Skip to main content
Log in

Dimensionality engineering of metal halide perovskites

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Metal halide perovskites are a class of materials that are ideal for photodetectors and solar cells due to their excellent optoelectronic properties. Their low-cost and low temperature synthesis have made them attractive for extensive research aimed at revolutionizing the semiconductor industry. The rich chemistry of metal halide perovskites allows compositional engineering resulting in facile tuning of the desired optoelectronic properties. Moreover, using different experimental synthesis and deposition techniques such as solution processing, chemical vapor deposition and hot-injection methods, the dimensionality of the perovskites can be altered from 3D to 0D, each structure opening a new realm of applications due to their unique properties. Dimensionality engineering includes both morphological engineering-reducing the thickness of 3D perovskite into atomically thin films-and molecular engineering-incorporating long-chain organic cations into the perovskite mixture and changing the composition at the molecular level. The optoelectronic properties of the perovskite structure including its band gap, binding energy and carrier mobility depend on both its composition and dimensionality. The plethora of different photodetectors and solar cells that have been made with different compositions and dimensions of perovskite will be reviewed here. We will conclude our review by discussing the kinetics and dynamics of different dimensionalities, their inherent stability and toxicity issues, and how reaching similar performance to 3D in lower dimensionalities and their large-scale deployment can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manser J S, Christians J A, Kamat P V. Intriguing optoelectronic properties of metal halide perovskites. Chemical Reviews, 2016, 116(21): 12956–13008

    Google Scholar 

  2. Zhou C, Lin H, He Q, Xu L, Worku M, Chaaban M, Lee S, Shi X, Du M H, Ma B. Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering R Reports, 2019, 137: 38–65

    Google Scholar 

  3. Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L. Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47(16): 6046–6072

    Google Scholar 

  4. Shi E, Dou L. A leap towards high-performance 2D perovskite photodetectors. Trends in Chemistry, 2019, 1(4): 365–367

    Google Scholar 

  5. Ma S, Cai M, Cheng T, Ding X, Shi X, Alsaedi A, Hayat T, Ding Y, Tan Z, Dai S. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61(10): 1257–1277

    Google Scholar 

  6. Hong K, Van Le Q, Kim S Y, Jang H W. Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(9): 2189–2209

    Google Scholar 

  7. Chao L, Wang Z, Xia Y, Chen Y, Huang W. Recent progress on low dimensional perovskite solar cells. Journal of Energy Chemistry, 2018, 27(4): 1091–1100

    Google Scholar 

  8. Park N G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Advanced Energy Materials, 2020, 10(13): 1903106

    Google Scholar 

  9. Zhang J, Yang X, Deng H, Qiao K, Farooq U, Ishaq M, Yi F, Liu H, Tang J, Song H. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Letters, 2017, 9(3): 36

    Google Scholar 

  10. Forgacs D, Wojciechowski K, Malinkiewicz O. Perovskite Photovoltaics: From Laboratory to Industry. In: Petrova-Koch V, Hezel R, Goetzberger A, eds. High-Efficient Low-Cost Photo-voltaics. Cham: Springer, 2020, 219–255

    Google Scholar 

  11. McMeekin D P, Wang Z, Rehman W, Pulvirenti F, Patel J B, Noel N K, Johnston M B, Marder S R, Herz L M, Snaith H J. Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Advanced Materials, 2017, 29(29): 1607039

    Google Scholar 

  12. Liu C, Cheng Y B, Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49(6): 1653–1687

    Google Scholar 

  13. Tyagi P, Arveson S M, Tisdale W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. Journal of Physical Chemistry Letters, 2015, 6(10): 1911–1916

    Google Scholar 

  14. Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344

    Google Scholar 

  15. Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038

    Google Scholar 

  16. Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. Journal of Physical Chemistry Letters, 2014, 5(3): 429–433

    Google Scholar 

  17. Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(9): 3061–3068

    Google Scholar 

  18. Tan K W, Moore D T, Saliba M, Sai H, Estroff L A, Hanrath T, Snaith H J, Wiesner U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano, 2014, 8(5): 4730–4739

