Skip to main content
Log in

A review of dielectric optical metasurfaces for spatial differentiation and edge detection

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology. With the development of dielectric metasurfaces of different geometries and resonance mechanisms, diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures. This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first- and second-order spatial differentiators realized via the Green’s function approach. The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer functions of metasurfaces for different incident wavevectors and polarizations. To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition, edge detection is described to illustrate the practicability of the device. As an application example, experimental demonstrations of edge detection for different biological cells and a flower mold are discussed, in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations. The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gudmundsson M, El-Kwae E A, Kabuka M R. Edge detection in medical images using a genetic algorithm. IEEE Transactions on Medical Imaging, 1998, 17(3): 469–474

    Article  Google Scholar 

  2. Chen J, Li J, Pan D, Zhu Q, Mao Z. Edge-guided multiscale segmentation of satellite multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4513–4520

    Article  Google Scholar 

  3. Hoang T M, Nam S H, Park K R. Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 109817–109832

    Article  Google Scholar 

  4. Solli D R, Jalali B. Analog optical computing. Nature Photonics, 2015, 9(11): 704–706

    Article  Google Scholar 

  5. Goodman J W. Introduction to Fourier Optics. Englewood: Roberts & Company Publishers, 2005

    Google Scholar 

  6. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science, 2014, 343(6167): 160–163

    Article  MathSciNet  MATH  Google Scholar 

  7. Pendry J B, Holden A J, Robbins D J, Stewart J W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084

    Article  Google Scholar 

  8. Smith D R, Vier D C, Koschny T, Soukoulis C M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617

    Article  Google Scholar 

  9. Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55

    Article  Google Scholar 

  10. Divitt S, Zhu W, Zhang C, Lezec H J, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 2019, 364 (6443): 890–894

    Article  Google Scholar 

  11. Zhang C, Pfeiffer C, Jang T, Ray V, Junda M, Uprety P, Podraza N, Grbic A, Guo L J. Breaking Malus’ law: highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser & Photonics Reviews, 2016, 10(5): 791–798

    Article  Google Scholar 

  12. Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150

    Article  Google Scholar 

  13. Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064

    Article  Google Scholar 

  14. Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339(6125): 1232009

    Article  Google Scholar 

  15. Kamali S M, Arbabi E, Arbabi A, Faraon A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 2018, 7(6): 1041–1068

    Article  Google Scholar 

  16. Zhang L, Mei S, Huang K, Qiu C W. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 2016, 4(6): 818–833

    Article  Google Scholar 

  17. Luo X G. Subwavelength optical engineering with metasurface waves. Advanced Optical Materials, 2018, 6(7): 1701201

    Article  Google Scholar 

  18. Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943

    Article  Google Scholar 

  19. Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302

    Article  Google Scholar 

  20. Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194

    Article  Google Scholar 

  21. Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220–226

    Article  Google Scholar 

  22. Deng Y, Wang X, Gong Z, Dong K, Lou S, Pégard N, Tom K B, Yang F, You Z, Waller L, Yao J. All-silicon broadband ultraviolet metasurfaces. Advanced Materials, 2018, 30(38): 1802632

    Article  Google Scholar 

  23. Henstridge M, Pfeiffer C, Wang D, Boltasseva A, Shalaev V M, Grbic A, Merlin R. Accelerating light with metasurfaces. Optica, 2018, 5(6): 678–681

    Article  Google Scholar 

  24. Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev D N, Kivshar Y S. Grayscale transparent metasurface holograms. Optica, 2016, 3(12): 1504–1505

    Article  Google Scholar 

  25. Wang B, Dong F, Yang D, Song Z, Xu L, Chu W, Gong Q, Li Y. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica, 2017, 4(11): 1368–1371

    Article  Google Scholar 

  26. Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics, 2018, 7(6): 1169–1190

    Article  Google Scholar 

  27. Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states ofpolarization. Physical Review Letters, 2017, 118(11): 113901

    Article  Google Scholar 

  28. Wang K, Titchener J G, Kruk S S, Xu L, Chung H P, Parry M, Kravchenko II, Chen Y H, Solntsev A S, Kivshar Y S, Neshev D N, Sukhorukov A A. Quantum metasurface for multiphoton interference and state reconstruction. Science, 2018, 361(6407): 1104–1108

    Article  Google Scholar 

  29. Phan T, Sell D, Wang E W, Doshay S, Edee K, Yang J, Fan J A. High-efficiency, large-area, topology-optimized metasurfaces. Light, Science & Applications, 2019, 8(1): 48

    Article  Google Scholar 

  30. Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820

    Article  Google Scholar 

  31. Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401

    Article  Google Scholar 

  32. Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraji-Dana M, Faraon A. Angle-multiplexed metasurfaces: encoding independent wave-fronts in a single metasurface under different illumination angles. Physical Review X, 2017, 7(4): 041056

