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Abstract
Sodium metal batteries (SMBs) are receiving broad attention due to the high specific capacity of sodium metal anodes and 
the material abundance on earth. However, the growth of dendrites results in poor battery performance and severe safety 
problems, inhibiting the commercial application of SMBs. To stabilize sodium metal anodes, various methods have been 
developed to optimize the solid electrolyte interphase (SEI) layer and adjust the electroplating/stripping behavior of sodium. 
Among the methods, developing anode host materials and adding electrolyte additives to build a protective layer are promis-
ing and convenient. However, the understanding of the interaction process between sodium metal and those organic materials 
is still limited, but is essential for the rational design of advanced anode hosts and electrolyte additives. In this study, we use 
copper(II) hexadecafluorophthalocyanine (F16CuPc), and copper(II) phthalocyanine (CuPc), as model systems to unravel the 
sodium interaction with polar functional groups by in-situ photoelectron spectroscopy and density functional theory (DFT) 
calculations. It is found that sodium atoms prefer to interact with the inner pyrrolic nitrogen sites of CuPc, while they prefer 
to interact with the outer aza bridge nitrogen atoms, owing to Na-F interaction at the Na/F16CuPc interface. Besides, for the 
both organic molecules, the central Cu(II) ions are reduced to Cu(I) ions by charge transfer from deposited sodium. The 
fluorine-containing groups are proven to promote the interaction process of sodium in organic materials, which sheds light 
on the design of functional interfaces in host materials and anode protective layers for sodium metal anodes.

Keywords  Fluorination · Phthalocyanines · Sodium metal anode · Sodiophilic sites · In-situ X-ray photoelectron 
spectroscopy (XPS)

1  Introduction

Since the development of continuous industrialization and 
increasing energy demand, sodium metal batteries (SMBs) 
have attracted extensive attention because of their high theo-
retical capacity (1166 mAh/g), low redox potential (− 2.71 V 
vs. SHE), high natural material abundance, and low cost 
[1]. Nevertheless, many problems hinder their practical 
application and commercialization, including uncontrolla-
ble sodium dendrite growth, poor cycling performance, low 
coulombic efficiency, and huge volume fluctuation [2, 3]. 
Among these, the major issue on sodium metal anode is the 
uneven sodium metal deposition during the operation of the 
battery, leading to uncontrolled sodium dendrite growth, cell 
shorting, and severe safety issues. Another problem is the 
high reactivity of sodium metal with organic electrolytes, 
generating a fragile solid electrolyte interphase (SEI), which 
cannot withstand massive volume expansion during cycling, 
exacerbating the formation of SEI crack, and leading to low 
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coulombic efficiency. To achieve stable sodium metal anodes 
in a liquid electrolyte, many strategies have been developed 
[2–6]: (1) electrolyte formulation optimization, including 
using an ether-based electrolyte, adding additives to adjust 
the SEI formation, and adjusting the electrolyte concen-
tration; (2) introducing a protective layer to separate bulk 
sodium metal and electrolyte, and guide uniform sodium 
deposition by regulating ion flow; (3) building sodium depo-
sition host to reduce local current density, and relieve sig-
nificant volume expansion during cycling.

