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Abstract
A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine (ZnPc) thin film as passive 
saturable absorber (SA) in ytterbium-doped fiber laser (YDFL). The ZnPc thin film was obtained using a casting method and 
then inserted between the two fiber ferrules of a YDFL ring cavity to generate mode-locked pulses. The resulting pulsed laser 
operated at a wavelength of 1034.5 nm having a repetition rate of 3.3 MHz. At pump power of 277 mW, the maximum output 
power and pulse energy are achieved at 4.92 mW and 1.36 nJ, respectively. ZnPc has a high chemical and photochemical 
stability, and its significance for use as a potential SA in a mode-locked laser is reported in this work.

Keywords  Mode-locking · Ytterbium-doped fiber laser (YDFL) · Saturable absorber (SA) · Zinc phthalocyanine (ZnPc) 
thin film

1  Introduction

Today, considerable attention is given to optical pulse gen-
eration in response to their various implementations in 
industry, remote sensing and medicine [1, 2]. Mode-locking 
is one of the methods used to generate ultra-short optical 
pulsed trains in a fiber laser. Several approaches have been 
reported to realize the mode-locking, including use of non-
linear optical loop mirror (NOLM) [3, 4], nonlinear polari-
zation rotation (NPR) [5], and the employment of saturable 
absorber (SA) device. The prime approach is to employ the 

SA device. It has been employed successfully in different 
gain media [6, 7]. The operation of mode-locking in 1, 1.5, 
and 2 µm wavelength regions has been achieved by the uti-
lization of ytterbium-, erbium-, and thulium-doped fibers, 
respectively [8, 9]. Among these lasers, the ytterbium-doped 
fiber laser (YDFL) operating in the 1 µm wavelength region 
has gained much interest in recent years for various com-
munications and sensing applications [10, 11].

Semiconductor SA mirrors (SESAMs) were previously 
employed as SA due to their benefits of ultrafast recovery 
time, compatibility with other components, stability, and 
absorption rate [12, 13]. On the other hand, they have several 
drawbacks like low damage threshold, high cost and narrow 
bandwidth, which have limited their applications. In recent 
years, various types of nanomaterials have been reported 
for generation of mode-locked pulse train by YDFL. For 
instance, typical two-dimensional (2D) materials such as 
black phosphorus (BP) [14], transition metal dichalco-
genides (TMDs) [14, 15], and graphene [16] have gained 
interest in recent years because of their excellent optical 
and electrical properties. Graphene was widely utilized in 
various ultrafast pulse lasers [16]. However, its application 
has been limited due to its small bandgap. Unlike graphene, 
black phosphorus and TMDs have the desired bandgap that 
offers opportunities for application in various wavelength 
regions [14, 17, 18]. However, the performance of BP has 
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been seen to rapidly degrade during its application and it 
gets damaged easily in a natural environment [19]. Thus, the 
development of BP is restricted by its mechanical instability. 
Under these conditions, huge potential for use of TMDs has 
arisen in ultrafast photonics due to their properties of satura-
ble absorption and third-order nonlinearity [20]. Generally, 
typical TMDs like MoS2- and WS2-based optoelectronic 
devices were largely employed in the visible region, which 
is determined by their bandgap [20]. However, operation 
of MoS2 and WS2 has been reported beyond their bandgap 
in the near-infrared (NIR) and mid-infrared (MIR) regions 
[21, 22] due to the broadband property of their saturable 
absorption. In another research direction, 2D materials 
such as MXene, antimonene, bismuthene, perovskite, and 
titanium disulfide (TiS2) have also been reported. Well-
functioning SAs can be made using MXenes as the main 
features observed in MXene monolayers can be conserved in 
stacked ones [23]. Long-term stability and optical response 
of antimonene and bismuthene based-SAs have also been 
improved [24, 25]. Perovskite has low lasing threshold and 
high modulation depth, and thus, it can be used in SA appli-
cations [26, 27]. Furthermore, TiS2 SA has reduced noise 
intensity and enhanced signal to noise ratio [28]. Recently, 
some other nanoparticle-based SAs have been reported in lit-
erature, including lead sulfide (PbS) and iron oxide (Fe3O4) 
[29, 30]. The nonlinear optical behavior of narrow-bandgap 
materials is also reviewed for potential applications in pulsed 
lasers [31]. By modification of conventional optical fiber, 
tapered optical fibers can be prepared by a flame brushing 
technique or wheel polishing technique. These tapered fib-
ers can be coated with nonlinear optical materials to be used 
as SA [32, 33]. The SAs based on D-shape fibers introduce 
birefringence which allows generation of dark pulses [34, 
35]. However, the exposed cladding of tapered fibers makes 
the system more sensitive to the ambient environment. This 
method is more suitable for optical fiber sensing applica-
tions such as in temperature sensors [36, 37]. Alternatively, 
polyvinyl alcohol (PVA) based thin films can be prepared 
and sandwiched between two fiber ferrules to work as SA 
[38, 39]. This does not require integration of any tapered 
fiber in the fiber laser cavity.

