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Abstract
As an important computing operation, photonic matrix–vector multiplication is widely used in photonic neutral networks and 
signal processing. However, conventional incoherent matrix–vector multiplication focuses on real-valued operations, which 
cannot work well in complex-valued neural networks and discrete Fourier transform. In this paper, we propose a systematic 
solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field, and 
from small-scale (i.e., 4 × 4) to large-scale matrix computation (i.e., 16 × 16). Combining matrix decomposition and matrix 
partition, our photonic complex matrix–vector multiplier chip can support arbitrary large-scale and complex-valued matrix 
computation. We further demonstrate Walsh-Hardmard transform, discrete cosine transform, discrete Fourier transform, 
and image convolutional processing. Our scheme provides a path towards breaking the limits of complex-valued computing 
accelerator in conventional incoherent optical architecture. More importantly, our results reveal that an integrated photonic 
platform is of huge potential for large-scale, complex-valued, artificial intelligence computing and signal processing.

Keywords  Photonic matrix–vector multiplication · Complex-valued computing · Microring array · Signal/image processing

1  Introduction

With the rapid advancement of technology in recent dec-
ades, there is a growing demand for large-capacity, high-
speed computing over traditional computing. This is 
especially seen in the field of convolutional processing, a 

computationally intensive operation in electronics that occu-
pies over 80% of the total processing time for image pro-
cessing [1–3]. Optical computing has the ability of parallel 
processing with wavelength division multiplexing (WDM) 
due to its intrinsic high speed and low power consumption, 
thus has been proposed as a promising candidate for mass 
data processing [4]. Matrix multiplication is the kernel and 
most common operation in artificial intelligence (AI). It is 
widely used in artificial neutral networks (ANNs), which 
have been universally applied in signal processing, imag-
ing recognition, voice recognition, real-time video analysis, 
and autonomous driving [5, 6]. The optical neural networks 
(ONNs) can improve the computation speed by several 
orders of magnitude. For example, a photonic convolutional 
accelerator comprised of soliton microcombs could carry 
out up to 10 trillion operations per second [7]. In addition, 
phase-change material (PCM) has been employed in non-
volatile memory storage in optical computing to reduce the 
energy consumption of optical-electrical conversion during 
weight data refreshing [8–11]. Recently, an integrated pho-
tonic hardware accelerator has successfully executed 1012 
multiply-accumulate operations per second by combining 
phase-change-material memory and soliton microcombs [9].
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A copious amount of research has been conducted in opti-
cal matrix computing using spatial light modulators [12, 13], 
electro-optic modulations [14–16], direct driven LED arrays 
[17], acousto-optic Bragg cells [18–20], and photorefrac-
tive medias [21–23]. Although spatial light modulators and 
other spatial elements are easily programmable, these meth-
ods are in general bulky, complex, and power-consuming. 
With the advancement of integrated photonics technology 
and hardware implementation of nanophotonic processors, 
integrated photonic platforms have shown huge potential for 
high-performance computing. At present, most existing neu-
ral networks are based solely on real-valued algorithms, but 
complex-valued algorithms may provide a significant advan-
tage when performing tasks, such as the symmetry or XOR 
problem [24]. A great deal of research on integrated optical 
computing networks has been done using a cascaded Mach 
Zehnder interferometer (MZI) mesh [25–28]. MZI meshes 
have been widely used in linear optical circuits [25, 29], 
quantum information processing [30], universal multiport 
interferometers [27], optical modes descramblers [31, 32], 
and polarization processors [33]. For the linear section of 
optical neutral networks, impressive works, such as vowel 
recognition, have been demonstrated [34]. This method 
allows for good reconfigurability and independent control 
of both the amplitude and phase. However, the loading of 
the transmission matrix relies on iterative algorithms, which 
are quite slow and unsuitable for flexible matrix compu-
tations. Moreover, MZIs require a larger power consump-
tion than resonant devices, such as microring resonators 
(MRRs), which are compact (several micron radius), more 
energy-efficient, highly integrated, and easily scalable [35, 
36]. MRRs are resonant devices and the transmission coef-
ficients are wavelength-sensitive. Parallel incoherent matrix 
computing can be achieved by controlling the resonant states 
of MRRs, which is commonly used in optical tensor comput-
ing and ONNs [11, 37]. The problem of MRR arrays is that 
the computation is incoherent, which means MRR arrays can 
only perform amplitude modulation without phase informa-
tion. Thus, MMR arrays can only compute non-negative or 
real numbers assisted by differential detection. In addition, 
ultra-large-scale MRRs are difficult to implement because of 
the heavy thermal crosstalk and electronic circuits packag-
ing. Hence, it is believed that MRRs cannot be implemented 
in a large-scale matrix multiplication to compute complex 
numbers.

