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Abstract
In this paper, we present an edge detection scheme based on ghost imaging (GI) with a holistically-nested neural network. 
The so-called holistically-nested edge detection (HED) network is adopted to combine the fully convolutional neural network 
(CNN) with deep supervision to learn image edges effectively. Simulated data are used to train the HED network, and the 
unknown object’s edge information is reconstructed from the experimental data. The experiment results show that, when 
the compression ratio (CR) is 12.5%, this scheme can obtain a high-quality edge information with a sub-Nyquist sampling 
ratio and has a better performance than those using speckle-shifting GI (SSGI), compressed ghost edge imaging (CGEI) 
and subpixel-shifted GI (SPSGI). Indeed, the proposed scheme can have a good signal-to-noise ratio performance even if 
the sub-Nyquist sampling ratio is greater than 5.45%. Since the HED network is trained by numerical simulations before the 
experiment, this proposed method provides a promising way for achieving edge detection with small measurement times 
and low time cost.

Keywords Edge detection · Ghost imaging (GI) · Holistically-nested neural network · Compression ratio (CR) · Signal-to-
noise ratio (SNR)

1 Introduction

Ghost imaging (GI), an intriguing optical technique for 
imaging, is also called correlated imaging [1, 2]. Typically, 
in a standard GI configuration, two beams of light are pre-
sented. A signal beam is detected by a bucket detector with-
out spatial resolution after it passes through the unknown 
object, while an idler beam is collected directly by a detector 
with spatial resolution. The image can be recovered by cor-
relating the signal fluctuations of the signal and idler beams.

Initially, GI was experimentally demonstrated in 1995 
[3] by using two-photon entanglement produced by sponta-
neous parametric down-conversion (SPDC). Then, GI was 

also found to be successfully achieved by using classical 
pseudothermal light sources [4], thermal source and sunlight 
[5, 6]. Soon, computational ghost imaging (CGI) [7] was 
presented to greatly simplify GI’s configuration by comput-
ing the intensity distribution of the idler beam offline, thus 
significantly generalized the application of GI. GI currently 
has a wide range of applications in laser radars [8], micro-
scopes [9], image hiding [10], and optical encryption [11, 
12], due to its robustness against hostile environments, high 
detection sensitivity and high spatial resolution [13–16].

In recent years, edge information detection of an unknown 
object based on GI was proposed [17–24] (namely ghost 
edge detection), where edge information could be directly 
detected without extracting the original image at first. For 
example, a gradient ghost imaging (GGI) was introduced 
by Liu et al. in Ref. [17] to directly detect the edge informa-
tion of unknown objects. Subsequently, speckle-shifting GI 
(SSGI), an optimized edge detection scheme was proposed 
in Ref. [18]. Then, a similar method of subpixel-shifted 
GI (SPSGI) based on subpixel-shifted Walsh Hadamard 
speckle pattern pairs was proposed by Wang et al. [19], 
which had the advantage of improving the edge detection 
resolution ratio. At the same time, Yuan et al. [20] used 
structured intensity patterns to get edge information. Ren 
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et al. [21] designed specific sinusoidal speckle patterns to 
achieve x-direction and y-direction edges of an unknown 
target object based on Fourier ghost imaging (FGI). In Ref. 
[22], a variable size Sobel operator with isotropic coeffi-
cients was devised for edge detection, which was sensitive to 
all directions. The compressed ghost edge imaging (CGEI) 
method was found to achieve the reduction in the number of 
measurements for edge detection by utilizing a compressive 
sensing technique [23]. And Ref. [24] presented a multi-
directional edge detection based on gradient ghost imaging.

In recent years, deep learning (DL) had been recognized 
as a powerful technology for solving complex problems in 
computational ghost imaging [25–29]. Various network 
structures and training strategies based on convolutional 
neural networks (CNNs) have continuously improved GI 
performance. However, to our knowledge, there are few 
reports of using DL for ghost edge information detection 
so far.