    Google Scholar 

  19. D’Innocenzo V, Grancini G, Alcocer M J, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(1): 3586

    Google Scholar 

  20. Qian L, Sun Y, Wu M, Li C, Xie D, Ding L, Shi G. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10(15): 6837–6843

    Google Scholar 

  21. Hossain A, Roy S, Sakthipandi K. The external and internal influences on the tuning of the properties of perovskites: an overview. Ceramics International, 2019, 45(4): 4152–4166

    Google Scholar 

  22. Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. Journal of Materials Science, 2002, 37(17): 3585–3587

    Google Scholar 

  23. Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013, 13(4): 1764–1769

    Google Scholar 

  24. Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696

    Google Scholar 

  25. Dubey A, Adhikari N, Mabrouk S, Wu F, Chen K, Yang S, Qiao Q. A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(6): 2406–2431

    Google Scholar 

  26. Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225

    Google Scholar 

  27. Chilvery A, Das S, Guggilla P, Brantley C, Sunda-Meya A. A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17(1): 650–658

    Google Scholar 

  28. Kong W, Wang G, Zheng J, Hu H, Chen H, Li Y, Hu M, Zhou X, Liu C, Chandrashekar B N, Amini A, Wang J, Xu B, Cheng C. Fabricating high-efficient blade-coated perovskite solar cells under ambient condition using lead acetate trihydrate. Solar RRL, 2018, 2(3): 1700214

    Google Scholar 

  29. Li C, Yin J, Chen R, Lv X, Feng X, Wu Y, Cao J. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with > 18% efficiency. Journal of the American Chemical Society, 2019, 141(15): 6345–6351

    Google Scholar 

  30. Sun S, Yuan D, Xu Y, Wang A, Deng Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 2016, 10(3): 3648–3657

    Google Scholar 

  31. Lan C, Zhou Z, Wei R, Ho J C. Two-dimensional perovskite materials: from synthesis to energy-related applications. Materials Today Energy, 2019, 11: 61–82

    Google Scholar 

  32. Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 2014, 15(17): 3733–3741

    Google Scholar 

  33. Green M, Ho-Baillie A, Snaith H. The emergence of perovskite solar cells. Nature Photonics, 2014, 8: 506–514

    Google Scholar 

  34. Ahmadi M, Wu T, Hu B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242

    Google Scholar 

  35. Nayak P K, Moore D T, Wenger B, Nayak S, Haghighirad A A, Fineberg A, Noel N K, Reid O G, Rumbles G, Kukura P, Vincent K A, Snaith H J. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 2016, 7(1): 13303

    Google Scholar 

  36. Wu K, Bera A, Ma C, Du Y, Yang Y, Li L, Wu T. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014, 16(41): 22476–22481

    Google Scholar 

  37. Papavassiliou G C, Koutselas I B. Structural, optical and related properties of some natural three-and lower-dimensional semiconductor systems. Synthetic Metals, 1995, 71(1–3): 1713–1714

    Google Scholar 

  38. Mehrabian M, Dalir S, Mahmoudi G, Miroslaw B, Babashkina M G, Dektereva A V, Safin D A. A highly stable all-inorganic CsPbBr3 perovskite solar cell. European Journal of Inorganic Chemistry, 2019, 2019(32): 3699–3703

    Google Scholar 

  39. Ling Y, Yuan Z, Tian Y, Wang X, Wang J C, Xin Y, Hanson K, Ma B, Gao H. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Advanced Materials, 2016, 28(2): 305–311

    Google Scholar 

  40. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

    Google Scholar 

  41. Hu Y, Spies L M, Alonso-Álvarez D, Mocherla P, Jones H, Hanisch J, Bein T, Barnes P R F, Docampo P. Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(44): 22215–22225

    Google Scholar 

  42. Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S F. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy & Environmental Science, 2017, 10(10): 2095–2102

    Google Scholar 

  43. Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. Journal of the American Chemical Society, 2015, 137(51): 16008–16011

    Google Scholar 

  44. Shamsi J, Dang Z, Bianchini P, Canale C, Stasio F D, Brescia R, Prato M, Manna L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society, 2016, 138(23): 7240–7243

