribution of coupling coefficients

BIN interval Coupling coefficients 
 located in different BINs

Probability of 
BINs

0–1 0.8, 0.5, 0.0, 0.8, 0.2, 0.8, 0.2 14%
1–2 1.5, 1.3, 1.4, 1.5, 1.9 10%
2–3 2.6, 2.4, 2.6, 2.9 8%
3–4 3.6, 3.7, 3.9, 3.0, 3.2, 3.1, 3.9 14%
4–5 4.8, 4.2, 4.7, 4.2, 4.3 10%
5–6 5.3, 5.0, 5.0, 5.7, 5.6, 5.6, 5.5, 5.8 16%
6–7 6.9, 6.4, 6.2, 6.1 8%
7–8 7.7 2%
8–9 8.8, 8.2, 8.1, 8.8, 8.0, 8.4 12%
9–10 9.5, 9.7, 9.1 6%
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The change of IE of the system can be measured by the 
ratio of IE change Δ� to 

∑N

i=k
pilogpi�old . The ratio is defined 

as � =
����

Δ�

−
∑N

i
pilogpi

����
 . It can be proved that the ratio satisfies 

the following characteristics (the detailed certification pro-
cess is provided in SM II).

1) If the magnitude of the coupling coefficient change 
caused by Length is less than the width H of BIN;
2) If the magnitude of the coupling coefficient change 
caused by Length is close to or equal to the width H of 
BIN;

Δ� =

N∑

i=k

pilogpi|new −

N∑

i=k

pilogpi|old.
3) If the magnitude of the coupling coefficient change 
caused by Length is much larger than the width H of BIN, 
but the coupling coefficient changes Δ�(Length) caused 
by the perturbation scale Length is not greater than the 
normalized factor G.

In these three cases above, the ratio � =
����

Δ�

−
∑N

i
pilogpi

����
 is a 

small quantity. The calculated result of PE is robust. The 
perturbations hardly change the IE value, proving why IE 
almost retains a constant value in the initial state when add-
ing perturbations. Meanwhile, the energy gap of the system 
is gradually reduced but not closed in the band gap, which 
also ref lects the robustness of the system. When 
Length = 0.024, the coupling distribution between lattices 

Fig. 2  a Variation of PE with Length of the Kagome model, and the point where the edge state and corner state disappearing correspond to the 
point where IE decreases swiftly. For Kagome model, the edge state and the corner state have different points where the TESs disappearing. The 
bandgaps are shown in c(II) and c(III). b Diagram of the phase transition of the Kagome model. The red area represents the topological phase 
and the blue area represents the trivial phase. c Band gap state of the Kagome model with different perturbation scale Length 
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has a qualitative change. The state of the main coupling coef-
ficients in the original coupling system is broken, a large 
number of new disordered coupling coefficients appear. 
Some lattices have a strong interaction due to the close dis-
tance. Since the coupling parameters will be normalized by 
the factor G when constructing the discrete IS Bin, the 
appearance of the strong interaction directly affects the nor-
malization factor of PE, and the original coupling distribu-
tion is completely destroyed. The IE will decrease at a very 
fast rate at that time. The sudden change of the coupling 
distribution reflects the closing of the energy gap, which 
means the topological phase transition occurs and disappear-
ing of TESs. The detailed deduction process is provided in 
SM II. The phase diagram shown in Fig. 2(b) also demon-
strates the phase transition process of Kagome model with 
the disturbance increasing. The average gap is used to 
describe the closing state of the band gap. The decreasing 
trend of the average gap indicates the gradual closing pro-
cess of the band gap. The IE can be used as a new criterion 
of TESs, and to evaluate the robustness of a TES in topologi-
cal systems. When the disturbance of the system is not large, 
the PE almost retains a constant value in the initial state of 
the perturbation. Further, the application of IE method in 
complex lattice is discussed in SM IV. The IE method can 
still work in the complex lattice, such as the super-SSH 
model [29]. A discussion about the case that the disturbance 
is applied on the potential of lattice site in the Kagome 
model is also provided in SM IV as the generalization of the 
IE method.

