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Abstract
This paper presents an efficient scheme for single-pixel imaging (SPI) utilizing a phase-controlled fiber laser array and an 
untrained deep neural network. The fiber lasers are arranged in a compact hexagonal structure and coherently combined to 
generate illuminating light fields. Through the utilization of high-speed electro-optic modulators in each individual fiber 
laser module, the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest. Further-
more, the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the 
reconstructed images. Through simulations and experiments, we validate the feasibility of the proposed method and success-
fully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%. Given its potential for high 
emitting power and rapid modulation, the SPI scheme based on the fiber laser array holds promise for broad applications in 
remote sensing and other applicable fields.
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1 Introduction

Single-pixel imaging (SPI) is an innovative computational 
imaging technique capable of reconstructing images from 
one-dimensional detector signals [1, 2]. Distinguished from 
traditional imaging methods employing array detectors like 
Charge Coupled Device (CCD), SPI requires structured 
illumination and a substantial number of measurements of 
the transmitted or reflected light intensities from the object 
of interest. By concurrently capturing the illuminating light 
fields and the reflected light intensities from the object, the 
reconstruction of the object can be achieved through compu-
tational algorithms. As most of the photons from the object 
are collected by the single-pixel detector, SPI exhibits high 

detection sensitivity and can operate across a wide spectral 
range. Consequently, SPI finds extensive applications in 
remote sensing [3, 4] non-visible imaging domains [5–9], 
optical computing [10, 11], optical encryption [12, 13], and 
so on.

SPI typically requires a significant number of single-pixel 
samples to reconstruct high-resolution images. To address 
this challenge and enable real-time imaging while reduc-
ing acquisition time, two main strategies are commonly 
employed. These strategies focus on improving the refresh 
rate of illuminating fields and developing efficient recon-
struction algorithms. Several schemes have been reported 
to generate the illuminating light field, including the utiliza-
tion of rotating ground glass [14, 15], digital micro-mirror 
device (DMD) [16, 17], liquid-crystal spatial light modula-
tor (SLM) [18, 19], LED array [20, 21], and silicon-based 
optical phased array (OPA) chip [22, 23]. Notably, DMDs 
are capable of achieving refresh rates of up to 22.4 kHz 
when operating on binary patterns, while LED arrays can 
reach frequencies in the MHz range. It is noteworthy that an 
impressive SPI scheme utilizing an LED array has achieved 
a resolution of 32×32 pixels and a frame rate of 1000 fps 
[20]. Recently, a groundbreaking achievement in SPI imag-
ing has been made using a DMD, enabling 2D and 3D 
imaging of periodic or reproducible scenes at an astounding 
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frame rate of 2,000,000 fps [16]. However, it’s important to 
note that DMDs suffer from diffraction losses, while LED 
arrays exhibit significant divergence angles, both of which 
limit their applications in remote sensing. Additionally, an 
integrated optical phased array (OPA) chip, equipped with 
electro-optic phase-shifters, has been utilized as a modula-
tion device to further enhance the refresh rate up to 100 
MHz [22, 23]. Nonetheless, the OPA chip faces challenges 
such as limited emitting power and a complex manufacturing 
process, making its application in remote sensing a demand-
ing proposition.

Furthermore, the choice of reconstructing algorithm 
plays a crucial role in the efficiency of SPI. For random 
speckle fields, early conventional algorithms primarily rely 
on intensity correlation techniques, such as the computa-
tional ghost imaging (CGI) [2], differential ghost imaging 
(DGI) algorithm [24] and the normalized ghost imaging 
(NGI) algorithm [25]. However, these intensity correla-
tion algorithms often require oversampling to achieve clear 
images. As a result, compressive sensing (CS) algorithms 
have been developed and applied to single-pixel imaging, 
leading to the emergence of compressive sensing-based SPI 
(CS-SPI) [26]. CS-SPI, while capable of reconstructing 
images with sub-Nyquist sampling, can be computationally 
intensive and susceptible to noise due to the complexity of 
its calculations. Recently, SPI schemes based on deep learn-
ing have been introduced to improve imaging efficiency and 
accuracy [27–29]. Notably, in 2017, Lyu et al. proposed a 
physics-informed deep learning approach for ghost imaging 
known as GIDL [27]. GIDL utilizes a deep neural network 
(DNN) trained on traditionally CGI reconstructed images 
and ground truth data. Furthermore, in 2022, Wang et al. 
introduced a physics-enhanced deep learning approach for 
SPI [28]. This approach enables the incorporation of both 
data and physics priors into the inverse problem solvers used 
in SPI. In the same year, an untrained neural network (UNN) 
was employed to achieve far-field super-resolution SPI [29]. 
Notably, this method eliminates the need for pre-training on 
any specific data set and introduces a novel framework for 
the application of deep learning in SPI systems. By leverag-
ing the capabilities of UNNs, this approach opens up new 
possibilities for improving the resolution and performance 
of SPI.