In this paper, we present a systematic solution to extend 
the matrix computation of MRR arrays from the real-valued 
field to the complex-valued field, and from small scale (i.e., 
4 × 4) to large scale matrix computation (i.e., 16 × 16). We 
experimentally demonstrate typical matrix–vector multipli-
cation (MVM) applications of MRR arrays in Walsh Hard-
mard transform (WHT), discrete cosine transform (DCT), 
discrete Fourier transform (DFT), and image convolutional 

processing. These applications have significantly expanded 
the fields of optical computation based on MRR arrays. 
Our work shows huge potential for high-speed and univer-
sal matrix computations, such as applications in photonic 
accelerators and optical artificial intelligence.

2 � Principle

The structure of the proposed on-chip MRR array (i.e., 
photonic complex-MVM core) is schematically illustrated 
in Fig. 1. The on-chip photonic complex-MVM core con-
sists of a tunable silicon MRR array that includes 16 add-
drop MRRs arranged in 4 rows and 4 columns. The entire 
architecture is based on wavelength-division multiplexing 
(WDM) and on-chip reconfigurable MRR array. The MRR 
array forms a complete network of a 4 × 4 transmission 
matrix, whose configuration can be realized by tuning the 
heater of each MRR.

Without consideration of the transmission loss, every 
add-drop MRR in each row of the array decides the through 
transmittance coefficient of 1 − aij and drop transmittance 
coefficient of aij , respectively [38]. Then, the difference of 
these two ports is given by

where the 4 × 1 vector O =
[
o1, o2, o3, o4

]T represents the 
output vector, 4 × 1 vector I =

[
i1, i2, i3, i4

]T represents the 
input vector, and 4 × 4 matrix X stands for the transmis-

sion matrix. When the transmission loss is ignored, the drop 
port coefficient aij falls in the range of [0, 1] and the cor-
responding coefficient in the transmission matrix, defined 
by 1 − 2aij , falls in the range of [−1, 1] . Thus, in the MVM 
operation, the input vector of I is non-negative, while the 
transmission matrix of X and the output vector of O can 
cover the real number field.

Figure 1 also shows the working principle to extend the 
matrix computation of the MRR array from the real-valued 
field to the complex-valued field, and from small-scale (i.e., 
4 × 4) to large-scale matrix computation. Combining matrix 
decomposition and matrix partition, our photonic complex-
MVM chip can support arbitrary large-scale and complex-
valued matrix computation.

Without loss of generality, the MVM consists of an 
8 × 1 complex input matrix of I , 8 × 8 complex transmis-
sion matrix of X , and output matrix of O . To process a 
large amount of MVM, the size of the matrices is reduced 

(1)