Recently, organic materials have been introduced as new 
SA candidates for generation of short optical pulse train 
due to their fast recovery time, high optical damage thresh-
old, large optical nonlinearity and environmental safety. 
These organic materials are hybrid organic–inorganic per-
ovskites [40], tris-(8-hydroxyquinoline) aluminum (Alq3) 
[41, 42], and bis[2-(4,6-difluorophenyl) pyridinato-C2,N] 
(picolinato) iridium (III) (FIrpic) [43]. On the other hand, 
an organic semiconductor, phthalocyanine (Pc) has been 
extensively investigated for its electronic, photoelectronic, 
and optical properties [44–49]. Among these materials, zinc 

phthalocyanine (ZnPc) is a promising organic semiconductor  
for optical applications.

ZnPc shows high optical absorption in the red-visible 
region with a suitable optical stability, and thus it is proved 
to have desirable extinction coefficient in the near infrared 
region. Since most organic solvents have low solubility [50, 
51], ZnPc shows a great potential to be formed as a thin film 
because of its physical stability. However, the behavior of 
ZnPc as SA for YDFL has not yet been reported.

In this paper, the ZnPc based SA is employed to gen-
erate YDFL mode-locked pulses operating at wavelength 
around the 1 µm. The SA thin film is formed by integrating 
ZnPc material into PVA film by using the casting method. 
By applying the film into the YDFL cavity, a stable mode-
locked optical pulse train is obtained. The mode-locked las-
ing is achieved with a picoseconds pulse width and repeti-
tion rate of 3.3 MHz, where the center of the wavelength 
spectrum is at 1034.5 nm. The un-dissolved particles within 
polymer spread over the thin film in a uniform manner due 
to the liquid phase exfoliation, and the high concentration 
of these un-dissolved ZnPc particles makes the absorbance 
higher in near infrared region [52, 53].

2 � Fabrication and characterization 
of saturable absorbers

The organic material ZnPc and the PVA powder were pur-
chased from Sigma Aldrich. 100 mL de-ionized water and 
1 g PVA were mixed and then followed by sonication for 
one hour at a room temperature using an ultrasonic bath 
sonicator. Then, 5 mL of PVA solution was poured into 
60 mm (diameter) petri dish and the sample was left to dry 
for three days to form a PVA thin film that could be used 
as a substrate for the organic thin film. ZnPc solution was 
produced by mixing 0.5 mL acetone with 10 mg of ZnPc 
powder, followed with stirring by magnetic stirrer for 30 min 
at 45 °C in order to produce a homogenous solution. The 
ZnPc solution was poured onto the PVA layer, followed by 
drying at a temperature of 45 °C for 30 min to fabricate ZnPc 
thin film on the PVA layer. The combined ZnPc-PVA film 
was around 50 µm thick. Finally, a small piece of ZnPc-PVA 
thin film was attached to fiber ferrules to be used as SA for 
mode-locking.