    Google Scholar 

  45. Yuan Z, Shu Y, Tian Y, Xin Y, Ma B. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chemical Communications, 2015, 51(91): 16385–16388

    Google Scholar 

  46. Sichert J A, Tong Y, Mutz N, Vollmer M, Fischer S, Milowska K Z, García Cortadella R, Nickel B, Cardenas-Daw C, Stolarczyk J K, Urban A S, Feldmann J. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Letters, 2015, 15(10): 6521–6527

    Google Scholar 

  47. Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521

    Google Scholar 

  48. Hintermayr V A, Richter A F, Ehrat F, Döblinger M, Vanderlinden W, Sichert J A, Tong Y, Polavarapu L, Feldmann J, Urban A S. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Advanced Materials, 2016, 28(43): 9478–9485

    Google Scholar 

  49. Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C, Xiong Q. Synthesis of organic-inorganic lead halide perovskite nanoplate-lets: towards high-performance perovskite solar cells and optoelectronic devices. Advanced Optical Materials, 2014, 2(9): 838–844

    Google Scholar 

  50. Schmidt L C, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink H J, Galian R E, Pérez-Prieto J. Nontemplate synthesis of CH3NH3PbBr3 perovs-kite nanoparticles. Journal of the American Chemical Society, 2014, 136(3): 850–853

    Google Scholar 

  51. Ma C, Shen D, Ng T W, Lo M F, Lee C S. 2D perovskites with short interlayer distance for high-performance solar cell application. Advanced Materials, 2018, 30(22): 1800710

    Google Scholar 

  52. Liang D, Peng Y, Fu Y, Shearer M J, Zhang J, Zhai J, Zhang Y, Hamers R J, Andrew T L, Jin S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10(7): 6897–6904

    Google Scholar 

  53. Liu Y, Ye H, Zhang Y, Zhao K, Yang Z, Yuan Y, Wu H, Zhao G, Yang Z, Tang J, Xu Z, Liu S F. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter, 2019, 1(2): 465–480

    Google Scholar 

  54. Niu T, Ren H, Wu B, Xia Y, Xie X, Yang Y, Gao X, Chen Y, Huang W. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. Journal of Physical Chemistry Letters, 2019, 10(10): 2349–2356

    Google Scholar 

  55. Zhang X, Munir R, Xu Z, Liu Y, Tsai H, Nie W, Li J, Niu T, Smilgies D M, Kanatzidis M G, Mohite A D, Zhao K, Amassian A, Liu S F. Phase transition control for high performance Ruddlesden-Popper perovskite solar cells. Advanced Materials, 2018, 30(21): 1707166

    Google Scholar 

  56. Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G. Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability. Advanced Energy Materials, 2019, 9(10): 1803384

    Google Scholar 

  57. Hasan M M, Clegg C, Manning M, El Ghanam A, Su C, Harding M D, Bennett C, Hill I G, Koleilat G I. Stable efficient methylammonium lead iodide thin film photodetectors with highly oriented millimeter-sized crystal grains. ACS Photonics, 2020, 7 (1): 57–67

    Google Scholar 

  58. Wang K, Wu C, Yang D, Jiang Y, Priya S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano, 2018, 12(5): 4919–4929

    Google Scholar 

  59. Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H. Ligand-stabilized reduced-dimensionality per-ovskites. Journal of the American Chemical Society, 2016, 138(8): 2649–2655

    Google Scholar 

  60. Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316

    Google Scholar 

  61. Ono L K, Qi Y. Research progress on organic-inorganic halide perovskite materials and solar cells. Journal of Physics. D, Applied Physics, 2018, 51(9): 093001

    Google Scholar 

  62. Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y, Huang W. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 2020, 14(3): 154–163

    Google Scholar 

  63. Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016, 28(8): 2852–2867

    Google Scholar 

  64. Wu G, Li X, Zhou J, Zhang J, Zhang X, Leng X, Wang P, Chen M, Zhang D, Zhao K, Liu S F, Zhou H, Zhang Y. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Advanced Materials, 2019, 31(42): 1903889