O = XI =

⎡⎢⎢⎢⎣

1 − 2a11 1 − 2a12
1 − 2a21 1 − 2a22

1 − 2a13 1 − 2a14
1 − 2a23 1 − 2a24

1 − 2a31 1 − 2a32
1 − 2a41 1 − 2a42

1 − 2a33 1 − 2a34
1 − 2a43 1 − 2a44

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

i1

i2

i3

i4

⎤⎥⎥⎥⎦
,
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through matrix partition. Matrix I can be broken into two 
4 × 1 matrices, while matrix X can be divided into four 
4 × 4 matrices. To process complex MVM in full complex 
number field, matrix I is divided into I1 , I2 , I3 , I4 , defined 
as the positive real, positive imaginary, negative real, and 
negative imaginary parts of matrix I , respectively. Matrix 
X is also divided into X1 and X2 , representing the real and 
imaginary parts of X . The elements of the input subma-
trix, In =

[
i1, i2, i3, i4

]T
n
(n = 1, 2, 3, 4) , are loaded onto the 

beams with different wavelengths of �1 , �2 , �3 , and �4 by 
optical intensity modulators (IMs). After mixing by a wave-
length multiplexer (MUX), the input is equally divided into 
four branches, each of which consists of four independent 
MRRs aligned to resonate the �1 , �2 , �3 , and �4 wavelengths, 
respectively. Matrix Xn(n = 1, 2) is loaded onto the photonic 
complex MVM core with the 4 × 4 MRR array, where the 
coefficients are determined by the voltages applied to each 
MRR. The output matrix of O is detected by balanced pho-
todetectors (PDs).

If the input vectors of I1 , I2,…, Im are loaded in series, 
the input vector can be expanded into a n × m matrix where 
I = [I1, I2, … , Im] . Similarly, the corresponding output pow-
ers of O1 , O2,…, Om should be measured in series so that the 
output m × n matrix can be written as O = [O1,O2, … ,Om] . 
Hence, the MVM can be expanded into matrix–matrix mul-
tiplication denoted by the following equation:

3 � Results

3.1 � Fabrication and experimental setup

The proposed device was fabricated on a silicon-on-insu-
lator (SOI) platform. A 725 μm SOI wafer with 220 nm of 
top silicon and 2 μm of buried oxide (BOX) was used. The 
layout is transferred onto photoresist using electron beam 

(2)

[
O1,O2,… ,O

m

]
= X

[
I1, I2,… , I

m

]
.

I

I
I

I
I

Fig. 1   Working principle of complex-valued MVM. The entire architecture containing the input module, photonic complex-MVM core, and bal-
anced-PDs. To realize the complex-valued MVM, the input matrix I and transmission matrix X are partitioned, decomposed, and subsequently 
fed into the input module and MVM core, respectively. The different colors correspond to different light wavelengths
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lithography (EBL) and the top silicon is etched by induc-
tively coupled plasma (ICP). The grating coupler is shal-
lowly etched by 70 nm, while the silicon waveguide is fully 
etched by 220 nm. Between the waveguide and metal elec-
trodes, 1 μm of silicon dioxide was deposited using plasma 
enhanced chemical vapor deposition (PECVD). The metal 
for the heaters and pads was deposited by electron beam 
evaporator (EBE). The heaters were made of 150 nm thick 
and 1 μm wide Ti. The electrical wires and pads were made 
of 20/250 μm thick Ti/Au.

The microscope image of the fabricated chip is illustrated 
in Fig. 2a. The input signal is injected through a grating cou-
pler on the left and subsequently divided into four identical 
branches with a 4 × 4 MRR array. There are eight output 
gratings, representing the bus through waveguides and bus 
drop waveguides for each row of MRRs. The eight output 
gratings are placed in equal distances of 127 μm, the exact 
distance of the fiber array (FA) coupler. Figure 2b shows the 
packaged chip, where the metal pads are connected to the 
printed circuit board (PCB) by wire-bonding and the PCB 
is controlled by a custom 120-channel voltage source via a 
flexible flat cable. The input optical grating is coupled to 
an optical fiber that is vertically glued to the SOI chip. The 

output optical gratings on the chip are coupled to an optical 
FA that is attached to the PCB and equally distributed in 
127 μm spacing V-groove, so that vertical output light from 
the chip is reflected 45° by the FA.

