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Abstract
With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted 
increasing attention. Zero dimensional (0D) organic–inorganic hybrid metal halide perovskites with superior lumi-
nescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, 
[(CH3)3S]2SnCl6·H2O is synthesized as a host for dopant ions  Bi3+ and  Sb3+. The  Sb3+ doped, or  Bi3+/Sb3+ co-doped, 
[(CH3)3S]2SnCl6·H2O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. 
As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. 
The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability 
of title crystalline material, against water, oxygen and heat, makes it promising for further application.
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1 Introduction

Recently, solid-state lighting technology has experienced 
rapid development, in fields such as inorganic light emit-
ting diodes (LEDs), organic light emitting diodes (OLEDs), 
polymer light emitting diodes (PLEDs) [1–3]. LEDs are 
more efficient and energy-saving than traditional lighting 
source [4] so that white LED has already largely replaced 
traditional lighting equipment (including incandescent lamps 
and fluorescent lamps). According to the US Department of 
Energy’s Solid-State Lighting report, electricity consump-
tion for lighting is forecast to decrease by 25% between 2016 
and 2035 [5].

The excellent optoelectronic properties of metal halide 
perovskites (MHPs) make them have potential applications 
in solar cells [6–8] and LEDs [9–11]. MHPs have different 
structural dimensionality ranging from zero-dimensional 
(0D) to three-dimensional (3D) [12–17]. The 0D metal 
halide has a soft lattice and a large Huang-Rhys factor (S), 
which is conducive to electron–phonon coupling [18, 19]. 
Thus, 0D metal halides have a stronger ability to form self-
trapped excitons (STEs) than 3D ones do. The STEs have 
the potential to result in a broad emission with a large Stokes 
shift, with negligible self-absorption [18].  A2NX6 (A is a 
monovalent organic/inorganic cation, N is a tetravalent metal 
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ion, and X is a halide ion) is a typical kind of 0D vacancy 
ordered MHP, exhibiting fruitful structures and good toler-
ance for guest ions [20–22]. For example,  Cs2SnCl6 with 
excellent high stability has attracted considerable research 
attention. Various guest ions can be doped into  Cs2SnCl6 
leading to a distinctive performance.  Bi3+,  Te4+,  and 
 Sb3+ guest ions doped in  Cs2SnCl6 show blue, yellow and 
red–orange light emission, respectively [23–28]. Through 
color addition, white light emission can be obtained by co-
doping of  Bi3+ and  Te4+ ions [28, 29]. Based on the blue 
emission from the defect of  Cs2SnCl6 structure,  Ce3+ doped 
into  Cs2SnCl6 induces an enhanced blue emission [30], 
while  La3+ doped into  Cs2SnCl6 achieves complementary 
white light [31]. Similar luminescence tuning by guest ions 
has also been reported in  (NH4)2SnCl6 [32, 33].

In addition to the inorganic cation in  A2SnX6 systems, 
organic cations have the potential to generate rich crystal 
structures due to the tailorable structure of organic cations. 
For example,  (C6N2H16Cl)2SnCl6  (C6N2H16Cl = 2,6-dimeth-
ylpiperazine chloride) exhibits blue emission from STEs 
[34], while (4-APEA)2SnBr6 (4-APEA = 2-(4-aminophe-
nyl) ethylammonium) provides yellow emission [35].  Sb3+ 
doped  (C10H16N2)SnCl6  (C10H16N2 = 1-phenylpiperazine) 
induces ultra-broadband emission (400–900 nm) with 77% 
photoluminescence quantum yield (PLQY) [36]. However, 
most of the organic cation in  A2SnX6 is protonated. The 
aprotic cation study is still in its infancy. To maintain the 
216-type highly symmetric perovskite structure, in this work 
we introduce [(CH3)3S]+ into the  A2SnX6 crystal structure. 
Compared with protonated organic cations, sulfonium cati-
ons have several advantages including [37]: (1) the char-
acteristic of proton inertness, so that they do not undergo 
dehydrogenation reactions initiated by unstable free radicals 
or bases; (2) the large atomic size of S results in it com-
bining closely with inorganic halide anions, resulting in an 
improved stability; (3) the use of aprotic sulfonium cation 
increases the moisture resistance of the perovskite structure. 
The study of diverse organic molecular structures can help to 
identify an organic cation that balances device performance 
and stability.