Electrolyte formulation optimization is of great impor-
tance to improve the properties of the SEI layer for sodium 
batteries, especially with highly reactive sodium metal 
anodes, since SEI components mainly come from the 
decomposition of electrolyte species [4]. Among the vari-
ous methods, like using ether-based electrolyte [7–9], add-
ing electrolyte additives [10–12], and adjusting electrolyte 
concentration [13, 14], adding electrolyte additives is a 
simple but effective promising strategy to stabilize SEI, 
and improve the cycling performance of SMBs. Based on 
film-forming and ion-plating strategies, many additives have 
been developed, including fluoroethylene carbonate (FEC) 
[10, 15], sodium polysulfide (Na2S6) [11], and potassium 
bis(trifluoromethylsulfonyl)imide (KTFSI) [12]. They are 
all proven to contribute to the formation of a robust SEI 
layer and regulate the ion-plating manner with suppressed 
dendrite growth. Introducing protective layers such as artifi-
cial SEIs before assembling the batteries is another effective 
strategy to stabilize sodium metal anodes, since mostly in-
situ formed SEI is unstable during prolonged cycling. With 
an artificial SEI, direct contact between the liquid electro-
lyte and sodium metal anode can be prevented. Moreover, 
the sodium ion flux can be regulated and the tremendous 
mechanical strength can help inhibit the dendrite forma-
tion. To construct artificial SEIs on sodium metal, strate-
gies can be divided into chemical pretreatment [16, 17], 
and thin films deposition by physical technologies [18–20]. 
Based on this, many useful protective layers have been suc-
cessfully developed like NaI [16], sodium benzenedithi-
olate (PhS2Na2) [17], ion-rich polymeric membrane [21], 
and poly (vinylidene fluoride) (PVDF)-based layer [22]. 
In addition, building a sodium deposition host is a highly 
effective way to mitigate the volume fluctuation of sodium 
anode and guide homogeneous sodium deposition [23]. With 
a large specific surface area as well as high electroconduc-
tivity, carbon-based materials have been widely studied as 
advanced skeletons to reduce local current density, allevi-
ate giant volume expansion, and promote uniform sodium 
deposition, including graphene [24–27], carbon nanotubes 
[28, 29], and carbon fibers [30–33]. Furthermore, heter-
oatom doping is a widely used and effective way to intro-
duce “sodiophilic” sites, thereby reducing sodium nucleation 
barrier and inducing uniform sodium deposition. Based on 

this, many attractive hosts have been successfully developed, 
like B-doped graphene (BG) [26], S/N-doped carbon fibers 
(D-HCF) [32] and O/N-doped carbon nanofibers (ONCNFs) 
[33].

In general, in order to realize the wide commercial 
application of sodium metal anode, utilization of electro-
lyte additives, construction of protective layers and sodium 
deposition hosts have been widely investigated. Although 
many achievements have been made, due to the complex 
electrolyte system in real battery systems, the understand-
ing of interfacial processes and components of SEI is still 
limited. There are very few systematic investigations on 
the role of organic additives containing different functional 
groups during sodium deposition. At present, researches on 
organic electrolyte additives mostly lie in lithium metal bat-
teries (LMBs). Application and research related to SMBs are 
rare, and their design mostly imitates the additives in LMBs. 
However, in different battery systems, the same electrolyte 
additives could show different or even opposite effects. For 
example, Wang et al. reported that Na2S6 alone is benefi-
cial to achieve long-term stability and reversibility, while 
Na2S6–NaNO3 co-additive has an adverse effect, which con-
trasts to the previous study in the lithium anode system [11, 
34]. Therefore, it is necessary to comprehensively study the 
roles of electrolyte additives in SMBs. Additionally, various 
sodium deposition hosts show different properties to inhibit 
dendrite growth, and improve dendrite growth. Therefore, 
it is of great importance to study in depth the “sodiophilic” 
sites in different hosts to establish the structure–function 
relationship for the rational design of the host framework.

Phthalocyanines (Pcs) and their derivates, with diverse 
structure and unique charge centers are promising and func-
tional in various batteries [35], such as serving as electrodes 
in metal-ion batteries [36–38], catalytic additives in Li–S 
batteries [39, 40], and metal-air batteries [41, 42]. Moreo-
ver, Pcs can be easily grown as well-ordered films on vari-
ous substrates with good compatibility in ultra high vacuum 
(UHV) systems [43–45]. Similar to copper(II) phthalocya-
nine (CuPc), copper(II) hexadecafluorophthalocyanine 
(F16CuPc), has the same central copper ion and the con-
jugated nitrogen atoms around it, but adds 16 strong elec-
tronegative fluorine groups, which result in different elec-
tronic structures (Fig. 1). Therefore, the two can represent a 
suitable model system to provide insight on the interaction 
mechanisms for conjugated organic materials utilized as 
sodium hosts or electrolyte additives in SMBs, especially 
for the fluorination promoted sodiophilic sites. Based on 
this, taking CuPc and F16CuPc as simplified model materi-
als, we studied their interaction mechanisms with sodium 
metal by in-situ X-ray photoelectron spectroscopy (XPS), 
ultraviolet photoelectron spectroscopy (UPS), and density 
functional theory (DFT) calculations. We discovered that Na 
atoms prefer to interact with inner pyrrolic nitrogen atoms 
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in CuPc, but with outer aza bridge nitrogen and symmetric 
fluorine atoms in F16CuPc. Moreover, with stronger electron 
affinity caused by the electron-withdrawing effect of fluorine 
atoms, the inner pyrrolic nitrogen atoms exhibit stronger 
interaction with sodium atoms at Na/F16CuPc interface as 
compared to Na/CuPc interface. In addition, the reduction 
of central copper ions in both CuPc and F16CuPc molecules 
were observed due to charge transfer from sodium. Our 
study presents a molecular-level understanding of the inter-
action process between Na and organic materials, aiming to 
guide the rational design of host materials and protective 
layers, by modifying the sodiophilic functional groups in 
organic materials.