The experimental setup is shown in Fig. 2c. A continu-
ous-wave (CW) laser was used as the stable optical source 
for the IMs. The electrical input data was encoded by a pro-
grammable voltage source and used as the driving signal 
that was temporally fed into the IMs. Since the output of 
the modulator is polarization-dependent, PCs were placed 
before and after the IMs to control the polarizations. A dense 
wavelength division multiplexing component (DWDM) was 
employed to combine the four wavelengths into a bus wave-
guide coupled to the packaged SOI chip. The optical power-
meter is capable of both detecting and displaying the power 
values of the optical signals, which allowed us to obtain and 
record the results directly.

To verify the MVM function, IMs were used to config-
ure the input vector I , while the transmission matrix X was 
loaded by tuning the voltages applied on the MRR array. The 
output power values were then obtained from the balanced 
PDs. After calibration and normalization, the output vector 
O was obtained. When the input is the identity matrix, the 

)b()a(

(c)

input
fiber

chip

output FA

wire-bonding
PCB

laser
source PC

voltage
source

PC

DWDM

coupler

chip

powermeter
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Fig. 2   a Microscope image of the on-chip 4 × 4 MRR array, inset: zoomed in microscope image of the tunable MZI-MRR. b Image of the pack-
aged chip. FA fiber array, PCB printed circuit board. c Experimental setup of the matrix arithmetic processor. PC polarization controller, IM 
intensity modulator, DWDM dense wavelength division multiplexing
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output matrix O is equivalent to the transmission matrix X , 
allowing the transmission matrix X to be directly read at 
the output ports. In practical situations, the variation ranges 
of through transmittance coefficient and drop transmittance 
coefficient are different due to MRR loss. In this case, the 
coefficients will require recalibration for actual optical 
matrix computation (See Appendix A).

To statistically describe the performance of this multiplier, 
over 500 sets of input vector data and matrix, X , were config-
ured to the IMs and MRR array, respectively. Experimental 
results showed that the majority of the absolute values of the 
errors fall within the range of 0 − 0.1, which suggets rather 
accurate computing. See Appendix B for more details.

3.2 � Matrix–vector multiplication extending 
to the full real number field

Since the input vector I was determined by the optical pow-
ers modulated by the IMs, the elements must be non-nega-
tive. Although the transmission matrix X and output vector 
O can only cover the real number field, our proposed scheme 
allows for the conversion of the input elements into negative 
values, extending the MVM to the full real number field.

Figure 3 illustrates the proposed scheme. First, the input 
vector (real numbers) was divided into I+ , containing all 
the positive elements and zeros, and I− , containing all the 
absolute values of the negative elements. The relationship 
between I+ , and I− are given by

The resulting two non-negative vectors, I+ and I− , are 

subsequently used in place of the origin input vector. The 
transmission matrix X was then loaded and the input vectors 
were configured as I+ and I− , respectively, to obtain the two 
output vectors, P and Q . The targeted output matrix O was 
obtained following subtraction operation. The relationships 
between P , Q , and O are expressed below

(3)

⎧
⎪⎨⎪⎩

I+ =
�I�+I
2

,

I− =
�I�−I
2

,

I = I+ − I−.

(4)

⎧⎪⎨⎪⎩

P = XI+,

Q = XI−,

O = P − Q.

1
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Fig. 3     Matrix computation extending to the full real number field. The 4 × 1 block array represents the input or output vectors and the 4 × 4 
block array represents the transmission matrix. The bar graph shows the results from one operation, where the inputs or experimental outputs are 
represented by the colored bars and the theoretical outputs or transmission matrix are represented by the gray bars
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Using the method described above, we were able to 
successfully split a real-valued optical MVM operation 
into two non-negative optical MVMs and one subtraction 
in the electrical domain. Figure 3 shows an experimen-
tal example of a real-valued MVM. The theoretical and 
experimental results are shown in three-dimensional bar 
graphs next to the corresponding matrices or vectors.