Building on the insights gained from OPA chip SPI 
schemes, we propose the utilization of a phase-controlled 
coherent fiber laser array as the illuminating source for SPI. 
The concept of employing a laser array for SPI illumination 
has been previously analyzed in theoretical studies [30–32]. 
However, to the best of our knowledge, practical imple-
mentation of collimated fiber laser arrays in SPI systems 
has not been reported. In our work, we arrange the fiber 
lasers in a compact hexagonal structure, which has found 

broad application in high-power coherent beam combina-
tion (CBC) [33, 34]. The hexagonal structure can yield high 
coherent combining efficiency in CBC due to the high fill 
factor with compact arrangement. In addition, the compact 
hexagonal structure can reduce the size of output laser array 
which makes it easier to process the following optic devices. 
The fiber laser array proposed in this study is controlled 
by  LiNbO3 electro-optic phase modulators with a modula-
tion bandwidth of 100 MHz. This configuration offers the 
potential to generate an illuminating light field with both 
high emitting power and a high-speed refreshing frequency. 
To further enhance the imaging quality and efficiency of this 
SPI system, an UNN based on SPI model is employed. The 
feasibility and robustness of the proposed SPI strategy are 
demonstrated in this paper through numerical simulations 
and experimental validations.

2  Theory and numerical simulation

The compact hexagonal fiber laser array is broadly employed 
in CBC systems due to its ability to achieve a high fill factor, 
resulting in a high power ratio in the central lobe. Previous 
CBC schemes based on a compact hexagonal structure have 
successfully achieved 100 beams combining and 20 kW output 
powers [33, 34]. Therefore, a similar fiber laser array can be 
introduced in SPI to attain high emitting power and fast modu-
lation capabilities for remote sensing applications. Unlike the 
CBC system, the SPI system primarily focuses on the spatial 
correlation properties of the illuminating light field, which can 
be evaluated using the normalized second-order intensity cor-
relation function g(2)(x, y; x0, y0) [30].

where I(x0, y0) is the light intensity at the position (x0, y0) in 
cartesian coordinates. ⟨I⟩ means the ensemble average value 
of intensity I over time.

Figure 1 illustrates a typical hexagonal fiber laser array 
system. The system consists of a seed laser that undergoes 
pre-amplifier (PA) and is then split into multiple channels of 
fiber lasers. Each individual fiber laser is modulated by its own 
high-speed electro-optic phase modulator. The modulated fiber 
lasers are collimated using a collimator array and enter into 
free space. At the emitting plane, a focusing lens is positioned 
to combine the laser beams. Consequently, the light field at the 
focal plane of the lens can be considered as the far-field of the 
laser array, which also serves as the illuminating light field for 
the object in SPI.

The fiber laser array consists of several sub-arrays, as for 
the subarray, each laser beam can be regarded as Gaussian 
beam with size of w0. And each laser beam is truncated by 

(1)g(2)(x, y;x0, y0) =
⟨I(x0, y0)I(x, y)⟩
⟨I(x0, y0)⟩⟨I(x, y)⟩ ,
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a circular aperture with diameter of D. The light field at the 
emitting plane can be expressed by 

where N is the total number of sub-sources. An is the ampli-
tude of the nth laser beam. (xn, yn) is the center coordi-
nate of the nth laser beam. ϕn is the phase of the nth laser 
beam. circ(r0) denotes the function of the circular aperture. 
According to the Fraunhofer diffraction theory, the light field 
at the focal plane can be expressed as 

where k denotes the wavenumber of laser beam. f is the focal 
length of lens. λ is the wavelength of laser beam and (u, 
v) is the coordinate parameter at focal plane. Accordingly, 
the intensity distribution of light field at focal plane can be 
calculated as

