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Abstract
Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. 
In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer 
coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and 
two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer 
coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the 
bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C6v-typed domain-
induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su–Schrief-
fer–Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide 
a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian 
topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems.
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1  Introduction

Non-Hermitian systems are constructed by introducing gain-
and-loss distributions [1, 2] or nonreciprocal interactions [3, 
4], illustrating a good deal of unusual physics [5]. Nonrecip-
rocal (anisotropic) coupling, is characterized by unbalanced 

couplings �ab ≠ �ba between two lattice sites a and b [4]. 
Where �ab ≠ �∗

ba
 means that the mode amplitude undergoes 

gain or loss while couple between lattice sites a and b [6, 7]. 
Systems that break Lorentz reciprocity are nonreciprocal and 
prevent light from retracing the forward path [8, 9]. Nonreci-
procity exists in topologically protected unidirectional edge 
states of topological photonics [10, 11]. Introducing nonre-
ciprocal coupling into non-Hermitian topological photonics 
leads to intriguing phenomena [12], including non-Hermi-
tian skin effect [3, 4, 13], higher-order exceptional points 
(EPs) [6], revised bulk-boundary correspondence [14], and 
new definitions of topological invariants [15].

Nonreciprocal systems were initially based on magneto-
optical materials [16]. Recently, several approaches have 
been developed to generate nonreciprocity, including par-
ity-time-symmetric nonlinear cavities [17], use of energy 
loss [18], spatial–temporal modulation [19, 20], and meta-
materials [21]. However, these principles for implementing 
nonreciprocal interlayer coupling have practical difficulties, 
particularly in topological photonic systems because they 
may lose original topological properties after adding non-
reciprocity [22].

In this paper, we provide a scheme for realizing the non-
reciprocal interlayer coupling system by constructing on-site 
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gain/loss in bilayer non-Hermitian topological systems. We 
reveal similarity transformations between nonreciprocal 
interlayer coupling and on-site gain/loss in the one-dimen-
sional bilayer Su–Schrieffer–Heeger (SSH) model and two-
dimensional bilayer C6v topological photonic crystal (PC). 
The similarity transformations reveal that novel behaviors 
like delocalization [23], skin effect [4, 24], and breakdown 
of the conventional bulk-boundary correspondence [14] are 
generic non-Hermitian phenomena not tied to a specific 
microscopic provenance of the non-Hermiticity [5]. The 
topological number of the bilayer nonreciprocal interlayer 
coupling system, defined using a gauge-smoothed Wilson 
loop, is equal to that of the bilayer on-site gain-or-loss sys-
tem. Topological phase transitions and parity-time-phase 
transitions of the non-Hermitian topological states occur 
by modulating the strength of nonreciprocal interlayer cou-
pling or on-site gain/loss quantity. These results have great 

potential applications in reconfigurable laser arrays [23, 
25–27], and for studying non-Hermitian topological phys-
ics, such as non-Hermitian band topology [14].

2 � Nonreciprocity‑induced topological phase 
transition

The bilayer non-Hermitian SSH model [28] is constructed 
by stacked nonreciprocal interlayer coupling photonic wave-
guide arrays (Fig. 1a). The alternating distance between 
in-layer nearest-neighbor waveguide determines t1 (short 
hopping) and t2 (long hopping) [29–31]. Following coupled-
mode theory under tight-binding approximation and apply-
ing Fourier transformation [6, 30], the Bloch Hamiltonian 
of the unit cell (black dotted box) under periodic boundary 
conditions (PBCs) is

Fig. 1   Schematic of bilayer non-Hermitian SSH model for a passive waveguide arrays with nonreciprocal interlayer coupling strength � + � (red 
arrows) and � − � (blue arrows), and b gain (red) and lossy (blue) waveguides. c − j Comparisons of the bulk bands of bilayer non-Hermitian 
SSH model using parameters t1 = 2, t2 = 1, � = 0.2 , and � = 0 for c, � = 0.5 for d, � = 1.25 for e, � = 1.497 for f, � = 1.697 for g, � = 1.8 for 
h, � = 1.96 for i, and � = 2.2 for j. The blue solid (red dot) lines indicate the real (imaginary) part of eigenvalues of Ĥnonrecip

SSH−PBC
(K) , and the blue 

(red) discrete circles indicate the real (imaginary) part of eigenvalues of ĤGL
SSH−PBC