3.3 � Matrix–vector multiplication extending 
to the full complex number field

To further extend our matrix computation into the complex 
number field, the input vector I and transmission matrix X 

were both separated into a real part and imaginary part. The 
output vector can be expressed as

where i is the square root of minus one, real(M) represents 
the real part of matrix M , and imag(M) represents the imagi-
nary part of matrix M (here,M can be X, I or O).

The matrix multiplication can then be divided into

(5)

O = XI = (real(X) + i ∗ imag(X))(real(I) + i ∗ imag(I)),

(6)

{
real(O) = real(X)real(I) − imag(X)imag(I),

imag(O) = real(X)imag(I) + imag(X)real(I).
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Fig. 4     a Matrix computation extending to the full complex number field. The 4 × 1 block array represents the input or output vectors and the 
4 × 4 block array represents the transmission matrix. The bar graph shows the theoretical transmission matrix. The coordinate figure shows the 
complex inputs or experimental complex outputs of the operation. b Theoretically expected and experimental results for the complex-valued 
matrix multiplication
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As seen in Fig. 4a, the complex-valued matrix multiplica-
tion was divided into four operations of optical MVMs, spe-
cifically real(X)real(I) , imag(X)imag(I) , real(X)imag(I) , and 
imag(X)real(I) , as well as two operations of electrical addition 
or subtraction operations. Figure 4a also shows an experimen-
tal demonstration of complex MVM. The two-dimensional 
coordinate diagrams in blue dots represent the corresponding 
input vectors or output vectors, and the three-dimensional gray 
bar graphs represent the transmission matrix. The experimen-
tal results are consistent with the theoretical results. In addi-
tion, the experimental results presented in Fig. 4b of the output 
of complex-valued matrix multiplication are also consistent 
with the predicted results.

3.4 � Matrix–vector multiplication extending 
to higher dimensions

Considering the fact that partition of matrix can enlarge the 
matrix dimension, we were able to implement a high dimen-
sional MVM with low dimensional MRR array via matrix 
partition. Figure 5 illustrates the basic principle of matrix 
partition. The input and output data are 8 × 1 vectors and the 

transmission matrix of X is an 8 × 8 matrix. To execute the 
8 × 8 matrix computation using our 4 × 4 processor, the input 
and output vectors have to be split into two 4 × 1 vectors. 
Meanwhile, the transmission matrix is broken into four 4 × 4 
matrices. Therefore, the equation can be written as

Therefore, the partition of matrix can be realized by four 
rounds of optical MVMs and two rounds of electrical addi-
tions. Figure 5 shows an experimental demonstration of a 
partition of MVM, where the theoretical or experimental 
results are given in the three-dimensional bar graphs. It can 
be also seen from Fig. 5 that the experimental results are in 
agreement with the theoretical predictions.
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3.5 � Applications in signal transformation 
and image processing

Modern signal and image processing are two fields where 
algorithms based on large complex MVMs are widely uti-
lized. This paper demonstrates three typical signal transfor-
mations, specifically, discrete WHT, DCT, and DFT [39]. 
WHT is orthogonal transformation that is widely used in 
imaging and code division multiple access [40]. The Had-
amard matrix elements are equal to 1 or − 1, so that there 
are only addition and subtraction operations in the calcula-
tion, making it much simpler than DFT and DCT. Energy 
concentration is a characteristic of WHT, meaning the more 
uniform the numbers in the original data are, the more con-
centrated the transformed data are on the side. This prop-
erty makes WHT advantageous for image compression 
[41]. Figure 6a shows the input signal and Fig. 6e shows 
the transformed signals after our matrix size to 16 × 16 was 
extended. One can see that WHT can compress information 
in the low frequency region if the input signal has a uniform 
amplitude distribution, thus the high frequency region can 
be ignored since it has a very low amplitude. DCT plays an 
important role in signal processing, signal modulation, and 
demodulation [42]. A periodic sequence was input into a 
16 × 16 network and the output matrix was calculated, as 
shown in Fig. 6b and f. The first half of the former sequence 