In this work, the organic–inorganic hybrid tin-based 
perovskite SSC (SSC = [(CH3)3S]2SnCl6·H2O) was synthe-
sized.  Bi3+ and  Sb3+ ions were doped into SSC to tune the 
photoluminescence (PL), resulting in single-phase white 
light crystals  Sb3+ doped [(CH3)3S]2SnCl6·H2O  (Sb3+@
SSC) and  Bi3+/Sb3+ co-doped [(CH3)3S]2SnCl6·H2O  (Bi3+/
Sb3+@SSC). Their emission spectra are excitation-depend-
ent. Thus, a series of high-quality white light emitting crys-
tals with controllable color temperature can be obtained by 
adjusting the excitation wavelength. Compared with  Sb3+@
SSC, an enhanced blue light component, and a longer wave-
length excitation (384 nm) for white light emission, can be 
achieved from  Bi3+ in  Bi3+/Sb3+@SSC. The title crystals 

have good acid resistance, water resistance and oxygen 
resistance, providing application potential for white light 
emitting diodes (WLEDs).

2  Results and discussion

SSC with/without dopant ions was synthesized by a hydro-
thermal method (The details can be found in Supporting 
Information). As shown in Fig. 1a, Sn is coordinated with 
six Cl forming an isolated  [SnCl6]2−. The large organic cat-
ion [(CH3)3S]+ and  H2O are located in the vacancy among 
the  [SnCl6]2−, leading to a vacancy-ordered 0D MHPs SSC. 
The elemental analysis could confirm the existence of  H2O 
as shown in Table S1. The crystal belongs to the Fm-3m 
space group with a unit cell length of 12.43 Å.  Sb3+ can be 
easily doped into SSC structure. The  Sb3+ dopant concen-
trations was tested by inductively coupled plasma atomic 
emission spectroscopy (ICP-OES), and the molar ratio of 
Sb/(Sn + Sb) was used to represent the actual dopant content 
inside the crystal structure. Under the feeding dopant con-
centrations of 0.002, 0.010, 0.018, 0.026, and 0.030 mol/L, 
the corresponding  Sb3+ molar concentrations inside crystals 
was 0.019%, 0.12%, 0.25%, 0.31%, and 0.38%, respectively. 
As shown in Figs. 1b and S1, the good agreement between 
the experimental and simulated powder X-ray diffraction 
(PXRD) confirms the pure crystalline phase of title crystals. 
As shown in Fig. 1c, the Fourier transform infrared spectra 
(FTIR) of  Sb3+@SSC is consistent with that of  (CH3)3SCl 
verifying the organic component in the crystal structure. The 
characteristic peaks for C, S, Cl, Sn, and Sb elements could 
be found in the full X-ray photoelectron spectroscopy (XPS) 
spectrum of  Sb3+@SSC as shown in Fig. S2. The fine XPS 
spectra of Sb and Sn in  Sb3+@SSC are shown in Fig. 1d. 
The peaks located at 539.13 and 530.31 eV are in accord-
ance with  3d3/2 and  3d5/2 of  Sb3+, respectively, while those 
at 495.66 and 487.21 eV are contributed by  3d3/2 and  3d5/2 
of  Sn4+, respectively [24, 32, 38]. Thus, the elements and 
valence in  Sb3+@SSC are well confirmed.

The optical properties of  Sb3+@SSC are studied hereaf-
ter. Figure 2a is the UV–vis absorption spectra of xSb3+@
SSC (x = 0, 0.019%, 0.12%, 0.25%, 0.31%, and 0.38%). Fig-
ure 2b shows the UV–vis absorption (black line), photolu-
minescence excitation (PLE, yellow and green line), photo-
luminescence emission (PL, purple line) spectra of 0.31% 
 Sb3+@SSC. The absorption peak around 290 nm arises from 
the host SSC [39]. Along with the increasing  Sb3+ dopant, an 
additional peak around 340 nm emerges and rises due to the 
absorption of  Sb3+ [18, 40]. This absorption peak induced by 
 Sb3+ dopant can also be found in the PLE spectra as shown 
in Fig. 2b. The PL of pristine SSC is negligible. After  Sb3+ 
doping, SSC can induce a broad emission with two peaks 
at 490 nm (named as S) and 660 nm (named as T) under 
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318 nm excitation light source. The optimal excitation wave-
length at 490 nm is 318 nm (The yellow curve in Fig. 2b), 
while the optimal excitation wavelength at 660 nm is 334 nm 
(The green curve in Fig. 2b). As a result,  Sb3+@SSC shows 
an excitation-dependent PL (Fig. 2c). When the excitation 
wavelength changes from 300 to 370 nm, the intensity ratio 
between S peak and T peak is principally decreased, exhib-
iting different PL color as shown in Figs. 2e and S3. The 
PLE spectra with emission wavelength from 490 to 622 nm 
show different shapes and features (Fig. 2d), suggesting 
that the broad emission composed of two PL peaks might 
originate from the relaxation of different excited states. As 
is the case for  Sb3+ doped  Cs2SnCl6 at 80 K, the emission 
peak at 490 nm is derived from 1P1 to 1S0, and the emission 
peak at 660 nm is derived from 3P1 to 1S0 [24]. The crystal 
emission close to the standard white light is obtained under 
the excitation light source of 340 nm (Commission Interna-
tionale de l´Eclairage, CIE = 0.37, 0.31) with color render-
ing index (CRI) 84. The color coordinates, correlated color 