(K)
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where K is Bloch wave vector. Hm is the Hamiltonian of 
monolayer SSH model. H12 and H21 are nonreciprocal inter-
layer coupling matrices. See Appendix A for the forms of 
Hm, H12 , and H21 . We apply a similarity transformation to 
Ĥ

nonrecip

SSH−PBC
(K) ∶

where �̂0 and �̂x,y,z are two-by-two identity matrix and Pauli 
matrix, and Î4 is a four-by-four identity matrix. The Bloch 
Hamiltonian of bilayer on-site gain-and-loss SSH model 
ĤGL

SSH−PBC
(K) is obtained as shown in Appendix A. κ is iso-

tropic interlayer hopping (IIH) (gray arrows in Fig. 1b). The 
gain (and loss) strengths in gain (and lossy) waveguides are 
γ (Fig. 1b) (See Appendix B for generalized derivations with 
arbitrary gain/loss).When K = 0 , the eight periodic-bound-
ary-condition eigenvalues are

Figures 1c–j compare the bulk bands given by Ĥnonrecip

SSH−PBC
(K) 

and ĤGL
SSH−PBC

(K) . When � = 0 , there are four intersections 
(red pentagrams) (Fig. 1c). When � = 0.5 , an intersection 
becomes two EPs (magenta and pink crosses), which move 
away from each other along the first Brillouin zone (FBZ) as 
γ increases, while the complex energy region expands from the 
intersection to both sides until the edge of the FBZ (Fig. 1d). 
Then all EPs begin to move toward K = 0 , while the complex 
energy region expands from edge to center of the FBZ 
(Fig. 1e). The real part of bands (RPBs) moves toward zero 
energy, and the central gap closes when γ =

√
(t1 − �)2 − t2

2 
(Fig. 1f). The RPBs approach and form two central degenerate 
points (DPs) when γ =

√
t2
1
+ �2 − t2

2
− t2

1
�2∕t2

2
 (black 

crosses) (Fig. 1g). When γ = t1 − � , two EPs merge into one 
EP at K = 0 (Fig. 1h). The RPBs form a central DP when 
γ =

√
(t1 + �)2 − t2

2 (Fig. 1i). When γ = t1 + � , the other two 
EPs merge into one EP at K = 0 (Fig. 1j).

Hermitian SSH model is topologically nontrivial for t1 < t2 
and trivial for t1 > t2 . However, the bilayer structure can be 
changed from trivial phase to topologically nontrivial phase by 
increasing non-Hermitian quantities. The topological number 
of the bilayer non-Hermitian system is defined by the wind-
ing number [32, 33], which can be calculated using a gauge-
smoothed Wilson loop [33, 34]:

(1)Ĥ
nonrecip

SSH−PBC
(K) =

[
Hm H12

H21 Hm

]
,

(2)

�C8�H
GL
SSH−PBC

(K)�C
−1

8
= �H

nonrecip

SSH−PBC
(K),�C8 =

1√
2

�
�𝜎x − i�𝜎0

�
⊗�I4,

(3)ESSH
±±±

= ±t2 ±

√
(t1 ± �)2 − �2.

where ����
GL
m

�
Ki

�
⟩ and ����

GL
m

�
Ki

�
⟩ are the mth ( m = 1,… , 8 ) 

r ight  and lef t  eigenstates of ĤGL
SSH−PBC

(
Ki

)
 .  Ki 

( i = 0, 1, 2,… ,N  ) is discrete Bloch wave vector, and 
−π = K0 < K1 < K2 < ⋯ < KN = π , where N is a large inte-
ger number. Given the relation between the mth right and 
left eigenstates of ĤGL

SSH−PBC

(
Ki

)
 and Ĥnonrecip

SSH−PBC

(
Ki

)
 (See 

Appendix C for the deduced process.):

The Hermitian conjugate form of Eq. (6) is

By multiplying Eq.  (7) with Eq.  (5),  we get 
⟨�GL

m

�
Ki

�
��GL

m

�
Ki+1

�
⟩ = ⟨�nonrecip

m

�
Ki

�����
nonrecip
m (Ki+1)⟩   , 

through which the gain-and-loss system is topologi-
cally equivalent to the nonreciprocal interlayer cou-
pl ing system. Ĥnonrecip

SSH−PBC
(K) has  chiral  symmetry 

Ĥ
nonrecip

SSH−PBC
(K) = −�̂Ĥ

nonrecip

SSH−PBC
(K)

∗
�̂−1 , where �𝜍 = �𝜎z ⊗ �𝜎0 ⊗ �𝜎z . 