was loaded into an 8 × 8 network as the input, depicted in 
Fig. 6c. The resulting output vector is quite similar to that 
presented in Fig. 6f and g. These results reflect the symmetry 
of DCT and provide supporting evidence that our system can 
correctly perform DCT. In addition, DFT can convert a sig-
nal sampling in time domain into frequency domain, one of 
the most frequently used operations in signal transformation 
[43]. Here, we used an input signal in the form of a square 
wave. Since DFT is a complex transformation, the amplitude 
of the output sequence is shown in form of its absolute value, 
which is shaped in a sinc function, as shown in Fig. 6d and 
h. The results show that not only can DFT be performed by 
our system, the calculation errors are also very small.

Image convolution is of paramount importance to convo-
lutional neural networks and image processing, which can be 
performed in optical domain to achieve convolutional accel-
eration. To experimentally verify image convolution with 
our MVM, we choose the logo of Wuhan National Labora-
tory for Optoelectronics (WNLO) as an example, as well as 
seven different 3 × 3 sized kernels. The kernels are designed 
to perform different image processing functions or highlight 
different edges of the original image. The pixel values of 
the input image are loaded into the IMs by the electrical 
waveform and the on-chip MRR array is loaded by the trans-
mission matrix representing the kernel. Figure 7 shows the 
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experimental results, including the recovered feature maps 
and corresponding transmission matrices of the kernels.

Compared with the original image, the edge features of 
the processed image are clearly visible in Fig. 7e−h, dem-
onstrating the effectiveness of the optical convolution opera-
tion. The kernels in Fig. 7b–d correctly performed different 
image processing functions, including blur, motion blur, and 
sharpen. The kernels in Fig. 7e−h highlighted the edges of 
the original image in different directions. Using the theoreti-
cal results as reference, we determined that the calculation 
errors of the optical convolution operation was mainly con-
centrated on the bright part (i.e., high pixel value area) of the 
image, which indicates that these errors are largely caused 
by thermal crosstalk, rather than noise. Real-time calibra-
tion algorithms and external temperature control devices are 
implemented for system stability.

4 � Discussion and future perspective

The experimental results of both signal and image pro-
cessing clearly demonstrate that our proposed system is 
able to extend matrix computation to (1) real numbers, (2) 
full complex numbers, (3) higher processing dimensions, 
and (4) convolution. Thus, the processor can serve as a 

universal matrix arithmetic processor for complex tasks 
in various application scenarios.

However, the processor can be further improved in sev-
eral ways. For example, the computational efficiency can 
be multiplied by making full use of parallel computation 
or by increasing the number of input wavelengths. Note 
that the transmission spectrum of MRR is repeated with 
a period of about 6 nm, which represents the free spectral 
range (FSR) of MRR. Therefore, multiple sets of input 
vectors with an interval equal to FSR can be operated 
simultaneously, as shown in Fig. 8. Suppose that there 
are m sets of different input vectors and the wavelengths 
of the input matrices are set as 

(
�1, �2, �3, �4

)
+ pFSR , 

where p = 0, 1,… ,m − 1 . To obtain the output data, the 
output powers of each row are divided by the wavelength-
division multiplexer and separately detected by m sets of 
corresponding balanced PDs. In this process, the state of 
the transmission matrix is fixed (i.e., the state of MRR 
array is fixed), while the m sets of input and output vec-
tors are independently paralleled. This means that m sets 
of MVMs can be executed simultaneously, demonstrating 
the possibility of parallel optical computation. Secondly, 
full integration is crucial to improve the competitiveness 
of optical computing compared to electrical matrix pro-
cessing. As shown in Fig. 8, an optical comb is integrated 
into the chip, providing a series of comb lines that are 
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modulated by IMs of the input module. With this, the 
experimental setup is greatly simplified. The thermally 
tuned MRRs can be replaced by electrically tuned ones, 
which might improve the response rate by several orders of 
magnitude. As for electrical control, the electrical control-
ler/receiver, together with microcontroller, random access 
memory (RAM), and external ports are applied to improve 
system response rate.