In our paper, we present a ghost edge detection scheme 
based on deep learning technique, where the holistically-
nested neural network is used. The so-called holistically-
nested edge detection (HED) scheme combines fully CNNs 
with deep supervision to learn image edges effectively, and 
to address the challenging ambiguity problem in edge detec-
tion. The experimental data with sub-Nyquist sampling ratio 
from a GI system is input to the HED network, and the edge 
of the image is obtained from the network. The experiment 
results demonstrate the effectiveness of this scheme. By 
comparing the results with those using SSGI, CGEI and 
SPSGI, we verify the enhanced performance of the proposed 
ghost edge detection scheme.

The structure of our paper is as follows. We present the 
proposed ghost edge detection scheme based on HED net-
work in Sect. 2, followed by the relevant theoretical deriva-
tions. Then, in Sect. 3, we set up a GI system and analyze the 
performance of the proposed ghost edge detection scheme. 
In Sect. 4, we present some conclusions.

2  Ghost edge detection based on HED 
network

Figure 1 illustrates the schematic diagram of this proposed 
ghost edge detection scheme with deep learning, where the 
upper part is for training, and the lower part is for testing. 
In the training part, the train images, which come from the 
MINST handwritten digit database, are sampled and recon-
structed by a numerical CGI system. The GI-reconstructed 
imaging and the edge information of the corresponding 
training images are used as the input and the target of the 
HED network, respectively, and the network’s output is the 
extracted edge information. In the testing part, the special 
speckle patterns are generated and used to illuminate the 
testing image, whose intensity distribution are denoted by 
I1(x,y), I2(x,y),…,IM(x,y), where M is the number of the spe-
cial speckle patterns. The detected signals from the bucket 
detector denoted by (B1,B2,…,BM) can be obtained from the 
GI experimental system. Subsequently, the blurring of the 
testing image can be realized by using a compressed sens-
ing technique with a low compression ratio (CR). When the 
reconstructed blurred testing image is input to the trained 

Fig. 1   Schematic diagram of the proposed ghost edge detection scheme with deep learning
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HED network, the clear edge information of the unknown 
image is obtained from the HED network.

In the experimental GI system, the detected signal Bi 
obtained in the bucket detector can be expressed as

where Ii(x,y) represents the ith special speckle pattern 
and random speckle patterns are used in the experiment, 
and i = 1, 2,…, M, x = 1, 2,…, Nx, y = 1, 2,…, Ny, where 
N = Nx × Ny is the pixel number of the test image. T(x,y) 
denotes the testing image, which can be unknown in the 
experiment.

The detected signals B1,B2,…,BM, can be rewritten as a 
vector B = [B1,B2,…,BM]T. And Eq. (1) can then be reformu-
lated in a matrix form as

where A is a M × N matrix, whose ith row is the ith speckle 
pattern reshaped into a row vector with Nx × Ny elements. 
That is, Ai = [Ii

11

, Ii
12

, ..., Ii
1Ny

, Ii
21

, ..., Ii
Nx1

, ..., Ii
NxNy

], Ii
xy
= Ii(x, y),

T is a N × 1 column vector obtained by reshaping the two 
dimensional test image T(x,y). By multiplying A and T, a 
M × 1 column vector is obtained, which is composed of M 
detected signals {Bi}

M
i=1

.
Notice that the majority of natural images can be in sparse 

representation when an appropriate basis is selected, such 
as in the discrete wavelet transform (DWT), discrete cosine 

(1)Bi =
∑

x

∑

y

Ii(x, y)T(x, y),

(2)B = AT,

transform (DCT). Assume that the testing image T(x,y) is 
K-sparse in the DWT basis Ψ. Since matrix A used in the GI 
experiment is an independent and random matrix, it satisfies 
the restricted isometry property (RIP) [30]. Therefore, T can 
be obtained by solving Eq. (2) using a compressed sensing 
(CS) recovery algorithm.

