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Abstract
Single perylene diimide (PDI) used as a non-fullerene acceptor (NFA) in organic solar cells (OSCs) is enticing because of 
its low cost and excellent stability. To improve the photovoltaic performance, it is vital to narrow the bandgap and regulate 
the stacking behavior. To address this challenge, we synthesize soluble perylenetetracarboxylic bisbenzimidazole (PTCBI) 
molecules with a bulky side chain at the bay region, by replacing the widely used “swallow tail” type alkyl chains at the imide 
position of PDI molecules with a planar benzimidazole structure. Compared with PDI molecules, PTCBI molecules exhibit 
red-shifted UV–vis absorption spectra with larger extinction coefficient, and one magnitude higher electron mobility. Finally, 
OSCs based on one soluble PTCBI-type NFA, namely MAS-7, exhibit a champion power conversion efficiency (PCE) of 
4.34%, which is significantly higher than that of the corresponding PDI-based OSCs and is the highest PCE of PTCBI-based 
OSCs reported. These results highlight the potential of soluble PTCBI derivatives as NFAs in OSCs.
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1  Introduction

The emergence of new and efficient non-fullerene acceptors 
(NFAs) has driven the development of organic solar cells 
[1–11]. NFAs have been widely investigated due to strong 
absorption in the UV–visible-near infrared (NIR) range and 
tunable energy levels [12–16]. Among the different types of 
NFAs, perylene diimide (PDI)-based NFAs have the advan-
tages of low synthesis cost and good stability [17–20]. In 
the last decade, PDI acceptors have evolved considerably 
[21–23], mainly by linking multiple PDI units to a crowded 
core, thus distorting the molecules and disrupting the strong 
self-aggregation tendency [24–29]. Recently, the power 
conversion efficiency (PCE) based on PDI-type NFAs has 
exceeded 11% [30–33].

Considering its good stability and low cost, which is 
also important for the commercialization of OSCs, PDI is 
still very enticing when design novel NFAs. In particular, 
monomeric PDIs, which can be obtained in limited synthesis 
steps, and can be produced at significantly lower costs with 
greater stability than non-PDI type acceptors. However, the 
development of OSCs based on monomeric PDIs in the last 
few years has been limited by low short-circuit current den-
sity (Jsc) and small fill factor (FF), mainly because the wide 
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distribution of π-π* stacking configurations increases the 
energetic disorder trap [34–37]. Therefore, it is very impor-
tant to regulate the stacking of monomeric PDI molecules. 
However, only the steric hindrance at the bay positions has 
been paid great attention in previous studies: the steric hin-
drance of “swallow tail” type alkyl side chains at the imide 
position has been overlooked although the branching posi-
tions of alkyl chains have great influence on the optoeletro-
nic properties of conjugated materials [34, 38–43].

Among the different kinds of PDI derivatives, fully fused 
perylenetetracarboxylic bisbenzimidazole (PTCBI) pos-
sesses planar end groups, and it is also the first n-type mole-
cule to construct heterojunction OSCs, which has opened up 
an era of OSC research and applications [44]. Because there 
are no alkyl groups in PTCBI, it is possible to construct pla-
nar heterojunction solar cells only by evaporation. Therefore, 
the PCE of OSCs using PTCBI as acceptors lagged behind 

that of other NFAs-based OSCs [45–49] because PTCBI 
could not be used in high-efficiency bulk heterojunction 
OSCs due to its insolubility.

In this work, the insolubility of PTCBI-type molecules 
was solved by attaching four tert-butylphenyl groups to the 
molecular bay position. Moreover, the large steric hindrance 
introduced by the tert-butylphenyl groups in the middle 
part of PTCBI might modulate the PTCBI molecule pack-
ing as A-D-A-type NFAs [50, 51]. The optical properties 
and photovoltaic performance of three PTCBI-type materi-
als and two small-molecule PDI-type materials (as shown 
in Fig. 1a) were compared when PTB7-Th and chlorinated 
PTB7-Th(PDX), were selected as the donor materials (Fig. 
S1). Compared with pure film of one PDI-type acceptor 
(PDI-1), the electron mobility of PTCBI-type NFA in pure 
films were founded to be one order of magnitude higher. 
Devices based on MAS-7 (PTCBI-type NFA), exhibited a 

Fig. 1   a Molecular structures of PDI-1, PDI-2, MAS-5, MAS-6 and MAS-7. The synthetic route I (b) and II (c) of MAS-5, MAS-6 and MAS-7
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PCE of 4.34% with an open-circuit voltage (Voc) of 1.00 eV, 
a short-circuit current density (Jsc) of 8.26 mA/cm2, and a 
fill factor (FF) of 52.41%. This PCE value was the highest 
among PTCBI-based OSCs, and was also higher than cor-
responding devices based on PDI-type NFAs. These results 
highlight the potential of soluble PTCBI derivatives as the 
NFAs in OSCs.