Em is the mth band, sorting the RPBs in ascending 
order. En and Em satisfy chiral symmetry for En = −Em

∗ . 
Ej forms EPs with Em . For each m, we add QB

n
 and QB

j
 , 

and obtain four numbers characterizing topological 
number of the system (Fig.  2a). The four numbers 
change from 0 mod 1 to ±0.5 mod 1 at �c = 1.697 , indi-
cating a topological phase transition. The bilayer non-
Hermitian system is topologically nontrivial when 
𝛾 > 𝛾c  a n d  t r i v i a l  w h e n  𝛾 < 𝛾c  ,  w h e r e 

�c =
√

t2
1
+ �2 − t2

2
− t2

1
�2∕t2

2
 ( t1 > t2 ≥ 𝜅 ) is the topologi-

cal phase boundary in the phase diagram (Fig. 2b).
Under open boundary conditions (OBCs), the wave-

guide array in each layer has 40 waveguides. Figure 2c 
compares real parts (RPs) and imaginary parts (IPs) of the 
open-boundary-condition E − γ relation given by Ĥnonrecip

SSH−OBC
 

and ĤGL
SSH−OBC

 using the same parameters as above. The 
energy bands in Fig. 2c are colored according to the ratio, 
�1 , of the sum of field intensity (SoFI) of the four sites at 
the boundaries of the bilayer chain to SoFI of all sites. �1 
describes the degree of locality of the edge states’ normal-
ized field distributions. When 𝛾 < 1.697 , there are only 

(4)

QGL
m

≈
1

2π
arg[⟨�GL

m
(K0)��GL

m

�
K1)⟩⟨�GL

m

�
K1

�
��GL

m

�
K2

�
⟩⋯

⟨�GL
m

�
KN−1

�
��GL

m

�
K0

�
⟩](mod1),

(5)����
GL
m

�
Ki+1

�
⟩ = Ĉ

−1

8

����
nonrecip
m

�
Ki+1

�
⟩,

(6)����
GL
m

�
Ki

�
⟩ = Ĉ

−1

8

����
nonrecip
m

�
Ki

�
⟩.

(7)⟨�GL
m

�
Ki

���� = ⟨�nonrecip
m

�
Ki

����Ĉ8.
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bulk states. When 𝛾 > 1.697 , the RPs of the eigenvalues of 
the two pairs of degenerate topological edge states are 
close to zero, and the IPs of the eigenvalues are opposite. 
Figure 2d compares the normalized field distributions of 
four representative edge states of Ĥnonrecip

SSH−OBC
 and ĤGL

SSH−OBC
 

when � = 3 . The edge states of ĤGL
SSH−OBC

 are localized at 
boundaries of the SSH chain in the first (second) layer if 
the IPs of corresponding eigenvalues are positive (negative). The 
transformation matrix between Ĥnonrecip

SSH−OBC
 and ĤGL

SSH−OBC
 is 

�C80 =
1√
2
(�𝜎x − i�𝜎0)⊗�I40 . ��GL

SSH−OBC
⟩ = Ĉ

−1

80
��nonrecip

SSH−OBC
⟩ is 

shown in Fig. 2e, where ��nonrecip

SSH−OBC
⟩ and ��GL

SSH−OBC
⟩ are the 

eigenstates of Ĥnonrecip

SSH−OBC
 and ĤGL

SSH−OBC
 . The bilayer non-

Hermitian SSH model defined by waveguide arrays can be 
fabricated inside glasses using femtosecond-laser direct 
writing techniques [35–37]. A re-exposure technique can 
be applied to introduce point scatterers inside waveguides, 
making the system be non-Hermitian [38].

3 � Nonreciprocity‑induced topological 
interface states

Given the C6v PC with six sites per unit cell [39], a topologi-
cally trivial or nontrivial bandgap is opened when intercell 
( t1 ) and intracell ( t2 ) nearest-neighbor couplings are not 
equal [39, 40]. With PBCs (OBCs) applied in the x (y) direc-
tion, the bilayer supercell of C6v topologically nontrivial PC 
( t1 > t2 ) with zigzag-type domain walls [41–43] consists of 
40 unit cells along y direction per layer. The non-Hermitian 
domain walls are constructed by nonreciprocal interlayer 
coupling (Fig. 3a) and on-site gain–loss (Fig. 3b).