Here, the total variation augmented Lagrangian and alter-
nating direction algorithm (TVAL3) [31, 32] is employed. 
Therefore, the objective function for the testing image is

where DkT is the discrete gradient at component k; 
k = 1,2,…,N; µ is a nonnegative coefficient used to balance 
the regularization and fidelity of the data, and is set to  212 in 
this work; ∥ · ∥1 and ∥ · ∥2 indicate the l1 norm and l2 norm, 
respectively. The TVAL3 algorithm is chosen since it can 
solve non-smooth and unconstrained optimization prob-
lems, which exists widely in image processing applications. 
TVAL3 is superior to other widely used algorithms in speed 
and quality of reconstruction.

Figure 2 shows the HED network structure. Prediction 
from image to image can be carried out by HED by uti-
lizing the deeply-supervised nets and fully convolutional 
neural networks [33–35]. HED network can automatically 
learn rich hierarchical representations (under the guid-
ance of deep supervision of side responses), which are 

(3)min
�

K

��DkT
��1 +

�

2
‖B − AT‖2

2
,

Fig. 2   Structure of the holistically-nested edge detection network
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beneficial for dealing with the ambiguity problem that is 
challenging in the detection of image edges.

The training set for HED is denoted by S = {(Xn,Yn)}, 
n = 1,2,…,Q, where Xn = {x

(n)

j
} stands for the original 

input image, such as the input MINST images, and 
Yn = {y

(n)

j
, y

(n)

j
∈ {0, 1}} stands for binary edge information 

of the ground truth corresponding to image Xn; j = 1,2,…, 
∥Xn∥, ∥Xn∥ = N represents the number of pixels in an image.

Supposing that the network has all the network layer 
parameter sets W, and P side output layers, which are linked 
to P classifiers, and the relevant weights are expressed as 
w = (w(1),..., w(P)). The HED’s objective function is given by

where �(m)

side
 (W,w(m)) denotes the loss function of the mth side 

output layer; αm denotes the weight in the summation; The 
distribution of edge/non-edge pixels is significantly biased 
for typical natural images; therefore, a balanced class of 
cross-entropy loss function is considered [33, 35],

where β = ∥Y−∥/∥Y ∥, 1 − β = ∥Y+∥/∥Y ∥, ∥Y−∥ and ∥Y+∥ stand 
for the edge and non-edge ground truth label sets, respec-
t i ve ly.  Xn = {x

(n)

j
} i s  o n e  t r a i n i n g  i m a g e ; 

Yn = {y
(n)

j
, y

(n)

j
∈ {0, 1}} is its edge map, Furthermore, 

Ŷ
(m)

side
= Pr(yj = 1|X;W,w(m)) = 𝜎(𝛼

(m)

j
) denotes the predicted 

edge value at the jth pixel of the mth output layer, where 
σ(·) ∈ [0,1] represents the Sigmoid function. The fusion layer 
is represented by the weighted summation of the mth side 
output layers, that is

where hm denotes the weighting coeff icient , 
Â
(m)

side
= {𝛼

(m)

j
, j = 1,… , ‖X‖}  are the activations of the mth 

layer side output, �(m)

j
 is the activation value at pixel j of the 

mth side output layer. The cross-entropy loss function is 
adopted for the fusion layer, Lfuse(W, w, h) = Dist(Y,Ŷ fuse), 
where Dist(·,·) is the distance between the fused predictions 
and the ground truth label.

Finally, the objective function is

(4)Lside(W,w) =

P∑

m=1

�m�
(m)

side
(W,w(m)),

(5)

�
(m)

side
(W,w(m)) = − �

∑

j∈Y+

log Pr(yj = 1|X;W,w(m))

− (1 − �)
∑

j∈Y−

log Pr(yj = 0|X;W,w(m)),

(6)Ŷfuse = 𝜎

[
P∑

m=1

hmÂ
(m)

side

]
,

where W, w, h are the variables to be optimized.
In testing, the output of weighted-fusion layer and the 

side output layers can be predicted by the input image as

where NN (·) represents the network generated edge graphs, 
()* means the optimum value. The output of HED is the 
mean of fusion layer and side output layers as