2 � Results and discussion

The molecular structures of two PDI-type small-molecule 
materials (PDI-1, PDI-2) and three soluble PTCBI-type 
small-molecule materials (MAS-5, MAS-6, MAS-7) are 
shown in Fig. 1a. Four tert-butylphenyl groups were attached 
at the PDI bay position in order to ensure good solubility. 
The positions of tert-butyl groups in phenyl were varied 
to fine-tune the steric hindrance effects. MAS-5, MAS-6 
and MAS-7 could be obtained by a two-step synthesis as 
shown in Fig. 1b. First the 4Cl-PTCBI was obtained by the 
condensation reaction of 1,6,7,12-tetrachloroperylene tetra-
carboxylic acid dianhydride with o-phenylenediamine, and 
then the 4-tert-butylphenyl groups were attached via Suzuki 
coupling reaction. Because 4Cl-PTCBI (compounds 3 and 
4 in Fig. 1b) is insoluble and difficult to purify, the total 
yields of MAS-5, MAS-6 and MAS-7 were as low as 5%. 
Therefore, the synthetic route for MAS-5 and MAS-7 was 
optimized as shown in Fig. 1c with PDI-1 or PDI-2 as the 
intermediate product. The alkyl chain of PDI-1 was removed 
in the presence of a strong base and the product, perylene 
dianhydride, was used directly and condensed with o-phe-
nylenediamine. Although the synthesis route was longer, 
the yield of each reaction was higher, and the total yield 
was increased to about 45%. The final products were veri-
fied to be structurally correct by 1H-NMR and MS. Detail 
data could be found in the supporting information. Note that 
PDI-1, PDI-2, MAS-5, MAS-6, and MAS-7 were found to 
be soluble in chloroform (> 10 mg/mL) and chlorobenzene 
(> 12 mg/mL) at room temperature.

Figure 2a and b show the absorption spectra of PDI-1, 
PDI-2, MAS-5, MAS-6 and MAS-7 in dilute chloroform 
solution and in films, respectively. Relevant parameters 
are summarized in Table 1. All PTCBI-type and PDI-type 
small-molecule materials showed bimodal absorption 
peaks. The peak in the 450–500 nm range originated from 
the π-π* transition of the twisted backbone [21–23, 52–56]. 
Compared with PDI-1 (475 nm), the peaks of MAS-5 and 
MAS-7 were 479 and 484 nm, respectively. This red shift 
may be attributed to the increase in the backbone length. 
Comparing PDI-1 with PDI-2 and MAS-5 with MAS-6, the 
π-π* transition peaks of molecules with 3-tert-butylphenyl 
groups (PDI-2 and MAS-6) blue-shifted compared with 
those with 4-tert-butylphenyl groups (PDI-1 and MAS-5). 

This phenomenon could be attributed to the larger steric 
hindrance of 3-tert-butylphenyl groups. This result was con-
sistent with the dihedral angle of density function theory 
(DFT) calculation results, as discussed below. Meanwhile, 
the peaks in the longer wavelength region could be attributed 
to the intramolecular charge transfer (ICT) effect which was 
evidenced by the temperature-dependent UV–vis absorption 
spectra and polarity-dependent fluorescent spectra of those 
molecules. As shown in Fig. S2a, the height ratio of the 
shoulder peak at 620 nm to the main peak at 670 nm does 
not change with temperature, suggesting that the absorption 
spectra indicate the intrinsic molecular property rather than 
the aggregations. In addition, the emission spectra of each 
small molecule gradually became red-shifted and broadened 
with the enhancement of solvent polarity, as shown in Fig. 
S2b–f, which is attributed to the obvious ICT effect [57]. 
The ICT absorption peaks of PTCBI-type molecules MAS-
5, MAS-6 and MAS-7 red-shifted about 60 nm relative to 
that of PDI-1 and PDI-2. This might be because the lowest 
unoccupied molecular orbital (LUMO) of PTCBI-type mol-
ecules is deeper [45]. The molar extinction coefficients of 
PTCBI-type NFAs at the maximum absorption peak were 
twice more than those of PDI-type NFAs as listed in Table 1. 
Unlike the case for steric hindrance effects on the π-π* tran-
sition, varying the position of t-butyl groups only slightly 
decreased the molar extinction coefficients, but did not shift 
the ICT peaks. The fluorinated molecule MAS-7 had only a 
3 nm red-shift in solution compared with the non-fluorinated 
one MAS-5, although the fluorine atoms belong to electron-
withdrawing groups. This was because the fluorine atoms 
barely contributed to the LUMO, as demonstrated by the 
DFT calculations.