    Google Scholar 

  65. Ma L, Ju M G, Dai J, Zeng X C. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10(24): 11314–11319

    Google Scholar 

  66. Cheng P, Wu T, Liu J, Deng W Q, Han K. Lead-free, two-dimensional mixed germanium and tin perovskites. Journal of Physical Chemistry Letters, 2018, 9(10): 2518–2522

    Google Scholar 

  67. Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W. Efficient visible quasi-2D perovskite light-emitting diodes. Advanced Materials, 2016, 28(34): 7515–7520

    Google Scholar 

  68. Soe C M M, Stoumpos C C, Kepenekian M, Traoré B, Tsai H, Nie W, Wang B, Katan C, Seshadri R, Mohite A D, Even J, Marks T J, Kanatzidis M G. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. Journal of the American Chemical Society, 2017, 139(45): 16297–16309

    Google Scholar 

  69. Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704

    Google Scholar 

  70. Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Advanced Energy Materials, 2018, 8(21): 1800051

    Google Scholar 

  71. Yao K, Wang X, Xu Y X, Li F, Zhou L. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chemistry of Materials, 2016, 28(9): 3131–3138

    Google Scholar 

  72. Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. Journal of the American Chemical Society, 2018, 140(37): 11639–11646

    Google Scholar 

  73. Proppe A H, Quintero-Bermudez R, Tan H, Voznyy O, Kelley S O, Sargent E H. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. Journal of the American Chemical Society, 2018, 140(8): 2890–2896

    Google Scholar 

  74. Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2-(CH3NH3)4Pb5I16. Chem, 2017, 2(3): 427–440

    Google Scholar 

  75. Fraccarollo A, Canti L, Marchese L, Cossi M. First principles study of 2D layered organohalide tin perovskites. Journal of Chemical Physics, 2017, 146(23): 234703

    Google Scholar 

  76. Koutselas I B, Ducasse L, Papavassiliou G C. Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units. Journal of Physics Condensed Matter, 1996, 8(9): 1217–1227

    Google Scholar 

  77. Liu J, Leng J, Wu K, Zhang J, Jin S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. Journal of the American Chemical Society, 2017, 139(4): 1432–1435

    Google Scholar 

  78. Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877

    Google Scholar 

  79. Kwon H C, Yang W, Lee D, Ahn J, Lee E, Ma S, Kim K, Yun S C, Moon J. Investigating recombination and charge carrier dynamics in a one-dimensional nanopillared perovskite absorber. ACS Nano, 2018, 12(5): 4233–4245

    Google Scholar 

  80. Du W, Zhang S, Shi J, Chen J, Wu Z, Mi Y, Liu Z, Li Y, Sui X, Wang R, Qiu X, Wu T, Xiao Y, Zhang Q, Liu X. Strong excitonphoton coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics, 2018, 5(5): 2051–2059

    Google Scholar 

  81. Xu X, Zhang X, Deng W, Jie J, Zhang X. 1D organic-inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Methods, 2018, 2(7): 1700340

    Google Scholar 

  82. Ha S T, Su R, Xing J, Zhang Q, Xiong Q. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge), 2017, 8(4): 2522–2536

    Google Scholar 

  83. Horváth E, Spina M, Szekrényes Z, Kamarás K, Gaal R, Gachet D, Forró L. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Letters, 2014, 14(12): 6761–6766

    Google Scholar 

  84. Zhang D, Eaton S W, Yu Y, Dou L, Yang P. Solution-phase synthesis of cesium lead halide perovskite nanowires. Journal of the American Chemical Society, 2015, 137(29): 9230–9233

    Google Scholar 

  85. Xing J, Liu X F, Zhang Q, Ha S T, Yuan Y W, Shen C, Sum T C, Xiong Q. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Letters, 2015, 15(7): 4571–4577

    Google Scholar 

  86. Chen L J, Lee C R, Chuang Y J, Wu Z H, Chen C. Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. Journal of Physical Chemistry Letters, 2016, 7(24): 5028–5035

    Google Scholar 

  87. Wong A B, Lai M, Eaton S W, Yu Y, Lin E, Dou L, Fu A, Yang P. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Letters, 2015, 15(8): 5519–5524