A Perkin Elmer Spectrum 400 Fourier transform infra-
red (FTIR) spectrometer was used to identify the chemi-
cal constituents of ZnPc. The fingerprint region was in the 
wavenumber range from 1500 to 450 cm−1 at a resolution 
of 2 cm−1. Figure 1 shows the FTIR spectrum of ZnPc thin 
film. The ZnPc is a complex molecule of metal phthalocya-
nine which is composed of four isoindole units linking with 
four nitrogen atomswhich are linked by an atom of zinc. The 
isoindole unit is a benzo-fused pyrrole molecule. The ZnPc 
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molecular structure is shown as an inset in Fig. 1. These 
molecules appear in the spectrum of FTIR due to vibration 
in bending and stretching modes. The isoindole stretching 
vibration peaks were at characteristic peaks of 1410 and 
635 cm−1. In-plane vibrational peaks of ZnPc molecule are 
at 1330 cm−1 for pyrrole stretch, 1117 and 1087 cm−1 for 
C–H bend, and 752 cm−1 for C–H deformation. C-H bend 
peaks of ZnPc were found at 1165 and 1060 cm−1. Out-plane 
vibration peak of ZnPc molecule for C–H deformation peak 
appeared at 725 cm−1. Zn-N vibration peaks were located at 
875 and 500 cm−1. Benzene breathing vibrational peaks are 
at 886 and 780 cm−1 [54–57]. The remaining characteristic 
peaks are related to PVA molecules, PVA being the host 
polymer for ZnPc thin film [58].

The SEM image of ZnPc film on PVA host can be seen 
in Fig. 2. The surface morphology of the thin film appears 
as a flat surface with particle aggregations (Fig. 2a). These 

particles appear as small particles of size of several nanome-
ters and large particles of size of several microns that are due 
to agglomerations of un-dissolved and dissolved particles of 
ZnPc molecules, respectively. Figure 2b illustrates the SEM 
in higher magnification that confirms that the dissolved large 
particles manifest the crystalline structure of ZnPc powder.

Optical absorbance spectrum of casting ZnPc on PVA 
based thin film is demonstrated in Fig. 3, showing three 
clear peaks. There are two types of energy bands for ZnPc 
organic material which are Q-band and B-band. The appear-
ance of B-band is at 346 nm while the Q-bands are at 678 
and 847 nm. The Q-bands are attributed to π → π∗ transi-
tion energy of the phthalocyanine macrocycle and an excita-
tion state energy [55, 59, 60]. The sharp peak at 678 nm is 
related to the crystalline ZnPc particles while the red shift 
in the Q-bands as specified in the literature is attributed to 
the clustering of the ZnPc particles inside the film [61, 62]. 
The Beer-Lambert’s law equation � = 2.303 × A∕d can be 
used to calculate absorption coefficient � , where ZnPc PVA 
film thickness d is about 50 µm and A is absorbance. The 
band gap, Eg , is calculated from the coefficient of absorp-
tion in an equation of (�hv)n = B(hv − Eg) by extrapolating 
hv to � = 0 . Here, hv is the photon energy, B is a constant 
(material-related), and n is the number of transitions, which 
is equal to 2. The bulk ZnPc has energy band gaps of 1.53 
and 2.97 eV, which are related to Q-band and B-band energy, 
respectively [59]. Inset of Fig. 3 shows the Tuac’s plot for the 
bandgap calculation. It is found that the composite thin film 
exhibited four band gaps at 4.1, 2.7, 1.7, and 1.2 eV, which 
correspond to modified PVA, B-band and two Q-bands for 
ZnPc, respectively. Compared to bulk material, the band 
gaps for the casting ZnPc thin film are slightly shifted due 
to the dispersion effect induced by the agglomeration of the 
ZnPc particles inside the PVA film.
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Fig. 1   FTIR spectrum of ZnPc thin film. Inset: ZnPc molecular struc-
ture
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Fig. 2   SEM images of casting ZnPc thin film in two different magnifications of  a 1 kX and  b  8 kX
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The linear absorption of prepared ZnPc-PVA SA was 
investigated by using a low intensity white light source, and 
the results were analyzed using an optical spectrum analyzer 
(Anritsu, MS97010C) with 0.05 nm resolution. As shown in 
Fig. 4a, the linear absorption of the SA was around 2.14 dB 
at 1034.5 nm wavelength. By using the balanced two-arm 

measurement detection scheme, the nonlinear absorption 
of our prepared ZnPc thin film was measured as plotted in 
Fig. 4b. 1 μm wavelength mode-locked light source was used 
for nonlinear optical characterization, which has pulse width 
and repetition rate of 2.1 ps and 1.8 MHz, respectively. As 
can be seen from the plot in Fig. 4b, the modulation depth 
and saturation intensity of the ZnPC-PVA SA are deter-
mined to be around 7.8% and 15 MW/cm2 respectively, by 
fitting the experimental data with Eq. (1) [63], where T  , ΔT  , 
I , Tns, and Isat are the transmission ratio, saturable absorption 
or modulation depth, incident laser intensity, non-saturable 
absorption and saturation intensity, respectively.

