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Abstract
The transient electroluminescence (EL) technique is widely used to evaluate the carrier mobility in the field of organic light 
emitting diodes. The traditional analog detection strategy using oscilloscopes is generally limited since the background noise 
causes an underestimation of the mobility value. In this paper, we utilize time-correlated single-photon counting (TCSPC) to 
probe the transient EL for mobility calculation. The measurements on tris(8-hydroxyquinoline) aluminum  (Alq3) show that 
the electron mobilities obtained using the TCSPC technique are slightly higher than those obtained from the analog method 
at all the investigated voltages. Moreover, the TCSPC mobilities demonstrate weaker dependence on the root of electrical 
field compared to the oscilloscope mobilities. These improvements are attributed to the unique principle of TCSPC, which 
quantifies the EL intensity by counting the number of single-photon pulses, improving its single-photon sensitivity and elimi-
nating the negative impacts of electrical noise. These advantages make TCSPC a powerful technique in the characterization 
of time-resolved electroluminescence.

Keywords Mobility · Transient electroluminescence (EL) · Time-correlated single-photon counting (TCSPC) · Sensitivity · 
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1 Introduction

Mobility is a fundamental parameter of organic semicon-
ductors that characterizes their transport properties [1], thus 
evaluating the mobility value is an essential step prior to 
constructing optoelectronic devices [2–5]. To date, many 
methods have been developed to measure mobility, including 
space-charge limited current [6–9], time-of-flight photocur-
rent [10, 11], transient electroluminescence (EL) [12, 13], 

dark and light injection transient current [14, 15], impedance 
spectrum, and transistor techniques [16, 17]. Among these, 
transient EL is one of the most common techniques used to 
quantify mobility [18–20].

To implement transient EL, a photomultiplier tube (PMT) 
and oscilloscope are often employed to probe the transient EL 
trance, from which the EL turn-on time is calculated. In this 
process, PMT converts EL into current by an approximate  106 
amplification, after which the photocurrent is further trans-
formed into voltage by sampling resistors connected in series. 
The analog voltage across the resistors is ultimately recorded 
by a parallel oscilloscope [21]. Essentially, this strategy detects 
the analog voltage signal, whose amplitude represents the 
intensity of EL. However, analog detection has two intrinsic 
weaknesses. First, a random amplification process in PMT will 
cause a considerable amount of amplitude fluctuation, which 
contributes noise to the final analog signal. Although this phe-
nomenon can be lessened by taking the average of multiple 
measurements, the noise cannot be eliminated completely. 
The second weakness is that the electronic noise of the test 
system is also amplified and recorded into the results. This 
noise also prevents the instrument from recording an accurate 
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EL turn-on time. Generally, the turn-on time is overestimated, 
which causes mobility to be underestimated. Therefore, new 
strategies with improved photon detection abilities are ideal to 
precisely and accurately quantify intrinsic mobility.

The time-correlated single-photon counting (TCSPC) tech-
nique has been proved as effective for measuring transient EL 
[22–25]. Instead of detecting the analog signal intensity, the 
photon counting technique allows for the quantification of 
single-photon pulses caused by the excitation of dispersed 
individual photons [26]. Under extremely weak illumination, 
only one photon could reach the PMT detector and cause a 
single-photon pulse within the signal period. Then, the arrival 
time of the corresponding detector pulse after the electrical 
pulse could be recorded. After an adequate duration of time 
(signal period), the number of single-photon pulses vs. the 
arrival time could be measured, which generates the transient 
EL curve. Essentially, the number of single-photon pulses (not 
their amplitudes) represents the EL intensity. This unique test-
ing technique is advantageous over analog detection in three 
ways. Firstly, with optimal settings, the single-photon signal 
could be individually identified since the amplitude of the 
background noise signals is much smaller, making TCSPC 
extremely sensitive when detecting at the single-photon level. 
Secondly, the electrical noise could be eliminated from the 
measurement results. Thirdly, TCSPC has a picosecond resolu-
tion, which satisfies the demands of transient EL. These unique 
advantages make TCSPC an ideal alternative to record time-
resolved EL for mobility quantification.

In this paper, we attempted to utilize the TCSPC technique 
to investigate and evaluate organic mobility. Analog detec-
tion with an oscilloscope was also performed for comparison. 
TCSPC measurements were carried out on tris(8-hydroxyqui-
noline) aluminum  (Alq3), a material widely used in the field of 
organic light emitting diodes (OLEDs) [27]. The device struc-
ture is indium tin oxide (ITO)/1,4,5,8,9,11-hexaazatriphenylene 
hexacarbonitrile (HATCN, 10 nm)/4,40-Bis[N-(1-naphthyl)-N-
phenylamino]-biphenyl (NPB, 30 nm)/Alq3 (60 nm)/LiF/Al. 
The energy level diagram of the device and molecule structures 
are also shown in Fig. 1. The resulting TCSPC measurements 
show shorter turn-on times, thus higher mobility values at all 
investigated voltages. Meanwhile, the dependence of mobility 
on the root of electrical field is compared. Finally, the advan-
tages of TCSPC and possible future improvements in the char-
acterization of mobility are further discussed.