The electrochemical properties of these molecules were 
investigated by cyclic voltammetry (CV). Correspond-
ing CV curves were showed in Fig. S3a. The LUMO and 
highest occupied molecular orbital (HOMO) energy levels 
of PDI-1, PDI-2, MAS-5, MAS-6 and MAS-7 were cal-
culated using the reduction/oxidation starting points of 
their CV curves, which were − 3.65/ − 5.64, − 3.68/ − 5.65,  
− 3.74/ − 5.65, − 3.78/ − 5.66, and − 3.83/ − 5.68  eV, 
respectively (Table  1). Different tert-butyl sites had 
negligible effects on the molecular energy levels. The 
PTCBI-type molecules exhibited deeper LUMO energy 
level than the corresponding PDI-type ones, resulting in 
a reduction of the molecular bandgap. Fluorination did 
decrease the energy levels of MAS-7 because of its strong 
electron-withdrawing ability. However, introducing fluo-
rine atoms did not decrease the LUMO energy levels as 
much as it does in other fluorinated materials [15, 58]. 
This was because of the limited electron distribution of 
LUMO on the fluorine atoms as exhibited in the results of 
DFT calculations. The HOMO energy levels of the poly-
meric donor materials PTB7-Th and PDX (Fig. 2c) were 
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also tested by CV (Fig. S3b) and the LUMO energy levels 
were determined by the sum of LUMO energy level and 
the optical bandgap. The energy levels were − 3.61/ − 5.23 
and − 3.72/ − 5.42 eV, respectively (Table S1).

The molecular geometry and molecular frontier orbit-
als of the NFAs were simulated using DFT calculations at 
the B3LYP 6-31G level. The alkyl chain was simplified 
to methyl. The twist angle of the main backbone of the 
PDI molecule is labeled as α. The results were exhibited 

Fig. 2   a UV–vis absorption coefficients of PDI-1 (black line), PDI-2 (green line), MAS-5 (red line), MAS-6 (violet line) and MAS-7 (blue line) 
in dilute chloroform solution. b Normalized UV–vis absorption spectra of PDI-1, PDI-2, MAS-5, MAS-6, MAS-7 and PTB7-Th (yellow dashed 
line)/PDX (cyan dashed line) in films. c Schematic diagram of the energy levels of the donor and acceptor materials. d The inverted device struc-
ture used in this work.

Table 1   Summary of photophysical and electrochemical properties of the NFAs

a π-π* transition of the deformed backbone in solution, bMeasured in chloroform solution with a concentration of 10−5 M, 1 M = 1 mol/L, cDeter-
mined by CV

Compound λa

/nm
λmax/nm εmax

b

/(M−1·cm−1)
ELUMO c
/eV

EHOMO c
/eV

Eg
c

/eV
Solution Film

PDI-1 475 619 609 2.3 × 104  − 3.65  − 5.64 1.99
PDI-2 464 620 614 2.2 × 104  − 3.68  − 5.65 1.97
MAS-5 479 670 673 4.8 × 104  − 3.74  − 5.65 1.91
MAS-6 470 670 673 4.6 × 104  − 3.78  − 5.66 1.88
MAS-7 484 673 683 5.0 × 104  − 3.83  − 5.68 1.85
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in Fig. 3. Obviously, the α value of molecules with 3-tert-
butylphenyl groups (PDI-2 and MAS-6) was larger than 
that of molecules with 4-tert-butylphenyl groups (PDI-1 
and MAS-5), indicating larger steric hindrance of 3-tert-
butylphenyl groups. The electron distribution of the 
HOMO and LUMO of PDI-type molecules was mainly 
localized on the backbones. In contrast, the electron clouds 
of the HOMO levels of PTCBI-type molecules extended to 
the benzimidazole subunit. This fully explains the insig-
nificant effects of fluorination on the LUMO level and the 
ICT absorption peaks of MAS-7. The calculated HOMO/

LUMO energy levels for PDI-1, PDI-2, MAS-5, MAS-6 
and MAS-7 are exhibited in Table S2, which are consistent 
with the CV results.