2.3  Field entropy

In addition, IE can be further extended. In addition to the 
coupling state in coupling system, the mode distributions 
can also be statistically analyzed based on IE method. The 
mode distributions are also necessary to demonstrate the 
propagation of TESs. Similar discrete sources are defined 
according to the definition of PE. Taking the pixel matrix of 
the mode distribution diagram, in which there are M mode 
values, and these M coefficients form a set S, denoted as 
S =

{
E1,E2,… ,EM

}
 . The electric field can be normalized 

by similar methods, and the subsets can be divided as well. 
Each subset Bi is a statistical unit that completes statistics 
with the IE. The electric field intensity is treated in the same 
discrete unit as the same class, and only distinguish the field 
intensity differences between different BINs. In addition, we 
further discretized the field intensity distribution into small 
pixel cells on a plane, and then represented the intensity in 
the discrete pixel grid as the average of the field intensity in 
the pixel grid. Thus, the construction of discrete IS is real-
ized in an electric field intensity distribution. Then, the prob-
ability of each subset Bi can also be defined as pi =

card(Bi)
card(S)

 , 

and the IE of the electric field distribution can then be 
solved, too. The field entropy (FE) of the unperturbed sys-
tem can be obtained, shown in Fig. 3.

In a topological system, the mode distributions of TESs 
are only localized on the boundary and its position infor-
mation is determined, while the bulk state mode distribu-
tions are dispersed. Due to the irregular distributions of bulk 
states, the IE value of the bulk states is higher than that of 
the TESs. Furthermore, the relationship between the FE and 
PE is analyzed and solved. The results show that FE can also 
be used as a phase transition characterization of topological 
systems, seen in Fig. 4.

As the disturbances increase, the PE will drop dramati-
cally at the position of Length = 0.02, which indicates the 
bandgap closing and topological phase transition occur-
ring. Meanwhile, the difference between the high entropy 
state and the low entropy state of FE will also decrease. The 
FE gap can be defined as the difference between the high 
entropy state and the low entropy state of FE. It is easy to 
find that the FE gap closes after the position where the PE 
phase transition occurs. This shows that the FE gap can be 
used as a physical quantity to describe the phase transition 
of TESs. Figure 4 also reveals that the bandgap closing does 
not correspond to the TESs disappearing because the point 
where the PE sharply decreases does not correspond to the 
point where the difference in FE disappears. The concept 
of IE can describe both the change of electric field and the 
change of coupling structure of topological system. The IE 
is a good platform for describing topological phase transi-
tions and TESs.

3  Conclusion

We propose a method to study the topological systems in real 
space by analyzing the IE, and reveal that the bandgap clos-
ing does not correspond to the TESs disappearing. The PE can 
reveal the topological phase transition by describing the cou-
pling state change of the system without setting up an experi-
mental platform for measurement; meanwhile the FE can dis-
tinguish the TESs from the bulk states through the differences 
of IE, which can also be used to describe whether the elec-
tric fields excited in the micro-nano structure of the photonic 
crystal are TESs. Thus, the topological photonic phase can be 
identified by both the PE and FE. The IE has great application 
potential in the experimental realization of real photonic crystal 
systems. The IE method is an effective method to analyzing the 
disordered topological systems for multiple topological models.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12200- 024- 00113-7.
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Fig. 3  a FE of the Kagome model. The electric field distribution of the TES are the states with a low FE, and the bulk states is a series of states 
with a high entropy of FE. b Bulk state of the Kagome model; c TES of the Kagome model

Fig. 4  Relationship between the PE and FE of the Kagome model. The blue, purple and red points are the relationship between the PE and FE 
with different perturbation scales Length, and those points combines a curved surface. The yellow points are the projector of the surface, mean-
ing that the FE of the Kagome model with the perturbation scale growing. The process of the FE gap closing can be observed. The pink points 
are variation of PE with Length of the Kagome model
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