2 � Experimental section

In-situ XPS and UPS experiments were conducted in a 
customer-designed UHV system composed of preparation 
and analysis chambers [46, 47], aiming to study the Na 
interaction process at Na/CuPc and Na/F16CuPc interfaces 
respectively. Two parts were included in each experiment to 
simulate the interaction process of hosts and the formation 
process of protective layers, including: (i) metallic sodium 
stepwise deposited on the organic films (10 nm) predepos-
ited on the silicon substrates, simulating its interaction with 
hosts, and (ii) organic films deposited stepwise on metallic 
sodium (10 nm) film predeposited on a tungsten substrate, 
simulating the formation of protection layers. After each 
deposition of sodium or organic molecules in the prepara-
tion chamber (base pressure lower than 2 × 10−8 mbar1), the 
film was transferred directly to the analysis chamber (base 
pressure lower than 4 × 10−10 mbar) for XPS and UPS study. 

The thickness and surface morphology of the organic films 
predeposited on the silicon substrates were characterized 
through atomic force microscopy (AFM) using BRUKER 
Dimension Fast Scan AFM system. Moreover, the relevant 
DFT calculations were also conducted to further verify our 
conclusions.

Silicon and tungsten wafers were chosen as substrates 
for organic molecules and sodium metal films preparation 
respectively. Both were thoroughly degassed at around 
400 °C in the UHV preparation chamber before organic 
molecules or sodium metal deposition. Vacuum sublimation 
purified CuPc, and F16CuPc molecules (> 99%, Lumines-
cence Technology Corp), were thermally evaporated from 
separated Knudsen cells with temperatures of 290 °C and 
300 °C respectively. Sodium metal was deposited from a 
SAES getter source with a 4.0 A direct current. The deposi-
tion thickness was obtained from XPS core-level intensities 
and measured through inelastic mean free path (IMFP) cal-
culations [48]. All the organic molecules and sodium metal 
preparation and deposition processes were conducted in the 
same UHV preparation chamber.

XPS and UPS measurements were performed at room 
temperature in the analysis chamber via an X-ray source 
(Omicron DAR400) with Al kα (1486.7 eV) and Mg kα 
(1253.6 eV) dual anodes, an excitation source (Omicron 
VUV HIS 13) with He 1α (21.2 eV), and an electron ana-
lyzer (Omicron EA125) with resolution of 0.05 eV. A charge 
of − 5.0 V bias voltage was applied to test the secondary 
electron cut-off (SECO) of samples. For core-level spectra 
decomposition, CasaXPS software was used with a Shirley 
background, and a line shape of GL(50) (50% Gaussian plus 
50% Lorentzian function).

For DFT studies, Gaussian 16a software was used with a 
B3LYP-D3BJ/6-311G(d,p) level of theory [49]. The adsorp-
tion energy of the optimized Na-CuPc (or Na-F16CuPc) 
complex was calculated by the energy difference between 
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Fig. 1   CuPc and F16CuPc molecular structures and their characteristic XPS spectra (silicon foils as substrates)
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the complex and the sum of a free Na atom and a pristine 
organic molecule. The charge distribution was obtained via 
basin analysis using Multiwfn software package [50].

For actual performance comparison, the galvanostatic 
profiles of nucleation overpotential, and mass-transport 
controlled overpotential, were collected in the asymmetric 
cells with a current density of 0.5 mA/cm2 and an areal 
capacity of 1 mAh/cm2. The asymmetric cells contain a 
sodium metal as the counter electrode and Cu or CuPc–Cu 
or F16CuPc–Cu as the working electrode with an electro-
lyte containing 1 mol/L NaPF6 in Diglyme (DEGDME). 
The asymmetric cells were performed in CR2032 coin 
cells at room temperature with a single layer of commer-
cial polypropylene (PP) separator.