To investigate the photovoltaic performance of PDI-1, 
PDI-2, MAS-5, MAS-6 and MAS-7, OSCs with the inverted 
structure of indium tin oxide (ITO)/ZnO/active layer/MoO3/
Ag (Fig. 2d) were fabricated. The conjugated polymers 
PTB7-Th and its chlorinated derivative PDX (Fig. S1) which 
exhibited matched energy levels as shown in Fig. 2c were 
selected as the donor polymers. The active layer was pre-
pared by spin-coating the mixture of donor and acceptor 

Fig. 3   Optimized molecular conformation and frontier orbital electron distribution of NFAs based on DFT simulations
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with a weight ratio of 1:1 in chlorobenzene solvent con-
taining 0.5 v% chloronaphthalene (CN) with a total con-
centration of 13 mg/mL. Details of device fabrication and 
measurements are described in the supporting information. 
The current density–voltage (J–V) curves of optimal OSCs 
under AM 1.5G illumination are shown in Fig. 4a and c, 

and the corresponding parameters are listed in Table 2. The 
PCEs of NFAs with 3-tert-butylphenyl groups (PDI-2 and 
MAS-6) were slightly lower than that of NFAs with 4-tert-
butylphenyl groups (PDI-1 and MAS-5) when PTB7-Th was 
used as the donor material (Fig. S4a).
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Fig. 4   a J–V curves and b EQE spectra of the OSCs based on PTB7-Th:Acceptor; c J–V curves and d EQE spectra of the OSCs based on 
PDX:Acceptor

Table 2   Key parameters of OSCs based on PTB7-Th/PDX: Acceptor

Donor Acceptor Jsc
/(mA·cm−2)

Voc
/V

FF PCE Jcal
/(mA·cm−2)

PTB7-Th PDI-1 8.09 1.01 40.92 3.35 7.88
MAS-5 7.67 0.92 39.75 2.80 7.59
MAS-7 8.32 0.81 45.08 3.02 8.25

PDX PDI-1 1.87 1.19 30.09 0.67 1.80
MAS-5 6.78 1.14 39.41 3.05 6.62
MAS-7 8.26 1.00 52.41 4.34 8.12
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When PTB7-Th was used as the donor material, OSCs 
based on PDI-1 exhibited a PCE of 3.36%, which was 
higher than that for OSCs based on MAS-5 (2.78%) and 
MAS-7 (3.02%) due to the much higher Voc. Because the 
Voc could be easily improved by modifying the HOMO 
energy level of the donor materials [15, 58–61], the chlorin-
ated PTB7-Th with deeper HOMO level, namely PDX, was 
used to improve the photovoltaic performance of PTCBI-
type NFAs. As expected, those PDX-based OSCs exhibited 
enhanced Voc value, thus higher PCE. The PDX:MAS-7-
based device showed the best PCE (4.34%) with a larger 
Jsc (8.26 mA/cm2) and a higher Voc (1.00 V), as well as the 
best FF (52.41%). PDX:MAS-5-based devices exhibited a 
Jsc of 6.78 mA/cm2, a Voc of 1.14 V and an FF of 39.41%, 
with a device efficiency of 3.05%. However, the PCE of 
PDX:PDI-1-based OSCs dramatically decreased to 0.67% 
because of the significant drop in Jsc. This may be due to 
the mismatched LUMO energy levels between the donor 
and acceptor. As a result, the PCE of PDX:MAS-7 (4.34%) 
is significantly higher than that of PTB7-Th:PDI-1 (3.35%).