3 � Setup for the experiment

Figure 5 illustrates the experimental arrangement of the 
mode-locked YDFL using the prepared ZnPc SA as a mode-
locker. It uses a commercial ytterbium-doped fiber (YDF) as 
the gain medium and a 980 nm laser diode (LD) as a pump-
ing source. The pumping light was coupled into YDF via a 
wavelength division multiplexer (WDM). The YDF used had 
core diameter, cladding diameter, and numerical aperture of 
4 µm, 125 µm, and 0.20, respectively. A polarization-insensi-
tive isolator ensured the single directional light propagation 
in the ring cavity. The SA thin film was inserted between two 
clean ferrules to form a SA device, which was positioned 
between the isolator and the output coupler (90:10). The 
output coupler functioned to allow 90% of the photons to 
oscillate in the YDFL cavity. The other 10% were tapped 
out from the coupler to another 3 dB coupler to observe 
the time domain and the optical spectrum simultaneously. 
The cavity had a 1.5 m YDF and a 50 m single mode fiber 
(SMF) with group velocity dispersion (GVD) of 24.22 and 
21.91 ps2/km, respectively. The entire cavity length includ-
ing both fibers and other optical components was about 60 m 
with calculated all-inclusive cavity dispersion of approxi-
mately 1.3 ps2. Including 50 m long SMF spool in the cav-
ity increased net cavity dispersion which helped to achieve 
mode-locking instead of Q-switching [64, 65]. A polariza-
tion controller (PC) was not added in this experimental setup 
as the interplay of cavity dispersion and the SA nonlinear-
ity was sufficient to obtain mode-locking operation [66–68]. 
Hence, a PC was excluded from the experimental setup to 
avoid any additional insertion loss contribution from the PC. 
The ZnPc-SA inside the dispersion-balanced cavity caused 
superposition of propagating longitudinal modes, which as 
a result generated the mode-locked outputs. It is expected 
that this kind of mode-locked lasers can produce ultra-short 

(1)T(I) = 1 − ΔT × exp

(

−
I

Isat

)

− Tns.

V
V

Fig. 3   Optical absorption characteristic against wavelength and 
inserted figure is Tuac’s plot for the bandgap calculation

Fig. 4   a Linear absorption spectrum of ZnPc-PVA SA. b Nonlinear 
transmission property of the casting thin film
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pulses of picosecond to femtosecond duration, with the rep-
etition rate in the range of few MHz.

4 � Results and discussion

The output characteristic of the YDFL before and after 
insertion of SA was observed by varying the 980 nm pump 
power. It is worth noting that, at pump power of 150 mW, 
a continuous wave (CW) laser had been achieved and no 
pulse had been generated by raising the pump power to the 
maximum value, before the integration of ZnPc thin film into 
the ring cavity. Then, after integrating the ZnPc film-based 
SA between the optical fiber ferrules in YDFL cavity, a self-
started and stable mode-locked optical pulse train was gen-
erated with pump power changing from the threshold value 
of 246.3 mW up to the maximum value of 277 mW. The 
repetition rate of mode-locked pulses was unchanged with 
the increment in pump power. The optical spectrum of our 
mode-locked fiber laser output at pump power of 277 mW is 
illustrated in Fig. 6a. As can be seen, the center wavelength 
was obtained at 1034.5 nm with 3 dB spectral bandwidth of 
0.6 nm without Kelly sideband, which shows the normal-
dispersion operation of the laser.