2  Experimental

2.1  Materials

NPB,  Alq3, and HATCN were purchased from Jilin OLED 
Material Tech Co., Ltd. LiF was procured from Aldrich. All 
materials were used without further purification.

2.2  Device fabrication

The devices were prepared on 180 nm thick, pre-patterned 
ITO. The ITO substrates were ultrasonically cleaned in 
diluted detergent for 30 min and washed using deionized 
water. The substrates were then dried by nitrogen gas and 
further dried in an oven at 120 °C for 20 min. The organic 
layer and aluminum cathode layer were grown under 
vacuum pressure of less than 5.0 ×  10−5 Pa. The evapo-
ration rate of the organic layer was about 1 Å/s and the 
evaporation rate of the Al cathode layer was between 3 and 
5 Å/s. The emission area of the devices was 4 mm × 4 mm. 
HATCN and LiF were used as the hole- and electron-injec-
tion layers, respectively, to realize the ohmic injection nec-
essary in transient EL measurements. At the same time, 
60 nm thick  Alq3, twice the thickness of NPB, was utilized 
to ensure that the electron drift time is the limiting factor.

2.3  Device characterization

2.3.1  OLED performance

The EL spectra were obtained using a spectrometer 
(FLS980, Edinburgh Instruments). The density–volt-
age–luminance characteristics of the current were meas-
ured by a source meter (2400, Keithley instruments) and 
luminance meter (LS110, Konica Minolta). The device 
performance could be found in the Additional file  1: 
Figs. S1 and S2.
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Fig. 1  Energy level diagram of device and molecule structures
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2.3.2  Transient EL measurements

The schematic diagram of the proposed setup is shown 
in Fig. 2a. In this strategy, a commercial transient spec-
trometer (FLS980, Edinburgh Instruments) with a proven 
TCSPC system and a PMT detector (R928P, Hamamatsu 
Photonics K.K.) is used. The functions of this instrument 
are similar to the PMT and oscilloscope used in the tradi-
tional method. The signal capturing, recording, and pro-
cessing, as well as date processing, are all carried out by 
this spectrometer. During this process, the pulse genera-
tor (81160A, Keysight) sends the synchronization signal, 
while the TCSPC module quantifies the number of photons 
immediately after receiving the trigger signal. Since the 
synchronization signal of the pulse generator is a TTL 
signal and the TCSPC module is designed to only receive 
NIM signals, a digital delayed generator (DG 645, Stan-
ford research system) is used to convert the trigger signal 
from TTL into NIM form with a 85 ns time delay. The 
pulse generator works as an internal trigger model, while 
the digital delayed generator and TCSPC both work as an 
external trigger model. The generator output voltage has a 
fixed pulse length of 2 or 5 µs and a frequency of 50 kHz. 
The pulse amplitude is tunable. The TCSPC module oper-
ates at a time range of 20 µs and resolution of about 5 ns. 
Each measurement autostops at a peak counting of 1000.

For the oscilloscope method, a PMT detector (H11902-
110, Hamamatsu Photonics K.K.) and oscilloscope 
(DSOS104A, Keysight Instruments) are used, with the sam-
pling resistance set at 1 kΩ to balance the detection limit 
and precision. An average number of 1024 is set for the 
oscilloscope to smooth the transient EL trace. The pulse 
generator works as the host to trigger the oscilloscope. The 
pulse length and frequency are fixed at 10 µs and 1 kHz, 
respectively.

3  Results and discussion

Figure 2b shows a typical transient EL profile measured by 
TCSPC technique with a pulse length, tP, of 2 µs and ampli-
tude of 7 V. Three regions are clearly observed in Fig. 2b, 
which are consistent with the analog detection results [28]. 
In region I, external pulse is applied and charge carriers 
are injected from the electrodes. Since the mobility of NPB 
is approximately two orders of magnitude higher [29], the 
holes quickly drift across the thinner NPB layer and arrive at 
the interface. After a drift time of tD, the electrons with rela-
tive lower mobilities begin to meet the hole and recombine 
into excitons to generate EL from  Alq3 molecules near the 
NPB/Alq3 interface. In region II, more electrons reach the 
NPB/Alq3 interface and EL continues to increase intensity. 
Note that the sum of the rising time, tR, and drift time, tD, 
is equal to the pulse width of 2 µs. Here, the drift time of 
electrons is experimentally extracted by tD = tP − tR. In region 
III, EL begins to decay immediately after the pulse until the 
excitons are completely consumed. The device is then ready 
for the next pulse cycle. In this study, we focus on region I, 
from which the relative lower electron mobility of  Alq3 is 
determined by � = d

2∕(tDV) , where V is the external pulse 
amplitude, d is the layer thickness, and tD is the electron drift 
time during the EL turn-on.