The external quantum efficiency (EQE) of the optimized 
devices based on PDI-1, MAS-5 and MAS-7 was meas-
ured to investigate the photovoltaic response of each kind 
of device (Fig. 4b and d). These devices exhibited strong 
photoresponse in the region of 550 to 720 nm and weaker 
photoresponse in the region of 350 to 500 nm. MAS-5-based 
OSCs had a weaker response at 620 nm (43%) where PDI-
1-based OSCs exhibited the maximum EQE (47%), but a 
stronger response at 685 nm (46%), so the difference in 
the integral Jsc of these two OSCs was not significant. In 
contrast, devices based on the fluorinated molecule MAS-7 
had a similar response at 620 nm (46%) and a stronger 
response at 685 nm (50%) compared to devices based on 
MAS-5, so the MAS-7-based OSCs exhibited the larger 
integral Jsc. However, the photovoltaic response intensity of 
OSCs with PDX as the donor decreased in the sequence of 
MAS-7, MAS-5 and PDI-1 as the acceptor. There was little 
change in the photovoltaic response of the MAS-7-based 
devices, and the integrated current density of OSCs based 
on PDX:MAS-7 (8.12 mA/cm2) was similar to those based 
on PTB7-Th:MAS-7 (8.25 mA/cm2). However, the photovol-
taic response intensity of devices based on PDX:PDI-1 sig-
nificantly decreased comparing to devices based on PTB7-
Th:PDI-1 because of smaller offset between the LUMO 
energy levels, thus resulting in reduced PCE. The integral 
Jsc values for each device are given in Table 2, and their Jsc 
error values with respect to the J–V curve are within 3%.

The bimolecular recombination mechanism of PDI-1, 
MAS-5 and MAS-7-based OSCs were studied according 

to the relationship between Jsc and light intensity which 
can be described by the equation Jsc ∝ Plight

α. If the value 
of α is close to 1, the bimolecular recombination in OSC 
is negligible [28]. No objective results of devices based on 
PDX:PDI-1could be obtained because of the quite low PCE. 
As shown in Fig. 5a, the values of α calculated for the PTB7-
Th:PDI-1-, PTB7-Th:MAS-5- and PTB7-Th:MAS-7-based 
devices were 0.887, 0.894, and 0.900, respectively, indicat-
ing the weakest bimolecular recombination in MAS-7-based 
devices. When PDX was used as the donor material, the 
α-values of MAS-5 and MAS-7 based OSCs were 0.913 and 
0.958, respectively (Fig. 5c), indicating that the bimolecular 
recombination in the devices was suppressed to a greater 
extent. Therefore, the device efficiency of OSCs based on 
MAS-5 and MAS-7 was significantly improved.

To further investigate exciton dissociation, the relation-
ship between photocurrent density and effective voltage was 
investigated, and the exciton dissociation probability (ηdiss) 
was calculated according to the equation ηdiss = J#

ph
/Jsat. The 

J
#

ph
 is defined as JL − JD at short-circuit condition, where JL 

and JD are the current densities under illumination and in the 
dark, respectively. The Veff is defined as V0 − V, where V0 is 
the voltage at zero photocurrent, and V is the applied volt-
age. Jsat is the saturated photocurrent and Veff is dependent 
on the internal electric field in the OSCs. For the devices 
based on PTB7-Th:PDI-1, PTB7-Th:MAS-5 and PTB7-
Th:MAS-7, the ηdiss values were calculated as 67.15%, 
62.44% and 71.71%, respectively (Fig. 5b). The PTB7-
Th:MAS-7 based OSCs exhibited the maximum exciton dis-
sociation probability. This result was also consistent with the 
Jsc value of corresponding devices. When PDX was used as 
the donor material, the ηdiss values were calculated to be 
63.66% and 71.83% for PDX:MAS-5- and PDX:MAS-7-
based devices, respectively (Fig. 5d). These results con-
firmed that PTCBI-based devices exhibited more efficient 
exciton dissociation and suppressed bimolecular recombina-
tion compared with the PDI-based molecules. This facili-
tates the achievement of higher Jsc and FF.