3 � Results and discussion

A brief introduction to the characterized signals of pristine 
CuPc and F16CuPc is shown in Fig. 1. Owing to simul-
taneously π → π* transitions, satellite features (shake-up 
peaks) due to the energy loss of the photoelectrons are 
observed for both two molecules, which is consistent with 
previous reports [43, 51–59]. For CuPc [45, 52, 56–59], 
its C 1s peak contains two main components with different 
chemical environments. One is for pyrrolic carbon atoms 
at 285.9 eV (named as CN), and the other is for aromatic 
carbon atoms at 284.5 eV (named as CC). The energy shift 
of 1.4 eV between them is due to valence charge transfer 
from pyrrolic carbon to the more electronegative nitrogen 
atoms [43, 45]. Furthermore, the relative intensity of CC 
and CN components nearly equals to the theoretical value 
of 3:1, taking into account the satellites. Its N 1s region 
only contains one peak at 398.9 eV (named as NC), since 
the inner pyrrolic and outer aza bridge nitrogen atoms have 
a similar electronic environment and present similar bind-
ing energy in XPS [43, 53, 54, 57, 58]. Its Cu 2p region 
contains one component with a 2p3/2 signal at 935.6 eV 
(named as Cu(II)) originating from the central Cu(II) ions. 
For F16CuPc [54, 60], it has similar spectra for the N 1s 
and Cu 2p regions. NC component is located at 399.1 eV, 
and Cu(II) component is located at 935.7 eV for 2p3/2 sig-
nal. Compared to CuPc, its C 1s region contains one more 
component at 287.3 eV (named as CF) originating from 
carbon atoms combined with fluorine atoms. The CN and 
CC components are located at 286.4 and 285.2 eV respec-
tively. Moreover, the relative intensity of CF, CN, and CC 
components, nearly equals to the theoretical value of 2:1:1, 
taking into account the satellites. Its F 1s region contains 
only one component at 687.6 eV (named as FC), which 
originates from 16 fluorine atoms [54]. Notably, all same 
components in F16CuPc show higher binding energy than 

those in CuPc owing to the strong electron-withdrawing 
effect of fluorine atoms. In this case, other atoms, includ-
ing carbon, nitrogen, and copper atoms, are more electro-
positive, thus have higher binding energy in the spectra.

3.1 � Na/CuPc

The Na/CuPc interface was studied by in-situ XPS with the 
interaction process (i) of sodium deposited on CuPc, and the 
relevant spectra series are shown in Fig. 2. With 0.2 nm Na 
deposited, an overall N 1s asymmetric peak broadening is 
observed, and it is found that a new NNa component appears 
at 0.6 eV lower binding energy (relative to NC) after peak 
decomposition. The relevant CN-Na component is located at 
0.3 eV lower binding energy (relative to CN) signal in C 1s 
region, while CC signal remains unchanged. It indicates 
that sodium first interacts with nitrogen atoms and transfers 
electrons to the connected pyrrole carbon atoms. Next with 
0.4 nm Na deposited, a new Cu(I) component appears at 
1.60 eV lower binding energy (relative to Cu(II)) in the Cu 
2p3/2 region, indicating the reduction of Cu(II) to Cu(I) ions 
owing to the charge transfer from sodium [52]. It should be 
noted that we cannot identify whether the reduced compo-
nent is Cu(I) or Cu(0) from 2p3/2 signal only, since they are 
separated by the same binding energy difference with Cu(II) 
[53, 58]. In this way, we also take the Cu LMM auger spec-
trum (Additional file 1: Fig. S5) into account; and it can be 
concluded that the reduced product is Cu(I) ion by calculat-
ing the auger parameter [61]. Moreover, half nitrogen atoms 
interact with sodium to form NNa, and nearly all connected 
carbon atoms receive electrons to form CN-Na. According to 
DFT calculations (to be discussed in detail at the end of the 
paper), we suggest that sodium first interacts with the inner 
pyrrolic nitrogen atoms and transfers electrons to reduce 
Cu(II) ions simultaneously. Following that, more NNa com-
ponent appears to dominate in the N 1s region with thicker 
sodium deposited, indicating that sodium also interacts with 
the outer aza bridge nitrogen atoms. A new component CC-Na 
is also observed at 0.9 eV lower binding energy (relative to 
CC). Through DFT calculations (to be discussed in detail at 
the end of the paper), we suggest that when the sodium atom 
interacts with the outer aza bridge nitrogen atom, its position 
is close to the benzene ring on one side and transfers elec-
trons to aromatic carbon atoms, resulting in the formation of 
CC-Na signal. It is also observed in the previous report about 
K/MnPc interface [62]. In this way, for the Na/CuPc inter-
face, it can be concluded that sodium atoms interact with the 
inner pyrrolic nitrogen atoms of CuPc first, and then with 
the outer aza bridge nitrogen atoms. Furthermore, benzene 
rings receive electrons from sodium, owing to the sodium 
anchoring position. Moreover, Cu(II) ions are reduced to 
Cu(I) ions during the process.
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The interaction process (ii) of CuPc deposited on metallic 
sodium was also investigated (Fig. 3). Similar conclusions 
can be reached, demonstrating that interfacial interaction is 
identical and independent of the deposition sequence. With 
0.5 nm CuPc deposited, over half nitrogen atoms interact 
with sodium to form NNa in the N 1s region, and C 1s peak 
consists of three components originating from CN-Na, CC, and 
CC-Na of Na interacted CuPc respectively. It indicates that all 
carbon atoms connected with nitrogen atoms receive elec-
trons when the inner pyrrolic and outer aza bridge nitrogen 
atoms interact with sodium, and part of carbon atoms also 
receive electrons indirectly, owing to the sodium interaction 
position. Besides, all Cu 2p3/2 signals originate from Cu(I) 
ions owing to the charge transfer from sodium. With more 
CuPc deposited, the ratio of CC to CC-Na, NC to NNa, and 
Cu(II) to Cu(I) component increases gradually. And with 
8.0 nm CuPc deposited, the original CN signal of CuPc is 
detected, indicating that the Na-CuPc interaction only takes 
place near the interface region and the reacted CuPc mol-
ecules are gradually covered by the original CuPc molecules. 
Consequently, both Na on CuPc and CuPc on Na interactions 
have same modes as the interaction process takes place only 
at the interface.