temperature (CCT) and CRI of white light crystals obtained 
by different excitation light sources are shown in Table S2.

To understand the PL of  Sb3+@SSC, the PL lifetimes for 
different peaks are measured as shown in Fig. 3a. The PL 
lifetime of the 490 nm peak is about 14.52 ns, while that 
of 660 nm peak is about 19.59 μs. The fitting parameters 
for PL lifetime are shown in Table S3. Thus, the singlet 
emission (1P1–1S0) and triplet emission (3P1–1S0) of  Sb3+ in 
SSC crystal should give rise to the 490 and 660 nm peaks, 
respectively [41]. The temperature-dependent PL also takes 
place (Fig. 3b). When the temperature increases, the inten-
sity of the 660 nm peak reduces rapidly, while the intensity 
of 490 nm peak enhances a little and then decreases. Two 
factors can be expected to affect the two peaks’ intensities 
at different temperatures. One is the electron–phonon cou-
pling and the other is the thermal activated energy transfer 
between the singlet and triplet states. It seems that the elec-
tron–phonon coupling is dominant for the T peak, resulting 
in the decrease of the peak intensity. However, the energy 

Fig. 1  a Crystal structure of  Sb3+@SSC. b Experimental and simulated powder X-ray diffraction (PXRD) of undoped host crystal and the exper-
imental PXRD of 0.31%  Sb3+@SSC. c Fourier ttransform infrared (FTIR) spectra (FTIR) of  (CH3)3SCl and  Sb3+@SSC. d X-ray photoelectron 
spectroscopy (XPS) spectra and peak fitting for Sn 3d and Sb 3d, respectively
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transfer from the triplet state to singlet state (i.e., reverse 
intersystem crossing) might play a critical role for S peaks, 
leading to the increase of the peak intensity initially. The 
intensity of the T peak at different temperatures is fitted by 
Arrhenius equation (Eq. (1)), as shown in Fig. 3c.

where I0 is the initial luminescence intensity emitted at 
660 nm at low temperature (80 K), K is the Boltzmann con-
stant, a is the pre-exponential factor, and EA is the activation 
energy of the luminescence peak. The EA of 660 nm emis-
sion calculated by the above formula is 265.17 meV; this 
value is similar to that in our group’s previous work on  Sb3+ 
doped [(CH3)3N]2SnCl6 (288.13 meV) [38].

As shown in Fig.  3d, the PLQY of  Sb3+ at differ-
ent doping concentrations is tested. As further shown 
in Fig. S4, when the actual doping concentrations with 
 Sb3+ are 0.019%, 0.12%, 0.25%, 0.31%, and 0.38%, the 

(1)I(t) =
I0

1 + aexp(EA∕(KT))
,

corresponding PLQY values are 15.5%, 51.8%, 61.5%, 
75%, and 61.7%, respectively. When  Sb3+ concentration 
ranges from 0.019% to 0.31%, the PLQY will be enhanced 
with the increasing  Sb3+ content, reaching the maximum 
value of 75% at 0.31% dopant concentration. Subsequently, 
increase of  Sb3+ doping content leads to the decrease of 
PLQY due to the concentration quenching effect [42].