In our HED network, there are 5 side output layers. The 
size of the input image is 224 × 224 × 1. For simplification, 
the fusion layer is represented by the weighted first side out-
put layer. All the mapped edge outputs from the 5 side layers 
are 224 × 224 pixels. In the first side output layer, the size of 
the convolution kernel and stride of the first side layer are 1 
and 2 × 2, respectively. From the second side layer, the size 
of the convolution kernel and stride of the latter side layer 
is twice that of its the previous layer. The loss function for 
each side output layers is optimized to make the output edge 
image approach the true edge. Additionally, we subtract the 
mean value from the reconstructed image before it is input 
to the HED network, so that the loss function can converge 
more smoothly.

We use the signal-to-noise ratio (SNR) to quantitatively 
estimate the edge detection performance, which is defined 
as [19, 21, 22]

where Tback and Tedge are the background grayscale val-
ues and edge grayscale values of the edge detection result, 
respectively. var(·) denotes the variance value, and mean(·) 
represents the mean value. Generally, the quality of edge 
detection is directly proportional to the SNR. Meanwhile, 
the definition of compression ratio (CR) is introduced as

where M is the number of measurement; Nx and Ny denote 
the horizontal and vertical dimensions of the testing image, 
N = Nx × Ny.

(7)argmin
(
Lside(W,w) + Lfuse(W,w, h)

)
,

(8)(Ŷfuse, Ŷ
(1)

side
,… , Ŷ

(P)

side
) = NN(X, (W,w, h)∗),

(9)ŶHED = average(Ŷfuse, Ŷ
(1)

side
,… , Ŷ

(P)

side
).

(10)SNR =
mean(Tedge) −mean(Tback)

(var(Tback))
0.5

,

(11)CR =
M

Nx × Ny

,
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3  Experimental results and discussion

In this part, we verify the proposed ghost edge detection 
scheme by experiments based on CGI configuration. The 
numerical computations are implemented at Dell Optiplex 
920 with Intel Core i7-4790 CPU and 24 GB memory and 
3.6 GHz intel core. All 3000 handwritten digit images are 
chosen from the MNIST database. For each handwritten 
image, we train the HED 10 times, and the handwritten 
digit (28 × 28 pixels) is enlarged to 224 × 224 pixels by pad-
ding before it is input to the HED network. The epoch of 
the training is set to 300. The batch size is 10. The weight 
decay coefficient is 0.0002. And the initial weight of each 
layer is 1.

The experiment is carried out according to Fig. 3. The 
random speckle patterns are generated by the computer 
and are then loaded to a digital light projector (DLP), 
TI Digital light Crafter 4500. The random speckle light 
beam is expanded through a 200 mm projector lens and 
illuminate the test image (64 × 64 pixels). Finally, we 
can obtain the detected signal Bi from a bucket detector 
(Thorlabs power meter S142C) using a collecting lens with 
200 mm focal length. With the TVAL3 method, the blur-
ring images are reconstructed from a few detected signals 
and the corresponding random speckle patterns. Since the 
HED has already been trained by 3000 handwritten digit 
images, the clear edge information can be extracted after 
the blurred image is enlarged and input to the trained HED 
network.

The experimental results of this proposed ghost edge 
detection method are shown in Fig. 4. The results with 
CR = 12.5% and CR = 25% are presented. Different CRs are 
achieved by adjusting the effective number of measurements, 
that is, the size of M. It is shown that the edges extracted by 

using the proposed ghost edge detection scheme are almost 
identical to those original edges when the CR is 25%. For 
a lower CR of 12.5%, one  can also get a reasonable edge 
information. At the CR of 12.5%, it takes about 16.17 s to 
generate GI image through the TVAL3 algorithm. And it 
takes about 4.9 s to obtain an edge detection result through 
the trained HED network.