The evolution of electronic structures at Na/CuPc inter-
face was also measured by in-situ UPS characterizations. As 
shown in Additional file 1: Fig. S2, the valance band (VB) 
shape of CuPc is in great accordance with previous reports 
[54, 55, 57, 58]. With increasing Na deposition, the work 
function measured from SECO gradually decreases due to 
the formation of reacted CuPc with electron receiving from 
Na [56, 57, 63]. Meanwhile, the original CuPc peak broad-
ens and weakens in the VB region. Moreover, the top of the 
VB spectrum, which originates from the highest occupied 
molecular orbital (HOMO) of CuPc, is located at 1.47 eV 
below the Fermi level (EF) [43, 52, 57]. With sodium deposi-
tion, a new lowest unoccupied molecular orbital (LUMO)-
derived signal appears at 0.74 eV. This state shows clear 
evidence of the charge transfer from sodium to the LUMO of 
CuPc, leading to the formation of occupied electronic levels 
in the energy gap [55, 57–59, 63–65].

In addition, UPS spectra for Na grown on W, with 
increasing CuPc deposition (Additional file 1: Fig. S3), 
show similar results in a reverse process. After the depo-
sition of CuPc, the work function measured from SECO 
gradually increases, then it remains nearly unchanged until 
the molecular layer thickness is higher than 5.0 nm since 
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the surface molecules are nearly all unreacted CuPc. In the 
VB region, the original Na peak broadens and weakens, 
and great shape change takes place with CuPc deposition, 
which transfers gradually to be similar to that of CuPc. In 
the HOMO edge region, a new HOMO signal appears and 
then gradually shifts to the lower binding energy side (at 
0.82 eV with 8.0 nm CuPc deposited), due to the charge 
transfer from Na to CuPc LUMO. And another peak appears 
at 2.00 eV, which is proposed to originate from the HOMO 
state of pristine CuPc, considering its binding energy differ-
ence with other main VB peaks.