    Google Scholar 

  88. Chen P, Bai Y, Lyu M, Yun J H, Hao M, Wang L. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Solar RRL, 2018, 2(3): 1700186

    Google Scholar 

  89. Yuan Z, Zhou C, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8(1): 14051

    Google Scholar 

  90. Jung M H. Broadband white light emission from one-dimensional zigzag edge-sharing perovskite. New Journal of Chemistry, 2020, 44(1): 171–180

    Google Scholar 

  91. Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2435–2445

    Google Scholar 

  92. Zhou Q, Bai Z, Lu W G, Wang Y, Zou B, Zhong H. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Advanced Materials, 2016, 28(41): 9163–9168

    Google Scholar 

  93. Zhao L, Yeh Y W, Tran N L, Wu F, Xiao Z, Kerner R A, Lin Y L, Scholes G D, Yao N, Rand B P. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano, 2017, 11(4): 3957–3964

    Google Scholar 

  94. Liu J, Hu F, Zhou Y, Zhang C, Wang X, Xiao M. Polarized emission from single perovskite FAPbBr3 nanocrystals. Journal of Luminescence, 2020, 221: 117032

    Google Scholar 

  95. Nikl M, Mihokova E, Nitsch K, Somma F, Giampaolo C, Pazzi G P, Fabeni P, Zazubovich S. Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306(5–6): 280–284

    Google Scholar 

  96. Han D, Shi H, Ming W, Zhou C, Ma B, Saparov B, Ma Y Z, Chen S, Du M H. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(24): 6398–6405

    Google Scholar 

  97. Xu L J, Sun C Z, Xiao H, Wu Y, Chen Z N. Green-light-emitting diodes based on tetrabromide manganese (II) complex through solution process. Advanced Materials, 2017, 29(10): 1605739

    Google Scholar 

  98. Worku M, Xu L J, Chaaban M, Ben-Akacha A, Ma B. Optically pumped white light-emitting diodes based on metal halide perovskites and perovskite-related materials. APL Materials, 2020, 8(1): 010902

    Google Scholar 

  99. Hebig J C, Kühn I, Flohre J, Kirchartz T. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters, 2016, 1(1): 309–314

    Google Scholar 

  100. Öz S, Hebig J C, Jung E, Singh T, Lepcha A, Olthof S, Jan F, Gao Y, German R, van Loosdrecht P H M, Meerholz K, Kirchartz T, Mathur S. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Solar Energy Materials and Solar Cells, 2016, 158: 195–201

    Google Scholar 

  101. Pious J K, Lekshmi M L, Muthu C, Rakhi R B, Nair V C. Zero-dimensional methylammonium bismuth iodide-based lead-free perovskite capacitor. ACS Omega, 2017, 2(9): 5798–5802

    Google Scholar 

  102. Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399–407

    Google Scholar 

  103. Ponseca C S Jr, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundström V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189–5192

    Google Scholar 

  104. Dong C R, Wang Y, Zhang K, Zeng H. Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2(1): 100026

    Google Scholar 

  105. Sweeney S J, Mukherjee J. Optoelectronic Devices and Materials. In: Kasap S, Capper P, eds. Springer Handbook of Electronic and Photonic Materials. Cham: Springer, 2017

    Google Scholar 

  106. Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861–865

    Google Scholar 

  107. Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, Colella S, Rizzo A, Gocalinska A, Pelucchi E, Mercuri M L, Quochi F, Saba M, Mura A, Bongiovanni G. Direct or indirect bandgap in hybrid lead halide perovskites? Advanced Optical Materials, 2018, 6(10): 1701254

    Google Scholar 

  108. Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16(1): 115–120

    Google Scholar 

  109. Brenes R, Guo D, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulović V, Savenije T J, Stranks S D. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 2017, 1(1): 155–167

    Google Scholar 

  110. Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049

    Google Scholar 

  111. Tao S X, Cao X, Bobbert P A. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Scientific Reports, 2017, 7(1): 14386

    Google Scholar 

  112. Srimath Kandada A R, Neutzner S, D’Innocenzo V, Tassone F, Gandini M, Akkerman Q A, Prato M, Manna L, Petrozza A, Lanzani G. Nonlinear carrier interactions in lead halide perovskites and the role of defects. Journal of the American Chemical Society, 2016, 138(41): 13604–13611