    Article  Google Scholar 

  33. Pors A, Nielsen M G, Bozhevolnyi S I. Analog computing using reflective plasmonic metasurfaces. Nano Letters, 2015, 15(1): 791–797

    Article  Google Scholar 

  34. Chen H, An D, Li Z, Zhao X. Performing differential operation with a silver dendritic metasurface at visible wavelengths. Optics Express, 2017, 25(22): 26417–26426

    Article  Google Scholar 

  35. Wu W, Jiang W, Yang J, Gong S, Ma Y. Multilayered analog optical differentiating device: performance analysis on structural parameters. Optics Letters, 2017, 42(24): 5270–5273

    Article  Google Scholar 

  36. Kwon H, Sounas D, Cordaro A, Polman A, Alù A. Nonlocal metasurfaces for optical signal processing. Physical Review Letters, 2018, 121(17): 173004

    Article  Google Scholar 

  37. Zhang W, Qu C, Zhang X. Solving constant-coefficient differential equations with dielectric metamaterials. Journal of Optics, 2016, 18(7): 075102

    Article  Google Scholar 

  38. Abdollahramezani S, Chizari A, Dorche A E, Jamali M V, Salehi J A. Dielectric metasurfaces solve differential and integro-differential equations. Optics Letters, 2017, 42(7): 1197–1200

    Article  Google Scholar 

  39. Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S. Plasmonic computing ofspatial differentiation. Nature Communications, 2017, 8(1): 15391

    Article  Google Scholar 

  40. Zhou J, Liu X, Fu G, Liu G, Tang P, Yuan W, Zhan X, Liu Z. Highperformance plasmonic oblique sensors for the detection of ions. Nanotechnology, 2020, 31(28): 285501

    Article  Google Scholar 

  41. Shi L, Shang J, Liu Z, Li Y, Fu G, Liu X, Pan P, Luo H, Liu G. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing. Nanotechnology, 2020, 31(46): 465501

    Article  Google Scholar 

  42. Liu Z, Liu G, Fu G, Liu X, Huang Z, Gu G. All-metal meta-surfaces for narrowband light absorption and high performance sensing. Journal of Physics D, Applied Physics, 2016, 49(44): 445104

    Article  Google Scholar 

  43. Liu Z, Fu G, Liu X, Liu Y, Tang L, Liu Z, Liu G. High-quality multispectral bio-sensing with asymmetric all-dielectric metamaterials. Journal of Physics D, Applied Physics, 2017, 50(16): 165106

    Article  Google Scholar 

  44. Liu Z, Liu G, Liu X, Huang S, Wang Y, Pan P, Liu M. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology, 2015, 26(23): 235702

    Article  Google Scholar 

  45. Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140

    Article  Google Scholar 

  46. Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y. Analog optical spatial differentiators based on dielectric metasurfaces. Advanced Optical Materials, 2020, 8(4): 1901523

    Article  Google Scholar 

  47. Zhou Y, Zheng H, Kravchenko II, Valentine J. Flat optics for image differentiation. Nature Photonics, 2020, 14(5): 316–323

    Article  Google Scholar 

  48. Wan L, Pan D, Yang S, Zhang W, Potapov A A, Wu X, Liu W, Feng T, Li Z. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Optics Letters, 2020, 45(7): 2070–2073

    Article  Google Scholar 

  49. Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530

    Article  Google Scholar 

  50. Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    Article  Google Scholar 

  51. Farmahini-Farahani M, Cheng J, Mosallaei H. Metasurfaces nanoantennas for light processing. Journal of the Optical Society of America B, Optical Physics, 2013, 30(9): 2365–2370

    Article  Google Scholar 

  52. Chizari A, Abdollahramezani S, Jamali M V, Salehi J A. Analog optical computing based on a dielectric meta-reflect array. Optics Letters, 2016, 41(15): 3451–3454

    Article  Google Scholar 

  53. Guo C, Xiao M, Minkov M, Shi Y, Fan S. Photonic crystal slab Laplace operator for image differentiation. Optica, 2018, 5(3): 251–256

    Article  Google Scholar 

  54. Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002, 65(23): 235112

    Article  Google Scholar 

  55. Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nature Photonics, 2017, 11(9): 543–554

    Article  Google Scholar 

  56. Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science, 2016, 354(6314): aag2472

    Article  Google Scholar 

  57. He S, Zhou J, Chen S, Shu W, Luo H, Wen S. Wavelength-independent optical fully differential operation based on the spinorbit interaction of light. APL Photonics, 2020, 5(3): 036105

    Article  Google Scholar 

  58. Guo C, Xiao M, Minkov M, Shi Y, Fan S. Isotropic wavevector domain image filters by a photonic crystal slab device. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(10): 1685–1691