3.2 � Na/F16CuPc

To study the fluorination effected sodiophilic sites, the Na/
F16CuPc interface was investigated. The interaction pro-
cess (i) of Na deposited on F16CuPc films was first studied 
(Fig. 4). With 0.2 nm Na deposited, interaction between 
Na and nitrogen atoms is observed with the formation of 
NNa component at 0.6 eV lower binding energy (relative 
to NC), and the relevant CN-Na component at 0.5 eV lower 
binding energy (relative to CN). The signal of Cu(I) ions 
appears owing to the reduction of Cu(II) ions. Besides, 

a new FNa component at 3.6  eV lower binding energy 
(relative to FC), and the relevant CF-Na signal at 3.1 eV 
lower binding energy (relative to CF), appear in F 1s and 
C 1s region respectively, indicating the ionic interaction 
between Na and fluorine atoms. According to DFT calcula-
tions (to be discussed in detail at the end of the paper), we 
suggest that in this step, sodium prefers to interact with the 
outer aza bridge nitrogen atoms, due to the neighboring 
strong electronegative fluorine atoms. We suppose that the 
deposited sodium atoms transfer electrons to both nitrogen 
and fluorine atoms at the same time. With increasing Na 
thickness, more nitrogen and fluorine atoms take part in 
the interaction and more Cu(II) ions are reduced. Notably, 
with 4.9 nm Na deposited, only half nitrogen atoms are 
shown as NNa component, but nearly all fluorine atoms are 
shown as FNa component, indicating that sodium prefers to 
interact with fluorine atoms and only interacts with outer 
aza bridge nitrogen atoms in F16CuPc. It should also be 
mentioned that no CC-Na signal is observed during the Na 
deposition process, which is different from that at Na/CuPc 
interface. Through DFT calculations (to be discussed in 
detail at the end of the paper), we suggest that it is related 
to the Na interaction position: when sodium atom interacts 
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with the outer aza bridge nitrogen atom, Na locates at the 
bridge site between two neighboring benzene rings with-
out obvious charge transfer to the aromatic carbon atoms. 
Consequently, at Na/F16CuPc interface, the interaction 
preferentially takes place between sodium and fluorine 
atoms as well as the outer aza bridge nitrogen atoms. Simi-
lar to Na/CuPc interface, central Cu(II) ions are reduced 
to Cu(I) ions.

The interaction process (ii) of F16CuPc deposited on 
metallic sodium was also studied (Fig. 5). Similarly, the 
reversed deposition sequence has little influence on the inter-
facial interaction, except that the interaction between sodium 
and inner pyrrolic nitrogen atoms is detected in this case. 
Specifically, with 0.12 nm F16CuPc deposited on metal-
lic Na film, the C 1s peak consists of three components: 
CF-Na, CN-Na, and CC, which means that all carbon atoms 
linked with nitrogen or fluorine atoms receive electrons from 
sodium atoms. In contrast, the other carbon atoms remain 
intact with that of pristine F16CuPc. Over half the nitrogen 
atoms are shown as NNa component and all fluorine atoms 
are shown as FNa component, corresponding well to the C 1s 
signal. It indicates that both kinds of nitrogen atoms and all 
fluorine atoms take part in the interaction process owing to 
the presence of abundant sodium atoms. Also, the Cu 2p3/2 
signal originates from Cu(I) ions due to the reduction caused 
by the charge transfer. Then with 0.6 nm F16CuPc deposited, 

the original CF signal of F16CuPc appears, indicating that 
the interaction only takes place in the near interface region. 
The reacted F16CuPc molecules are gradually covered under 
the unreacted F16CuPc [60]. With further F16CuPc depos-
ited, nearly all CF-Na and FNa transform to CF and FC respec-
tively, while the signals of CN-Na and CC remain unchanged. 
Another observation is that there is always over half nitro-
gen atoms shown as NNa. According to the charge distri-
bution calculation (Fig. 6), we suggest that it is related to 
the strong electron-withdrawing effect of fluorine atoms. In 
other words, since the inner pyrrolic nitrogen atoms are more 
electropositive with stronger electron affinity and sodium 
atoms are abundant around the molecules, the electron trans-
fer from sodium to inner pyrrolic nitrogen atoms is strength-
ened. Consequently, when F16CuPc molecules are deposited 
on Na, the interaction between sodium and inner pyrrolic 
nitrogen atoms is also observed, which is strengthened due 
to the strong electron-withdrawing effect of fluorine atoms.

The evolution of electronic structures at Na/F16CuPc 
interface was also measured by in-situ UPS characteriza-
tions. As shown in Additional file 1: Fig. S4, the VB shape 
of F16CuPc and the position of HOMO (spectral weight 
maximum located at 1.44 eV below the EF), are consistent 
with the prior reports [54, 66]. With increasing Na deposi-
tion, the gradual decrease of work function measured from 
SECO is observed due to the formation of reacted F16CuPc 
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with electron receiving from Na. Meanwhile, the original 
F16CuPc peak broadens and weakens in the VB region. A 
new LUMO-derived signal is observed at 0.68 eV, which is 
related to the charge transfer from sodium to the LUMO of 
F16CuPc [60].