Based on the aforementioned analysis, the normalized 
second-order intensity correlation function g(2)(x, y; x0, y0) at 
the focal plane can be calculated and the results are shown in 
Fig. 2. In this study, we consider a laser wavelength of 1064 
nm and a focal length of 3 m for illustrative purposes. The 
hexagonal array configuration consists of a total of N = 37 
laser beams, as depicted in Fig. 2a. The size of single Gauss-
ian laser beam w0 and the diameter of circular aperture D are 
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set to be w0 = D/2 = 3 mm. The center-to-center distance L 
between two adjacent laser beams is determined as 7 mm. The 
fill factor of the hexagon array can be calculated to be D/L = 
0.86. To obtain the accurate g(2)(x, y; x0, y0) distribution, the 
sampling number of light field is set to be 3000. Figure 2b 
displays the 2D distribution of g(2)(x, y; x0= 0, y0= 0) on the 
focal plane. Figure 2c and d present the cross-sections along 
the (x, y = 0) and the (y, x = 0) directions, respectively. It 
shows that the distribution of g(2)(x, y; x0 = 0, y0 = 0) exhibits 
spatial periodicity, and the sidelobes of g(2)(x, y; x0= 0, y0 = 
0) are equal to the main peak in the position (x = 0, y = 0).

It has been proven that the spatial periodicity of illu-
minating light fields can negatively impact the imaging 
quality of SPI in reference [30]. To address this issue, we 
propose the integration of an untrained neural network 
(UNN) with the SPI physical model to optimize the qual-
ity of reconstructed images [29]. Remarkably, this neural 
network exhibits superior performance, particularly at low 
sampling ratios, and does not require pre-training on any 

Fig. 1  Schematic system of coherent fiber laser array

Fig. 2  a 37 sub-channels hexagon fiber laser array. b 2D distribution 
of g(2)(x, y; x0= 0, y0 = 0) on the focal plane. c and d Cross-section of 
g(2)(x, y; x0 = 0, y0 = 0) along the (x, y = 0) direction and the (y, x = 
0) direction

Fig. 3  Network optimization process of UNN-SPI
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specific data set. The imaging process based on the UNN 
algorithm is depicted in Fig. 3 and can be summarized in 
four steps. First, a rough image is reconstructed by the 
DGI algorithm through combining the illuminating fields 
and the measured intensity In. Secondly, the DGI image 
serves as input to the randomly initialized UNN, generat-
ing a high-quality output image. Thirdly, the output image 
is treated as the object and used to calculate the estimated 
intensity Ii through the SPI technique. Finally, we calculate 
the root-mean-square error (RMSE) between Ii and In, and 
this serves as loss function guiding the network optimiza-
tion until reaching the minimal value. This iterative process 
leads to the improvement of the output image quality and a 
better reconstruction outcome.

Using the algorithms mentioned above, we conducted 
simulations of SPI results utilizing a hexagonal fiber laser 
array, as depicted in Fig.  4. Both binary and grayscale 
images with resolution of 128 × 128 pixels are selected as 
the objects, including binary 3 slits, binary 6 slits and two 
gray drone images of different sizes (Drone 1 and Drone 2). 
The size of the 3 slits is half that of the 6 slits, and similarly, 
the size of Drone 2 is half that of Drone 1. The reconstruc-
tion algorithms utilized in this study include the differential 
ghost imaging (DGI) algorithm [24], the sparse representa-
tion prior compressive sensing (CS) algorithm [30], and the 
untrained neural network (UNN) algorithm [29]. The sam-
pling measurements are conducted with settings of 256, 512, 
and 1024. As observed in the results, increasing the sam-
pling measurements leads to clearer reconstructed images 
with enhanced details and reduced noise. Additionally, it is 
evident that the images reconstructed using the DGI and CS 

algorithms exhibit noticeable periodicity. By contrast, the 
UNN-SPI method offers the ability to reconstruct images 
without the presence of periodicity, resulting in images with 
superior levels of detail. Table 1 presents the root-mean-
square error (RMSE) values of the reconstructed SPI results, 
which demonstrates decreasing RMSEs as the sampling 
measurement increases. And the RMSEs of UNN-SPI are 
obviously lower than those of DGI-SPI and CS-SPI. Nota-
bly, the reconstructed images of UNN-SPI exhibit excellent 
quality even with 256 sampling measurements, correspond-
ing to a sampling ratio of 1.6%. This finding highlights the 
effectiveness of the UNN algorithm in enhancing both the 
efficiency and image quality in SPI applications based on 
fiber laser arrays.