To further investigate carrier transport characteristics, 
the space charge-limited current (SCLC) method was used 
to measure the hole mobility (μh), using hole-only devices 
with the structure of ITO/PEDOT:PSS/active layer/MoO3/
Ag, and the electron mobility (μe) using electron-only 
devices with the structure of ITO/ZnO/active layer/PDINN/
Ag. The mobilities were calculated according to the log 
J − log V curves with a slope of 2 [27], as shown in Fig. 
S5. In the pure molecular films, the electron mobility as 
shown in Fig. 6a and listed in Table S5. Obviously, electron 
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mobility for MAS-5 and for MAS-7 was one order of mag-
nitude higher than that for PDI-1, which might be because 
the bulky side groups in the middle and planar benzimida-
zole unit at the end of the molecules made the NFAs stack 
as A-D-A type molecules and then facilitated the intermo-
lecular electron transport [50, 51]. Moreover, there was no 
paramagnetic behavior in the powder of MAS-5 and MAS-7. 
In contrast, obvious electron paramagnetic resonance (EPR) 
signal was observed in the powder of PDI-1. This indicated 
the presence of a small concentration of intrinsic radical 
cations or anions generated through exposure to ambient 
atmosphere (oxygen, water) and light in the PDI-1 powder 
[62], thus hindering electron transport.

The hole mobility of all devices was of the order of 10−5 
cm2/(V·s) and the hole mobility of PTB7-Th-based devices 
was greater than that of PDX-based devices. However, the 
electron mobility varied around the order of 10−7 cm2/(V·s) 
for PDI-1-based devices and 10−6 cm2/(V·s) for MAS-5- and 
MAS-7-based devices. Therefore, the greater electron mobil-
ity of PTCBI-type small molecules relative to PDI facilitated 
the improved PCE.

Atomic force microscopy (AFM) and transmission elec-
tron microscopy (TEM) were employed to investigate sur-
face morphologies of the optimal blend films. As shown 
in Fig. 7, PDI-1/MAS-5/MAS-7:PTB7-Th blends showed 
smooth surfaces with root mean square (RMS) surface 
roughness of 0.936, 0.758, and 0.817 nm, respectively. 

Fig. 5   Dependence of Jsc on incident light intensity for the a PTB7-Th-based OSCs and c PDX-based OSCs and the saturated photocurrent ver-
sus effective voltage (Jph−Veff) curves of the b PTB7-Th-based OSCs and d PDX-based OSCs
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Similarly, PDI-1/MAS-5/MAS-7:PDX blends also showed 
smooth surfaces, with root mean square (RMS) surface 
roughness of 1.141, 0.813, and 0.849 nm, respectively. 
The RMS of the blended film of PDX was generally larger 
than those of PTB7-Th, which is attributed to decreased 
solubility of PDX. For the acceptor material, PDI-1 
exhibited the roughest surface, the PTCBI-type small 
molecule exhibited a smoother surface, which facilitated 
the contact between the interfacial layer and the active 
layer. Among these blend films, MAS-7-based samples 
showed a more appropriate roughness, which contributed 
to the enhancement of the FF [56]. As for the slightly 
larger roughness of MAS-7 relative to MAS-5, this might 
be attributed to decreased solubility after fluorination or 
stronger intermolecular interaction. The AFM images 
are consistent with TEM results (Fig. S6). MAS-7-based 
OSCs exhibited appropriate phase separation, which was 
conducive to higher FF and thus the improved photovoltaic 
performance.

3 � Conclusion

We synthesized three soluble PTCBI-type small-molecule 
materials (MAS-5, MAS-6, MAS-7) and performed a com-
parative study with the PDI analogs (PDI-1, PDI-2). We 
found that PTCBI-type materials exhibited red-shifted 
UV–vis absorption spectra with larger molar extinction 
coefficients than PDI-type materials, which is important 
for organic photovoltaic materials. Moreover, the electron 
mobility of PTCBI-type NFAs, i.e., MAS-5 and MAS-7 
was one order of magnitude higher than that of PDI-1. 
Finally, the devices based on MAS-7:PDX exhibited the 
champion PCE of 4.34%, which is higher than the devices 
based on PDI-type NFAs. To the best of our knowledge, 
this is the highest PCE for PTCBI-based OSCs, present-
ing a breakthrough in the research of PTCBI-based OSCs. 
Further molecular and device engineering would undoubt-
edly improve the photovoltaic performance of PTCBI-type 
NFAs.

Fig. 6   a Electron mobility of PDI-1, MAS-5 and MAS-7 in pure films. b Hole and c electron mobility of optimized OSCs. d Electron paramag-
netic resonance spectra of different acceptor materials
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