Figure 5 shows the experimental results obtained by 
using the proposed ghost edge detection scheme for lower 
CRs, where CR is set in the range from 2% to 25%. Experi-
mental results indicate that our proposed scheme pro-
vides an increasing quality of edge information when CR 
increases. Normally, this proposed scheme has a good per-
formance when CR ≥ 8%, and the SNR changes a little when 
CR ≥ 12.5%. The results demonstrate that this method can 
provide high quality edge information with a sub-Nyquist 
sampling ratio.

To further verify the performance of this proposed ghost 
edge detection scheme, we present the SNRs of the obtained 
edge image for testing images with different CRs in Fig. 6. 
The results show that the SNRs for the reconstructed edges 
quickly increase with the increased CR at sampling ratios 
lower than sub-Nyquist sampling ratio. Figure 6 presents 
the SNR performance of edge detection within the full 
range of CR for different target images. It is found that 
the SNR has an abrupt increase when CR ≤ 8% and then 
increases slowly with CR in the range of 8% ≤ CR ≤ 37.5%. 
When CR ≥ 37.5%, the SNR of the edge image is almost 
unchanged. It is further suggested that the proposed ghost 
edge detection scheme can have a better performance with 
a sub-Nyquist sampling ratio.

Lastly, we present SNR performance comparison of 
the edge detection scheme proposed in this paper with 

Fig. 3   Experimental setup of the ghost edge detection scheme based on HED network. DLP: digital light projector
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Fig. 4   Experimental results with the proposed scheme, where “original edges” are achieved by applying Sobel operator on the “ground truth”

Fig. 5   Experimental results obtained by using proposed ghost edge detection scheme with different CRs
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SSGI, CGEI and SPSGI in Fig. 7, where “original edge” 
is obtained by applying Sobel operators on the “ground 
truth”; the edge of the constructed image is obtained by 
applying Sobel operators on the reconstructed image from 

GI experiment system. Here, SPSGI is the subpixel-shifted 
edge detection scheme with random speckle patterns [19]. 
The results show that, compared with those of SSGI, CGEI, 
and SPSGI scheme, as well as the edge of the constructed 
image, the proposed scheme has a better SNR performance. 
For the “NUPT” image, the SNR value by using the pro-
posed method is 3.9072, while the SNR values are 0.4011 by 
using SSGI, 0.5239 by using CGEI, 0.1562 by using SPSGI 
and 1.4092 for the edge of constructed image. The SNR per-
formance is improved by 874%, 646%, 2401% and 177.3% 
respectively. For the “box” image, the SNR value by using 
our method is 4.4957, while the SNR values are 2.7624 by 
using SSGI, 1.4069 by using CGEI, 0.1767 by using SPSGI 
and 1.3651 for the edge of the constructed image. There-
fore, the SNR performance is improved by 62.7%, 219.5%, 
2244.2%, 229.3% respectively. Our scheme has a better SNR 
performance compared with other methods due to HED 
being based on the ideas of deeply supervised nets and fully 
convolutional neural networks.

Notice that all schemes use random speckle patterns, and 
the CRs are all set as 12.5% for comparison. The worse per-
formance of SPSGI is caused by the usage of random speckle 
pattern instead of the Walsh Hadamard speckle pattern.

Fig. 6   SNR performance versus CR for different target objects

Fig. 7   Comparison of the proposed scheme with those results by using SSGI scheme, CGEI scheme, SPSGI scheme with random speckle pat-
terns, together with edge of image when CR = 12.5%
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4  Conclusions

This paper presents a ghost edge detection scheme based on 
an HED network, where an HED network has been trained 
with simulation data and the edge information of unknown 
objects has been obtained by experimental data from a GI 
system. The experimental results indicate that the proposed 
ghost edge detection scheme can extract edge information 
with high quality even if the CR of the image is low. Com-
pared with SSGI, CGEI and SPSGI edge detection schemes, 
the proposed scheme exhibits an improvement in SNR. In 
addition, the HED network in the proposed scheme can be 
trained by images obtained from CGI system before experi-
ment, thus the time to achieve the edges from the experi-
mental data is reduced.
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