The above analysis has proved that the hexagon laser 
array can achieve excellent SPI results by using the UNN 
reconstruction algorithm. Next, we will discuss how to 
design the hexagon laser array to obtain better SPI quality. 
The main influence factors are the sub-channel’s number and 
the compactness of the hexagonal laser array. Figure 5 shows 
the normalized second-order intensity correlation function 
g(2)(x, y; x0, y0) when the number of laser array sub-channels 
N is set to values of 7, 19 and 37. The fill factor of the hexa-
gon array is kept to be D/L = 0.86. Figure 6 shows the cor-
responding SPI results of a 3 slits image with a resolution of 
128 × 128 pixels and sampling ratio of about 1.6%. In Fig. 5, 
when the number N increases, then the linewidth of g(2)(x, y; 
x0, y0) decreases. The g(2)(x, y; x0, y0) can be regarded as the 
point spread function of SPI system. The narrower linewidth 
can lead to a higher resolution of SPI reconstructing images. 
Therefore, the laser array with more laser beams can achieve 
better SPI results in Fig. 6.

In addition, the compactness is another important fac-
tor influencing the SPI results. The compactness of the 
hexagon laser array mainly depends on the fill factor val-
ues. Here we set the center-to-center distance L between 
two adjacent laser beams to be 7, 8, and 10 mm. The cor-
responding fill factors can be calculated to be 0.86, 0.75, 
and 0.60, respectively. The sub-channel’s number of 
laser array N is set to be 37 for convenience. The g(2)(x, 
y; x0, y0) distributions of different laser arrays are shown 
in Fig. 7. The corresponding simulated SPI results are 
shown in Fig. 8. When the fill factor increases from 
0.60 to 0.86 then the laser array becomes more compact, 
and the period of g(2)(x, y; x0, y0) also increases. Then 
the number of peaks decreases in the illuminating field. 
Therefore, the more compact laser array can have better 
SPI results, as can be observed in Fig. 8. In addition, the 
more compact laser array can offer significant conveni-
ence for the optical system due to the smaller size of 
output lasers.

Fig. 4  Simulated SPI results based on hexagon fiber laser array

Table 1  RMSE values of the above SPI results

Object 256 measurements 512 measurements 1024 measurements

DGI CS UNN DGI CS UNN DGI CS UNN

3 slits 0.1710 0.1427 0.0551 0.1594 0.1401 0.0544 0.1489 0.1378 0.0528

6 slits 0.2239 0.1958 0.1328 0.2092 0.1921 0.1158 0.2064 0.1877 0.1112

Drone 1 0.8270 0.2023 0.1343 0.8067 0.1989 0.1289 0.7878 0.1950 0.1260

Drone 2 0.8543 0.0805 0.0627 0.8139 0.0785 0.0622 0.7802 0.0769 0.0597
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3  Experimental results

To validate the feasibility of the hexagon laser array and 
UNN-SPI algorithm, a concept demonstration experiment sys-
tem is constructed utilizing a spatial light modulator (SLM). 
The experimental setup is depicted in Fig. 9. In the setup, 
a single-frequency laser source operating at a wavelength 
of 1064 nm and with a diameter of 0.2 cm is first expanded 
by a beam expander, resulting in a 10-fold increase in the 

diameter of the beam. Next, the expanded laser beam traverses 
a mask comprising 37 sub-apertures arranged in a hexagonal 
array configuration. The design of the hexagonal array on the 
mask ensures a fill factor of 0.86, effectively transforming the 
Gaussian laser into a hexagonal laser array. Subsequently, the 
laser array passes through a beam splitter (BS1) and under-
goes random modulation using a phase-type spatial light 
modulator (SLM). The SLM allows for phase modulation 
within a range of 0 to 2π, enabling precise control over the 
phase distribution of the laser array. Then the modulated laser 
array is reflected by BS1 and is focused using a lens with a 
focusing length of 1 m. The focused light is further divided by 
another beam splitter (BS2). A CCD camera positioned on the 