The density functional theory (DFT) calculation of SSC 
is shown in Fig. 4a–c. The highest occupied molecular 
orbital (HOMO) is mainly composed of Cl 3p with a small 
contribution from organic cation, while the lowest unoc-
cupied molecular orbital (LUMO) is mainly composed of 
Cl 3p and Sn 5s. After  Sb3+ doping, LUMO remains Cl 3p 
and Sn 5s, while Sb 5s and Cl 3p have obvious contribu-
tion to HOMO (Fig. 4d–f). The Cl atom exhibits spatial 
overlap on HOMO and LUMO in the  Sb3+@SSC, which 
may result in a large energy separation between the lowest 
excited triplet state and the lowest excited singlet state [21, 
43, 44]. The energy difference between singlet emission 

Fig. 2  a UV–vis absorption spectra of xSb3+@SSC (x = 0, 0.019%, 0.12%, 0.25%, 0.31%, and 0.38%). b UV–vis absorption (black line), photo-
luminescence excitation (PLE, yellow and green lines), photoluminescence emission (PL, purple line) spectra of 0.31%  Sb3+@SSC. c PL spectra  
of 0.31%  Sb3+@SSC under different excitation wavelengths. d PLE spectra of 0.31%  Sb3+@SSC under different emission wavelengths.  
e Optical photographs of the single-doped samples under 365 and 310 nm light. f Commission Internationale de l´Eclairage (CIE) coordinates of 
0.31%  Sb3+@SSC under different excitation wavelengths
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and triplet emission of  Sb3+@SSC is 0.57 eV, comparable 
with that of  Sb3+doped [(CH3)4N]2SnCl6, suggesting the 
large energy separation between the lowest excited triplet 
state and the lowest excited singlet state [38]. Thus, not 
all the electrons in the singlet state transfer into the tri-
plet state, due to the small spin–orbit coupling (SOC). 
There are still some electrons undergoing radiative transi-
tion from the singlet energy level resulting in a spectrum 
with singlet–triplet dual emission peaks for  Sb3+@SSC. 
The calculated bandgaps and experimental values of SSC 
and  Sb3+@SSC are shown in Figs. S5 and S6. Due to the 
limitation of the generalized gradient approximation, the 
calculated bandgaps are smaller than the experimental 
values [45, 46].

In addition to  Sb3+ doping,  Bi3+ is doped into SSC to 
obtain blue-emitting crystals. This is consistent with previ-
ous literatures about  Bi3+ doped  Cs2HfCl6 and  Bi3+ doped 
 Cs2ZrCl6 [47, 48]. The UV-vis absorption spectrum of 

 Bi3+ doped [(CH3)3S]2SnCl6·H2O  (Bi3+@SSC) is shown in 
Fig. 5a. After  Bi3+ doping, an exciton peak appears at about 
340 nm arising from the absorption of  Bi3+ [40]. As shown 
in Fig. 5b and c, the blue emission peak (474 nm) of  Bi3+@
SSC is obtained under the 384 nm excitation with the PL 
lifetime of 30.12 ns. The blue light emission may be related 
to the mixing of the sp excited state of  Bi3+ [40, 49].

As shown in Figs. S7 and S8, the introduction of  Bi3+ 
does not change the structure of the SSC crystal. When 
 Bi3+ is co-doped into  Sb3+@SSC, the PL of  Bi3+/Sb3+@
SSC can be tuned efficiently by different  Bi3+ concentra-
tions. As shown in Fig. 5d,  Bi3+/Sb3+@SSC has an obvious 
absorption peak at 340 nm, most of which is contributed 
by  Bi3+. With the increase of  Bi3+ ion concentration, the 
intensity of the absorption peak at 340 nm is increased. The 
emission peak of  Bi3+@SSC is 474 nm with optimal excita-
tion 384 nm and the S peak of  Sb3+@SSC is at 490 nm with 
optimal excitation 318 nm. Thus, under different excitation 

Fig. 3   a Photoluminescence emission (PL) decay curves of 0.31%  Sb3+@SSC at the peaks of 490 and 660 nm. b Temperature-dependent 
PL spectra under 327 nm excitation of 0.31%  Sb3+@SSC. c T peak (i.e., 660 nm) intensity I(t) under different temperatures for  Sb3+@SSC.  
A deformed Arrhenius equation is fitted in the graph. d Photoluminescence quantum yield (PLQY) of xSb3+@SSC for different values of x, at 
excitation of 330 nm
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wavelengths, ranging from 310 to 375 nm, as shown in 
Fig. 5e, the short-wavelength peak of co-doped sample is 
blue-shifted (i.e., from 490 to 474 nm), while the long-wave-
length peaks (660 nm) are almost motionless. The doping 
with  Bi3+ causes the white light emission of co-doped crys-
tal to be excited at a longer wavelength (384 nm) compared 
with the 318 nm for  Sb3+@SSC. The fluorescence emission 
spectra of xBi3+/0.31%  Sb3+@SSC (x is the feeding concen-
tration for  Bi3+, including 0.006, 0.014, 0.022, 0.030, and 
0.036 mol/L) are shown in Fig. 5f. The fluorescence emis-
sion peak intensity at 474 nm is significantly enhanced with 
the increased  Bi3+ concentration. The corresponding CIE, 
CCT, CRI and PLQY of the co-doped samples are listed in 
Table S4 and Fig. S9. Doping concentration of 0.006 mol/L 
 Bi3+/0.31%  Sb3+@SSC has the highest PLQY value of 
29.6% under 330 nm excitation.