It is clearly seen from Fig. 2b that the baseline of region 
I and end of region III is free of noise in the TCSPC spectra. 
In addition, the EL turn-on point dividing regions I and II is 
clear. These features are due to the fact that TCSPC records 
the number, not amplitude, of the single-photon pulses, 
eliminating background noise from the final results. Prior to 
EL turn-on, no photon is emitted, thus no signal is detected. 
A straightforward inference is that the signal-to-noise ratio 
(SNR) could be still high even for a weak signal [30]. In 
contrast, analog detection with an oscilloscope gives a noisy 

Fig. 2  a Schematic diagram of the setup with TCSPC technique. b Transient EL profile with TCSPC technique at pulse length of 2 µs and ampli-
tude of 7 V
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background (Fig. 4), since the oscilloscope records both the 
photon response and electrical noise. The electrical noise 
level of dark current is determined by the equipment param-
eter and circuit. In case of a weaker EL intensity that is 
close to the background noise, the signal is highly affected, 
as shown in Fig. 4. Using this as comparison, it is safe to 
conclude that the TCSPC technique is able to quantify the 
EL turn-on time much more accurately than the traditional 
analog method.

Encouraged by the benefits of TCSPC, we also conducted 
the mobility measurements on real devices. Figure 3a and b 
show the transient EL curves as a function of pulse ampli-
tude using TCSPC and oscilloscope techniques, respectively. 
The turn-on point for transient EL is clearly observed in 
Fig. 3a. Additionally, the values of tD were extracted from 
the transient EL curves to calculate mobility values, which 
are shown in Fig. 3c, plotted against the root of the electri-
cal field. It can be seen from Fig. 3c that mobility values 
measured by TCSPC are slightly higher than those meas-
ured by oscilloscope. This is because mobility is depend-
ent on t−1

D
 and TCSPC could detect shorter tD due to its 

enhanced photon detection ability. The initial EL intensity 
is also extremely low at tD since only a few electrons have 

reached the NPB/Alq3 interface, thus only TCSPC can detect 
these signals due to its single-photon sensitivity. Only as 
time passes and more electrons reach the interface does EL 
become strong enough for the oscilloscope to detect. Clearly, 
under the same conditions, the TCSPC technique could 
detect EL earlier, providing a more accurate tD and mobility.

Fig. 3  Transient EL profile as a function of voltage for a TCSCP and b oscilloscope. The dash horizontal line in figure a is the virtual baseline 
due to high background noise. c Dependence of mobility on the root of electrical field. The lines are fitting with a linear dependence

Fig. 4  Transient EL profiles measured by oscilloscope with various 
resistances. The pulse length is 2 µs and amplitude is fixed at 7 V
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It is also important to note, from Fig. 3c, that both TCSPC 
and oscilloscope mobilities show a linear dependence on the 
root of electrical field in the semi-logarithmic plot [1] due 
to the charge-dipole interaction within the hopping model 
in the disordered organic semiconductor [31–33]. The slope 
is 1.16 × 10

−3 and 1.33 × 10
−3 for TCSPC and oscilloscope 

mobilities, respectively. According to the results, oscillo-
scope mobilities demonstrate stronger dependence, which 
may also be contributed by the difference in detection abil-
ity. As shown in Fig. 3a, the dashed line represents a hypo-
thetical case with higher background noise, where tD will 
be overestimated for all voltages, especially for lower pulse 
amplitudes. This will eventually cause an overestimation of 
the mobility dependence.

To provide additional supporting evidence for the deduc-
tions above, mobility measurements were taken under dif-
ferent sampling resistances with the same EL illumination. 
Under these conditions, lower sampling resistances resulted 
in a decrease in across voltage. In other words, stronger illu-
mination is needed to achieve the same across voltage for 
lower sampling resistances. In addition, lowering the resist-
ance increased the photon detection limit, which is an oppor-
tunity to examine the influence of photon detection ability on 
mobility quantifying. Figure 4 shows the results under 1 kΩ 
and 100 Ω resistances using the analog method and the dif-
ference is evident at the baseline. As the resistance decreased 
from 1 kΩ to 100 Ω, the signal-to-noise ratio worsened and 
the transient EL is smaller at a fixed time. The background 
noise exhibits a stronger impact with the 100 Ω resistance. 
Consequently, the tD value for 100 Ω is larger than that of 
1 kΩ. Taking the above into consideration, it is safe to say 
that decreasing the photon detection ability causes a greater 
overestimation of tD. Again, these findings emphasize the 
criticality of the photon detection ability for the accurate 
quantification of mobility.

4  Conclusions

In summary, the TCSPC technique has been successfully 
proved as effective for the quantification of transient EL 
and organic mobility. When compared to analog detection, 
TCSPC demonstrates better photon detection limit and sensi-
tivity, as well as elimination of background electrical noise. 
These advantages are essential to accurately evaluate mobil-
ity values and their field-dependence. The experimental 
results of  Alq3 using the TCSPC technique show a slightly 
higher mobility when a constant electrical field is applied 
and weaker field-dependence at the investigated voltage 
range. Our results demonstrate that the TCSPC technique 

is an ideal method in tracing transient electroluminescence 
and can be further explored in terms of EL device physics.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12200- 022- 00021-8.
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