Figure 6b shows the recorded spectrum, which indicates 
the signal-to-noise-ratio (SNR) of 55.7 dB, at the fundamen-
tal frequency of 3.3 MHz. This proved the excellent stability 
of the mode-locked laser operation. The SNR value can be 
further enhanced by decreasing the non-saturable loss of 
the SA and the YDFL cavity. Figure 6c depicts the typi-
cal mode-locked pulse train from the YDFL cavity with the 
ZnPc SA. The pulse train at pump power of 277 mW was 

recorded using an oscilloscope (GWINSTEK, GDS-3352), 
which was connected to a 1.2 GHz photodetector (Thorlabs, 
DET10D/M). It showed a stable pulse train with a repeti-
tion rate of approximately 3.3 MHz, which corresponded to 
peak-to-peak spacing of 276 ns. The repetition rate obtained 
was well-matched to the cavity length of YDFL, which was 
around 60 m. The oscilloscope also indicated the pulse width 
of around 123 ns, which was wider than the estimated actual 
pulse width because of the limitation of the oscilloscope 
resolution. Here, the actual pulse width was estimated by 
using a mathematical model for the time bandwidth product 
(TBP). Assuming that the pulse follows the Gaussian pulse 
profile, TBP is equal to 0.441 and thus the shortest possible 
pulse width is predicted to be around the value of 2.6 ps. 
The stability of mode-locked pulses could be verified from 
the radio frequency (RF) spectrum. In this work, the RF 
spectrum was obtained using an 7.8 GHz RF spectrum ana-
lyzer (Anritsu, MS 2803A) in conjunction with a 1.2 GHz 
photodetector. The pulse intensity profile is monitored by 
an autocorrelator (AlnairLab HAC-200, resolution < 5 fs). 
The measured autocorrelator trace in Fig. 6d shows experi-
mental data over sech2 fitting which shows the pulse width 
of about 2.6 ps.

The relationship between the average output power and 
pulse energy obtained in the experiment with the pump 
power is plotted in Fig. 7. It can be seen that as the pump 
power was raised, both pulse energy and output power were 
also increased. This is attributed to the larger population 
inversion induced by the higher pump power, which in turn 
raised the gain/amplification in the YDFL gain medium. The 
maximum pulse energy and average power were 1.36 nJ and 
4.92 mW.

Fig. 5   YDFL cavity configuration for the mode-locking operation
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At a room temperature and under normal laboratory con-
ditions, laser output was maintained at a central wavelength 
of 1034.5 nm with no obvious shift for at least two days. 
The mode-locked spectrum with a time interval of 12 h at 
277 mW pump power is plotted in Fig. 8, which shows the 
stability of the laser. The laser operation was maintained 
at 1034.5 nm without any shift in the spectrum, while the 
peak intensity was also maitained with a marginal error 
of ± 0.2 dB.

Table 1 compares ZnPc-SA with 2D materials for the 
application of mode-locked laser. In the 1 μm wavelength 

region, the new ZnPc-SA showed great potential for use 
as a mode-locker. However, there is still room for further 
enhancement in output power, pulse energy and repetition 
rate by optimizing the cavity length and the intra-cavity 
losses. In Table 1, output power of the laser can be seen 
to be about 4.92 mW, which is slightly higher than that of 
the mode-locked laser produced by MoS2. However, the 
output power can be further improved if the splicing loss 
between the optical fiber connecting ends is optimized in 
the fiber laser cavity. The currently achieved mode-locked 
laser pulse width is also comparable to the pulse duration of 

Fig. 6   Characteristics of the mode-locked pulses from the YDFL. a Optical spectrum. b Time domain waveform. c RF spectrum at maximum 
pump power. d Autocorrelator trace

Fig. 7   Average power and pulse energy at various pumping power
Fig. 8   Stability of mode-locked spectra for two days
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mode-locked Erbium-doped fiber lasers (EDFL) obtained by 
using TMD-SAs such as WS2, few-layer WSe2 and MoSe2 
nanosheets [72, 73].

5 � Conclusion

The generation of mode-locked pulses by using ZnPc-PVA 
SA was experimentally realized in YDFL for the first time. 
A self-started mode-locked laser operated with pump power 
of 246–277 mW, with the center wavelength being located at 
1034.5 nm. Corresponding to the output power of 4.92 mW, 
the highest pulse energy was obtained as 1.36 nJ. The laser 
operation was stable at repetition rate of 3.3 MHz having a 
picosecond pulse width. The findings indicate that ZnPc, 
being a non-toxic material, can be suitable as an alterna-
tive SA material for mode-locking application in the 1 µm 
operation region.
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