5 � Conclusion

In conclusion, we have demonstrated a small MRR array 
that performs large complex MVM. Through matrix 
decomposition and partition, we have also optimized the 
photonic complex-MVM core so that it can perform larger 
complex MVM and extended its matrix computation to (1) 
real number, (2) complex number, and (3) higher process-
ing dimensions. We have fabricated the integrated pho-
tonic complex-MVM core on an SOI platform, which is 
compact and compatible with CMOS technology. With a 
small MRR array, the 4 × 4 matrix computation system 
can be scaled up to 8 × 8, 16 × 16, or even larger opera-
tion dimensions in complex field with traditional incoher-
ent computing. The processor was then applied for WHT, 

DCT and DFT signal transformations. Image processing 
with 7 types of convolutional kernels is also experimen-
tally demonstrated. Our proposed system shows adequate 
performance in various applications. The processing 
capacity of this matrix–vector multiplier can be further 
enhanced by enabling parallel WDM computation and full 
integration with on-chip laser sources and electrical micro-
controllers in the future.

Appendix

A. Calibration of MRR array

Since the MRR is a resonant device, the transmittance 
of the through and drop ports depends on the difference 
between the laser and resonance wavelength of the MRR. 
Therefore, the four laser wavelengths need to be calibrated 
at the resonance peak of the corresponding MRR prior to 
experimentation. Figure 9a shows the state in which the 
laser wavelength is not aligned with the resonant peak 
of the MRR. In this case, the transmission coefficient 
of the MRR is xij = 1 . As shown in Fig. 9b, the voltage 
values of the four MRRs were changed so that the four 
laser wavelengths coincide with the resonant peak of the 
MRRs, where the transmission coefficients were all xij = 

Fig. 8   Highly integrated on-chip scheme for optical parallel computation. There are m sets of different input vectors provided by multiwave-
length light source (e.g., on-chip optical comb). Input signals are modulated in different wavelengths by the IMs, then multiplexed as the input of 
MRR array via wavelength division multiplexers (MUXs). The output powers of each row in MRR array are divided by the wavelength division 
demultiplexers (DEMUXs) and separately detected by m sets of corresponding photodiodes. Each set of wavelengths is used for one input vector. 
The electrical controller/receiver are driven by microcontroller equipped with RAM and external ports
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1. The calibration of the ring array is between these two 
states. Figure 9c shows the normalized power detected at 
the through port when the MRR is fixed in the all-pass 
state (i.e., the transmission coefficient of the MRR is 1) 
and the voltage applied on the IM is changed. The voltage-
input relational table was obtained by choosing a fixed 
step length of 20 mV, applying 300 V steps to the IM, 
and measuring the corresponding output power. When a 
particular input needs to be loaded, the computer applies 
table look-up and loads the corresponding voltage into the 
IM. Similarly, the table look-up method is used in MRR 
calibration. First, the corresponding input is set at the 
maximum value of 1 and the voltages are selected accord-
ing to a fixed step size between xij = −1 and xij = 1 . Then, 
the voltages are applied to the MRR array and the output 
powers of MRR are measured. The voltage-transmission 
relational table was obtained and shown in Fig. 9d and e. 

When a particular transfer coefficient need to be loaded, 
the computer looks up the nearest value in the table using 
the look-up table method and loads the corresponding 
voltage onto the MRR electrodes.

B Experimental verification of matrix–vector 
multiplier

Figure 10a presents a sample experimental transmission 
function of X , Fig. 10b lists the corresponding theoretical 
results, and Fig. 10c summarizes the vector data results. 
Each data point represents a dot product of one of the row 
vectors of X and the input vector. The blue line represents 
the experimental results and the red line represents the 
deviation of each experimental point. The error statis-
tics are calculated and shown in Fig. 10d, where most of 
the absolute values of the errors fall within the range of 
0–0.1.
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