Fig. 5  Variation of g(2)(x, y; x0 = 0, y0 = 0) with coordinates (x and 
y) when the number of laser array sub-channels is 7, 19, or 37. a1–c1 
The number of laser array sub-channels are 7, 19, 37. a2–c2 Cross-
section of g(2)(x, y; x0 = 0, y0 = 0) along the (x, y = 0) direction. a3–c3 
Cross-section of g(2)(x, y; x0 = 0, y0 = 0) along the (y, x = 0) direc-
tion. a4–c4 2D distribution of g(2)(x, y; x0= 0, y0 = 0) on the focal 
plane

Fig. 6  Simulated SPI results when the number of laser array sub-
channels is 7, 19, or 37, respectively

Fig. 7  g(2)(x, y; x0 = 0, y0= 0) when the fill factors of the laser array 
are 0.86, 0.75, or 0.60

Fig. 8  Simulated SPI results when the fill factor of laser array is 0.86, 
0.75, or 0.60
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focal plane detects and records the distribution of the reflected 
light, serving as a means to capture the light field distribution. 
Simultaneously, the transmitted light illuminates an object 
that is also situated on the focal plane. The transmitted light 
from the object is collected by a single-pixel (S-P) detector. 
A computer system is employed to control the phase modula-
tion of the SLM and facilitate synchronized data acquisition 
(DAQ) from both the CCD camera and the S-P detector.

A self-developed software is used to control the SPI pro-
cess based on the computer. First, the computer controls the 
SLM to provide refreshing random phase to the laser array. 
During each phase modulation, the CCD camera and the 
S-P detector commence data collection simultaneously. The 
CCD camera records the intensity distribution of the illu-
minating light fields and transfers the data to the computer 
directly. The S-P detector records the light intensity from 
object and saves the acquired data to the computer by DAQ. 

By combining the light fields captured by the CCD cam-
era with the light intensities measured by the S-P detector, 
we reconstruct the object image using different algorithms 
at a sampling ratio of 6.25%. The SPI results are depicted 
in Fig. 10, showing the successful reconstruction of vari-
ous objects, including a computer symbol, a mathematical 
number, a Latin character, and a Chinese character. The 
reconstructed images possess resolution of 64 × 64 pixels. 
Notably, even with a sampling ratio of 6.25%, the UNN-SPI 
technique demonstrates its ability to accurately reconstruct all 
the objects, as clearly observed in the experimental results. 
To provide a comprehensive comparison, the results of DGI 
and CS-SPI algorithms are also calculated. However, it is 
evident that the reconstructed images obtained from DGI 
and CS-SPI suffer from significant spatial periodicity issues, 
which severely compromise the overall imaging quality. The 
UNN-SPI results hold the lowest RMSE values for all the 
objects. This observation highlights the clear advantage of 
the UNN-SPI technique in producing superior reconstruc-
tion results without the presence of such periodicity-related 
impairments.

Furthermore, a SPI system based on a fiber laser array 
is established, as depicted in Fig. 11. Initially, a single-fre-
quency linearly-polarized fiber laser with a central wave-
length of 1064 nm is amplified to a power of 1 W using a 
fiber amplifier. The amplified laser is then divided into 8 sub-
channels through a 1 × 8 splitter. 7 of these sub-channels are 
subjected to modulation using a  LiNbO3 electro-optic phase 
modulator array and are subsequently connected directly to a 
homemade collimator array. The collimator array consists of 
two main components: a fiber connector array and a collimat-
ing lens array. The fiber connector array features a flexible 
hinge structure, allowing for three-dimensional adjustments 
of the fiber tip’s position to ensure it aligns precisely with 
the focal point of the collimating lens [33]. Subsequently, 
the fiber laser array produces collimated output beams. The 
collimating lens employed in the system has a diameter of 23 
mm, with adjacent lenses separated by a distance of 25 mm. 
Through calculations, the fill factor of the laser array is deter-
mined to be 92%. After passing through the collimating lens, 
the beam waist diameter is measured to be 21 mm. Following 
the collimator array, a focusing lens is utilized to combine the 