In addition, UPS spectra for Na grown on W with increas-
ing F16CuPc deposition (Additional file 1: Fig. S5) show 
similar results in a reverse process. After the deposition of 
F16CuPc, the work function measured from SECO gradually 
increases to 4.32 eV with 1.8 nm F16CuPc deposited, becom-
ing gradually close to that of unreacted F16CuPc (4.81 eV). 
In the VB region, the original Na peak broadens and weak-
ens, and great shape change takes place with F16CuPc depo-
sition, which transforms gradually to be the similar shape of 
F16CuPc. Notably, in the HOMO edge region, with increas-
ing F16CuPc deposition, two new LUMO-derived signals 
appear at the lower binding energy side (0.86 and 1.58 eV 
with 1.8 nm F16CuPc deposited), which is more than that in 
the interaction process of Na deposited on F16CuPc. It may 
relate to the relative abundant sodium atoms, which are able 
to provide enough electrons to fill two unoccupied orbitals of 
molecules. Besides, another peak appears at 2.25 eV, which 
is proposed to originate from the HOMO state of pristine 
F16CuPc, considering its binding energy difference with 
other main signals in the VB spectrum.

3.3 � DFT calculation

DFT calculations for Na adsorption on a single Pc molecule 
were carried out to further study the interaction order of 
different sites. Two possible optimized structures of Na-
CuPc complex and four possible optimized structures of 
Na-F16CuPc complex were studied as shown in Fig. 6a, b 
respectively. For Na-CuPc, the above position of complex 
displays the larger adsorption energy (ΔE =  − 0.95 eV), indi-
cating that sodium prefers to interact with the inner pyrrolic 
nitrogen atoms and then with the outer aza bridge nitrogen 
atoms. The optimized bay position of Na-CuPc complex also 
shows that Na is adsorbed close to one side of benzene ring 
when it interacts with the outer aza bridge nitrogen atoms, 
thus it is able to transfer charge to the benzene rings result-
ing in the formation of CC-Na in the C 1s spectrum. For Na-
F16CuPc, the bay position of complex displays the largest 
adsorption energy (ΔE =  − 1.37 eV). It indicates that Na 
is first anchored by the outer aza bridge nitrogen atom and 
two symmetric fluorine atoms, and then interacts with the 
inner pyrrolic nitrogen atoms and the last fluorine atoms. 
And the optimized bay position of Na-F16CuPc complex, 
also shows that Na is anchored at the bridge site between 
two neighboring benzene rings and no obvious charge is 
transferred to the aromatic carbon atoms, thus no CC-Na sig-
nal is observed at the Na/F16CuPc interface. Moreover, from 
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the charge distribution of pristine F16CuPc, it is observed 
that the inner pyrrolic nitrogen atom sites are highly posi-
tive charged, confirming that the interaction between Na and 
the inner pyrrolic nitrogen atoms is strengthened at the Na/
F16CuPc interface.

4 � Conclusion

Fluorination promoted sodiophilic sites were investigated by 
in-situ XPS/UPS and DFT calculations through the compari-
son of the model systems of CuPc and F16CuPc. The pro-
posed Na interaction behaviors can be described as follows: 
Na atoms prefer to interact with the inner pyrrolic N atoms 
in CuPc, whereas they prefer to interact with the outer aza 
bridge N atoms with the assistance of two neighboring sym-
metric F atoms in F16CuPc. Moreover, due to the stronger 
electron affinity of inner pyrrolic nitrogen atoms of F16CuPc 
caused by the electron-withdrawing effect of fluorine atoms, 
stronger interaction between sodium atoms and inner pyr-
rolic nitrogen atoms is observed at Na/F16CuPc interface. 
In addition, the reduction of central Cu(II) to Cu(I) ions in 

both F16CuPc and CuPc molecules is observed. Our model 
studies unravel the Na interaction process at Na/CuPc and 
Na/F16CuPc interfaces, especially the effect of fluorination 
on sodiophilic sites, which provide insights into the radical 
design of fluorine-containing electrolyte additives and hosts 
for the protection of sodium metal anode.
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