Using tight-binding approximation and Bloch theorem of 
periodic lattice, the Hamiltonian of the bilayer nonreciprocal 
interlayer coupling supercell is [44]

(8)

�H
nonrecip

C6−PBC
(K) = �𝜎0 ⊗ Hmono + 𝜅�𝜎x ⊗ �𝜎0 ⊗�I N

2

+ i𝛾�𝜎y ⊗ �𝜎z ⊗�I N

2

,

where Hmono is the Hamiltonian of monolayer supercell with-
out gain or loss, and κ denotes IIH. After the similarity trans-
fo r m a t i o n   i s  a p p l i e d  t o  Ĥ

nonrecip

C6−PBC
(K)  w i t h 

�C480 =
1√
2
(�𝜎x − i�𝜎0)⊗�I240 , the Hamiltonian of the bilayer 

on-site gain-and-loss supercell is

where HGL and HLG are the Hamiltonians of the first layer 
and second layer with non-Hermitian domain walls, respec-
tively. ÎN ( ̂IN∕2 ) is N × N ( N

2
×

N

2
 ) identity matrix ( N = 240 ). 

See Appendix D for the forms of Hmono , HGL , and HLG.
Figure 3c compares the periodic-boundary-condition 

E − γ relation given by Ĥnonrecip

C6−PBC
(K) and ĤGL

C6−PBC
(K) using 

parameters t1 = 5 , t2 = 1 , � = 0.05 , and K = 0 . The eight 
eigenvalues whose RPs vary with γ are indicated in blue, 
and the corresponding IPs are indicated in red, as is the case 
for the bilayer non-Hermitian SSH model in Appendix A. 
Figures 3d − i compare parts of the projected bands given by 
Ĥ

nonrecip

C6−PBC
(K) and ĤGL

C6−PBC
(K) with different γ. Eight bands, 

which are new topological interface states localized at the 
bilayer non-Hermitian domain walls, appear in the bandgap. 
The projected bands of the eight DITISs (Fig.  4d − i) are 
similar to the bulk bands in Fig. 2e–j. However, the non-
Hermitian domain walls cannot result in any new states in 
the topologically trivial PC (See Fig. 8 of Appendix D).

With OBCs applied in the x and y directions, the two-
dimensional bilayer finite-size C6v topologically nontrivial 
PC with non-Hermitian domain walls consists of 10 (20) 
unit cells along the x (y) direction per layer. The Hamilto-
nians of the finite-size bilayer non-Hermitian domain walls 
constructed by nonreciprocal interlayer coupling and on-site 
gain–loss are Ĥnonrecip

C6−OBC
 and ĤGL

C6−OBC
 . Figure 4a compares the 

E − γ relation given by Ĥnonrecip

C6−OBC
 and ĤGL

C6−OBC
 . The energy 

bands are colored according to the ratio �2 of SoFI of the 
four sites on the boundaries of domain walls to SoFI of all 
sites. The eigenvalues whose RPs do not vary with γ are 
indicated in blue. The eigenvalues whose RPs vary with γ 
are indicated in purple, which are non-Hermitian DITISs 
localized at the bilayer non-Hermitian domain walls.

When 𝛾 > 4.808 , the normalized field distributions of two 
pairs of the degenerate edge of interface states (EOISs) of 
ĤGL

C6−OBC
 are localized at the boundaries of non-Hermitian 

domain walls in the first (second) layer if the IPs of corre-
sponding eigenvalues are positive (negative), and the RPs of 
corresponding eigenvalues of EOISs are close to zero (Fig. 4b, 
c). Figure 4d compares the normalized field distributions of 
two representative EOISs when � = 6 . The normalized field 
distributions of EOISs of Ĥnonrecip

C6−OBC
 are localized at the 

(9)ĤGL
C6−PBC

(K) =

[
HGL � ÎN
� ÎN HLG

]
,

Fig. 2   a Four topological numbers of the system: Q1 + Q5 , Q2 + Q6 , 
Q3 + Q7 , and Q4 + Q8 . b Topological phase diagram of non-Hermi-
tian term γ, IIH term κ, and in-layer coupling t1 , which are normal-
ized using t2 . Seven dots in various colors are highlighted, which 
correspond to the seven γ values in Fig.  1d–j. c Comparison of the 
eigenvalues of Ĥnonrecip

SSH−OBC
 (solid lines) and ĤGL

SSH−OBC
 (discrete circles). 

d Comparison of ��nonrecip

SSH−OBC
⟩ and ��GL

SSH−OBC
⟩ for the four representa-

tive zero-energy edge states. e Comparison of Ĉ
−1

80
��nonrecip

SSH−OBC
⟩ and 

��GL
SSH−OBC

⟩ for the four representative states. Above (below) the hori-
zontal line is normalized field distributions of the first (second) layer. 
Only five sites at the boundaries of each layer are shown

◂
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boundaries of the non-Hermitian domain walls in the first and 
second layer simultaneously. The transformation matrix between 
Ĥ

nonrecip

C6−OBC
 and ĤGL

C6−OBC
 is �C2400 =

1√
2
(�𝜎x − i�𝜎0)⊗�I1200 . 