Fig. 9  Experimental set up based on SLM system

Fig. 10  Experimental SPI results based on SLM system Fig. 11  Experimental set up of fiber laser array system
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individual laser beams at the focal plane. Just before reaching 
the focal plane, the laser beam is split into two components 
using a beam splitter (BS). The reflected portion of the laser 
beam is captured by a CCD camera, which records the dis-
tribution of the light field. Simultaneously, the transmitted 
laser beam illuminates the object, and a single-pixel detector 
is employed to measure the light intensity after interaction 
with the object. To facilitate control and data acquisition, a 
data acquisition card (DAQ) is utilized to control the phase 
modulator array and obtain data from the single-pixel detec-
tor. The data acquisition processes of both the DAQ and the 
CCD camera are coordinated and controlled by a computer, 
ensuring synchronized operation and efficient data collection.

The execution frequency of the data acquisition card (DAQ) 
for controlling the phase modulator is capable of reaching a 
maximum of 2 kHz. However, in this case, it is set to operate 
at 10 Hz due to the limited refresh rate of the CCD camera. 
Figure 12a illustrates the process of data acquisition and phase 
modulation. The  LiNbO3 electro-optic phase modulator, with 
a half-wave voltage of 2 V, is controlled by the DAQ, which 
generates random voltage signals ranging from 0 to 4 V. This 
voltage range allows for precise phase modulation within the 
range of 0 to 2π, enabling accurate control of the laser beam’s 
phase characteristics. During each modulation cycle, which 
lasts for a duration of 0.1 s (t2), both the CCD camera and the 
single-pixel detector collect data simultaneously. The CCD 
camera’s exposure time is set to 0.04 s (t1) for each data acqui-
sition, ensuring optimal image capture. Figure 12b illustrates 
the recorded light field distributions captured by the CCD cam-
era, as well as the corresponding light intensities measured by 
the single-pixel detector. The entire process of data acquisition 
and phase modulation is managed by a self-developed soft-
ware running on the computer. In this study, we have chosen 
a set of three slits as the representative object. By sampling 
256 illuminating light fields and capturing the correspond-
ing interacting light intensities, we proceed to reconstruct the 
object using various algorithms. The SPI results are presented 

in Fig. 13. The reconstructed images obtained have a resolu-
tion of 128 × 128 pixels, with a corresponding sampling ratio 
of 1.6%. Notably, the UNN-SPI technique exhibits superior 
image quality in comparison to both DGI and CS-SPI meth-
ods. The reconstructed image produced by UNN-SPI shows a 
distinct profile and minimal background noise, highlighting the 
feasibility and efficiency of utilizing the UNN-SPI approach 
based on a fiber laser array. These results underscore the poten-
tial and effectiveness of this technique for high-quality image 
reconstruction applications.

4  Conclusions

In conclusion, we have successfully employed a compact fiber 
laser array with a hexagonal structure as the illuminating light 
source in SPI experiments. Given the spatial periodicity pre-
sent in the generated illumination light field, we introduce 
the UNN-SPI technique for object reconstruction. Theoreti-
cal simulations confirm the feasibility of both the proposed 
fiber laser array and the UNN-SPI algorithm. Additionally, 
we establish an SLM system and a phase-controlled fiber 
laser array system for further experimental validation. The 
experimental results demonstrate that the UNN-SPI technique 
outperforms traditional methods such as DGI and CS-SPI, 
enabling clear image reconstruction even at remarkably low 
sampling ratios. Future efforts will be directed toward enhanc-
ing the sampling speed of the CCD camera to achieve faster 
or real-time SPI. Moreover, considering the broad application 
of phase-controlled fiber laser arrays in high-power coherent 
beam combining, we believe that our proposed approach pro-
vides a novel and powerful illuminating source for SPI, with 
potential applications in fields such as remote sensing. Next, 
we will concentrate on researching the influence of atmos-
pheric turbulence to improve the imaging distance of SPI in 
the actual environment.
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Fig. 12  Applied voltage on phase modulator and the data acquisition 
of CCD camera. a The process of data acquisition and phase modu-
lation. b The recorded light field distributions captured by the CCD 
camera corresponding to the light intensities measured by the S-P 
detector

Fig. 13  Experimental SPI results based on fiber laser array
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