    Article  Google Scholar 

  59. Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A. Two-dimensional edge detection by guided mode resonant metasurface. IEEE Photonics Technology Letters, 2018, 30(9): 853–856

    Article  Google Scholar 

  60. Cordaro A, Kwon H, Sounas D, Koenderink A F, Alù A, Polman A. High-index dielectric matesurfaces performing mathematical operations. Nano Letters, 2019, 19(12): 8418–8423

    Article  Google Scholar 

  61. Abdollahramezani S, Hemmatyar O, Adibi A. Meta-optics for spatial optical analog computing. Nanophotonics, 2020, 9(13): 4075–4095

    Article  Google Scholar 

  62. Kwon H, Cordaro A, Sounas D, Polman A, Alù A. Dual-polarization analog 2D image processing with nonlocal metasur-faces. ACS Photonics, 2020, 7(7): 1799–1805

    Article  Google Scholar 

  63. Roberts A, Gómez D E, Davis T J. Optical image processing with metasurface dark modes. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(9): 1575–1584

    Article  Google Scholar 

  64. Davis T J, Eftekhari F, Gómez D E, Roberts A. Metasurfaces with asymmetric optical transfer functions for optical signal processing. Physical Review Letters, 2019, 123(1): 013901

    Article  Google Scholar 

  65. Zhu T, Lou Y, Zhou Y, Zhang J, Huang J, Li Y, Luo H, Wen S, Zhu S, Gong Q, Qiu M, Ruan Z. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection. Physical Review Applied, 2019, 11(3): 034043

    Article  Google Scholar 

  66. He S, Zhou J, Chen S, Shu W, Luo H, Wen S. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Optics Letters, 2020, 45(4): 877–880

    Article  Google Scholar 

  67. Wang H, Guo C, Zhao Z, Fan S. Compact incoherent image differentiation with nanophotonic structures. ACS Photonics, 2020, 7(2): 338–343

    Article  Google Scholar 

  68. Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S, Liu Z. Two-dimensional optical spatial differentiation and high-contrast imaging. National Science Review, 2020, doi:https://doi.org/10.1093/nsr/nwaa176

  69. Karimi P, Khavasi A, Mousavi Khaleghi S S. Fundamental limit for gain and resolution in anglog optical edge detection. Optics Express, 2020, 28(2): 898–911

    Article  Google Scholar 

  70. Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798

    Article  Google Scholar 

  71. Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalens. PhotoniX, 2020, 1(2): 4540

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (No. 2019YFB1803904), in part by the National Natural Science Foundation of China (Grant Nos. 61805104, 11704156, 61935013, 61875076, and 61865014), in part by the Open Project of Wuhan National Laboratory for Optoelectronics, China (No. 2018WNLOKF015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wan or Tianhua Feng.

Additional information

Lei Wan is an Associate Research Fellow in College of Information Science and Technology at Jinan University, China. He received the Ph.D. degree in microelectronics from South China Normal University, China in 2017. From 2015 to 2017, he was a visiting Ph.D. student with Department of Electrical Engineering and Computer Science, University of Michigan, USA. His research interests include nanoimprinting, nanophotonic devices, and acousto-optic interaction devices.

Danping Pan received the B.Eng. degree from Huaqiao University, China in 2018. She is currently working toward the M.S. degree with College of Information Science and Technology, Jinan University, China. Her research interests are design and analysis of metasurfaces-based optical spatial differentiators.

Tianhua Feng is an Associate Research Fellow in College of Information Science and Technology at Jinan University, China. He obtained the Ph.D. degree from City University of Hong Kong, China, in 2013. His research interest is nanophotonic devices based on artificial micro-structures, including metamaterials, metasurfaces and plasmonic/dielectric nanoparticles.

Weiping Liu is a Professor of Department of Electronic Engineering at Jinan University, China. He has been the member of IEEE and SPIE. He received the Ph.D. degree from South China Normal University, China in 2000 and undertook postdoctor research in University of Science and Technology of China during the period of 2001–2003. His research interests include optical-wireless communications and the optical fiber sensor. He has published more than 30 papers in international conference and journals in the past five years.

Alexander A. Potapov is a professor in College of Information Science and Technology at Jinan University, China. He is also a chief researcher at Kotel’nikov Institute of Radio Engineering and Electronics in Russia. He obtained the Ph.D. degree from Moscow State University, Russia in 1995. His research interest is fractal processing of signals in radio engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Pan, D., Feng, T. et al. A review of dielectric optical metasurfaces for spatial differentiation and edge detection. Front. Optoelectron. 14, 187–200 (2021). https://doi.org/10.1007/s12200-021-1124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-021-1124-5

Keywords

Navigation