��GL
C6−OBC

⟩ = Ĉ
−1

2400
��nonrecip

C6−OBC
⟩ is shown in Fig.  4e, where 

��nonrecip

C6−OBC
⟩ and ��GL

C6−OBC
⟩ are the eigenstates of Ĥnonrecip

C6−OBC
 and 

ĤGL
C6−OBC

 . The above results indicate that the topological num-
bers of bilayer non-Hermitian C6v-typed DITISs can be defined 

as is the case for the bilayer non-Hermitian SSH model. The 
two-dimensional photonic systems can be experimentally real-
ized at microwave frequencies. The photonic crystal platform 
is based on commercial alumina ceramics (Al2O3) with band-
gap at microwave frequencies [45, 46]. Al2O3 doped with chro-
mium dioxide can introduce losses [47], so the non-Hermitian 
control is achieved by doping or not doping chromium with 
Al2O3. The non-uniform dissipation distribution can be equiv-
alent to the case of gain–loss distribution [30, 48].

Fig. 3   Bilayer supercell with non-Hermitian domain walls constructed by a nonreciprocal interlayer coupling strength � + � (red arrows) and 
� − � (blue arrows), and b on-site gain (red) and loss (blue). c Comparison of the eigenvalues of Ĥnonrecip

C6−PBC
(K) (solid line) and ĤGL

C6−PBC
(K) (dis-

crete circles). d − i Comparison of parts of the projected bands of Ĥnonrecip

C6−PBC
(K) (solid line) and ĤGL

C6−PBC
(K) (discrete circles) with t1 = 5 , t2 = 1 , 

� = 0.05 , and � = 4.500 for d, � = 4.767 for e, � = 4.808 for f, γ = 4.831 for g, � = 4.870 for h, and � = 4.934 for i 
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4 � Conclusion

We have proposed a universal method to equivalently imple-
ment nonreciprocal interlayer coupling using on-site gain/
loss in one-dimensional and two-dimensional bilayer topo-
logical systems through similarity transformation. The simi-
larity transformation provides a convenient tool for under-
standing and implementing the non-Hermitian skin effect, 
especially in three-dimensional topological systems. The 
topological number of the bilayer nonreciprocal interlayer 
coupling system, which is defined using the gauge-smoothed 

Wilson loop, can be proved to be equal to the bilayer on-
site gain-and-loss system. Topological phase transitions and 
parity-time-phase transitions of non-Hermitian topological 
states occur as a result of modulating the strength of nonre-
ciprocal interlayer coupling or on-site gain/loss quantity. The 
topological origin of DITISs in the C6v-typed domain wall 
can be understood via the bilayer non-Hermitian SSH model 
because they have the same form of transformation matrices, 
as is the case for the E − γ relation and eigenstate characteris-
tics under both PBCs and OBCs. Our results offer new per-
spectives for studying non-Hermitian topological photonics 

Fig. 4   a Comparison of the eigenvalues of Ĥnonrecip

C6−OBC
 (solid line) and ĤGL

C6−OBC
 (discrete circles). Normalized field distributions of four representa-

tive edge of interface states of ĤGL
C6−OBC

 when � = 6 , and the IPs of corresponding eigenvalues are positive b and negative c. d Comparison of 
��nonrecip

C6−OBC
⟩ and ��GL

C6−OBC
⟩ for the two representative edge of interface states. e Comparison of Ĉ

−1

2400
��nonrecip

C6−OBC
⟩ and ��GL

C6−OBC
⟩ for the two repre-

sentative edge of interface states. Above (below) the horizontal line is normalized field distributions of the first (second) layer. Only 40 sites 
around the domain wall of both layers are shown.
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and manipulating non-Hermitian topological states in bilayer 
non-Hermitian topological systems. We focused here on a 
photonic crystal for electromagnetic waves, but a similar 
lattice design may be applied to other bosonic systems, such 
as acoustic and mechanical structures [23, 24]. The design 
principles should be generalizable to various frequencies 
including radio frequency [49], microwave frequencies [50], 
and optical frequencies [13].

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12200-​023-​00094-z.
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