Organic sulfonium cations have advantages of good 
humidity resistance [37, 50]. Figure  6a and b are the 

fluorescence stability tests of  Sb3+@SSC in air. After 
7 days and after 140 days in air, the fluorescence inten-
sity does not change significantly. In addition,  Sb3+@SSC 
immersed in water and aqua regia for 72 h. The PXRD 
after the experiment confirmed that  Sb3+@SSC did not 
undergo phase transition in water or in aqua regia, as 
shown in Fig. 6b. The corresponding images for doped 
crystals soaked in water are shown in Fig. 6f. The sam-
ples can still maintain good luminescence properties after 
soaking in water. The thermal stability of single doped 
and co-doped samples is characterized by a thermogravi-
metric curve. As shown in Fig. 6c–e, the weight loss starts 
for pristine sample at 91 °C, while those for  Sb3+ doped 
and  Bi3+/Sb3+ co-doped samples it starts at 192 °C and 
164 °C, respectively. The stability after doping is signifi-
cantly improved compared with the undoped stability. The 
good stability provides a basis for the further application 
of such luminescent materials.

Fig. 4   a Density of states of SSC. b and c represent the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular  
orbital (LUMO) of SSC, respectively. d Density of states of  Sb3+@SSC. The insets represent the local enlarged figures near 0 and 2  eV.  
e and f represent the HOMO and LUMO of  Sb3+@SSC, respectively
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We assembled 0.31%  Sb3+@SSC samples into LED 
devices. The electroluminescence spectrum of this device 
under 348 nm chip excitation is shown in Fig. S10. The 
emission spectrum covers a wide emission in the range of 
380 to 760 nm. Under 300 mA current and 3 V voltage, the 
luminous efficiency is 4.39 lm/W. The mismatch between the 
ultraviolet LED chip and the optimal excitation wavelength 
leads to the low device efficiency.

3  Conclusion

A new 0D SSC is synthesized.  Bi3+ and  Sb3+ are co-doped 
as dopants to tune the PL of the title crystals. As a result, 
 Sb3+@SSC exhibits dual singlet/triplet emission at 490 

and 660 nm, and the overall optical spectrum has a strong 
dependence on the excitation wavelength. Under excitation 
at 340 nm, the emission CIE (0.37, 0.31) is closest to the 
standard white light (CIE = 0.31, 0.31), and the CRI reaches 
84 with 75% PLQY. The high energy barrier between sin-
glet and triplet states might be the origin of dual emission 
in  Sb3+@SSC at room temperature. The co-doping with 
 Bi3+ increases the blue band emission in the white light. 
The white light color can be adjusted by changing the dop-
ing concentration ratio of  Bi3+ and  Sb3+. The excitation 
wavelength for white light can extend to 384 nm, which is 
convenient for WLED application. As a highly compatible 
host, SSC not only allows the doping with multiple ions, but 
also has enhanced stability, and provides a basis for further 
application.

Fig. 5   a UV–vis absorption spectrum of 0.022 mol/L  Bi3+@SSC. The attached photos are  Bi3+@SSC in ambient light and 365 nm light.  
b Photoluminescence excitation (PLE) and photoluminescence emission (PL) spectra of 0.022 mol/L  Bi3+@SSC. c PL lifetime spectrum and 
fitting line of 0.022 mol/L  Bi3+@SSC excited at 384 nm. d UV–vis absorption spectra of xBi3+/0.31%  Sb3+@SSC; the feeding concentrations 
are x = 0.006, 0.014, 0.022, 0.030, and 0.036 mol/L. e PL spectra of 0.022 mol/L  Bi3+/0.31%  Sb3+@SSC under different excitation wavelengths.  
f PL spectra of xBi3+/0.31%  Sb3+@SSC excitation at 365 nm; the feeding concentrations are x = 0.006, 0.014, 0.022, 0.030, and 0.036 mol/L
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