    Google Scholar 

  113. Ke W, Kanatzidis M G. Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10(1): 965

    Google Scholar 

  114. Gao P, Grätzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(8): 2448–2463

    Google Scholar 

  115. Kulkarni S A, Baikie T, Boix P P, Yantara N, Mathews N, Mhaisalkar S. Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(24): 9221–9225

    Google Scholar 

  116. Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982

    Google Scholar 

  117. Levchuk I, Osvet A, Tang X, Brandl M, Perea J D, Hoegl F, Matt G J, Hock R, Batentschuk M, Brabec C J. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Letters, 2017, 17(5): 2765–2770

    Google Scholar 

  118. Wang S, Sakurai T, Wen W, Qi Y. Energy level alignment at interfaces in metal halide perovskite solar cells. Advanced Materials Interfaces, 2018, 5(22): 1800260

    Google Scholar 

  119. Kieslich G, Sun S, Cheetham A K. An extended tolerance factor approach for organic-inorganic perovskites. Chemical Science (Cambridge), 2015, 6(6): 3430–3433

    Google Scholar 

  120. Filip M R, Eperon G E, Snaith H J, Giustino F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 2014, 5(1): 5757

    Google Scholar 

  121. Ou Q, Bao X, Zhang Y, Shao H, Xing G, Li X, Shao L, Bao Q. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1(4): 268–287

    Google Scholar 

  122. Smith M D, Pedesseau L, Kepenekian M, Smith I C, Katan C, Even J, Karunadasa H I. Decreasing the electronic confinement in layered perovskites through intercalation. Chemical Science (Cambridge), 2017, 8(3): 1960–1968

    Google Scholar 

  123. Fox M. Optical Properties of Solids. Oxford: Oxford University Press, 2001

    Google Scholar 

  124. Mitzi D B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chemistry of Materials, 1996, 8(3): 791–800

    Google Scholar 

  125. Pandey M, Jacobsen K W, Thygesen K S. Band gap tuning and defect tolerance of atomically thin two-dimensional organic-inorganic halide perovskites. Journal of Physical Chemistry Letters, 2016, 7(21): 4346–4352

    Google Scholar 

  126. Lanty G, Jemli K, Wei Y, Leymarie J, Even J, Lauret J S, Deleporte E. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic-inorganic perovskite pseudo-binary alloys. Journal of Physical Chemistry Letters, 2014, 5(22): 3958–3963

    Google Scholar 

  127. Weidman M C, Seitz M, Stranks S D, Tisdale W A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano, 2016, 10(8): 7830–7839

    Google Scholar 

  128. Tanaka K, Kondo T. Bandgap and exciton binding energies in leadiodide based natural quantum-well crystals. Science and Technology of Advanced Materials, 2003, 4(6): 599–604

    Google Scholar 

  129. Vashishtha P, Metin D Z, Cryer M E, Chen K, Hodgkiss J M, Gaston N, Halpert J E. Shape-, size-, and composition-controlled thallium lead halide perovskite nanowires and nanocrystals with tunable band gaps. Chemistry of Materials, 2018, 30(9): 2973–2982

    Google Scholar 

  130. Qiu T, Hu Y, Xu F, Yan Z, Bai F, Jia G, Zhang S. Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 2018, 10(45): 20963–20989

    Google Scholar 

  131. Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3 (10): 4088–4093

    Google Scholar 

  132. Li G, Liu Z, Huang Q, Gao Y, Regula M, Wang D, Chen L Q, Wang D. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nature Energy, 2018, 3(12): 1076–1083

    Google Scholar 

  133. Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S F. 3D-2D-0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Advanced Energy Materials, 2018, 8(15): 1703246

    Google Scholar 

  134. Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584–1589

    Google Scholar 

  135. Verma J, Islam S M, Verma A, Protasenko V, Jena D. Nitride LEDs Based on Quantum Wells and Quantum Dots. In: Huang J J, Kuo H C, Shen S C, eds. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, 2nd edition. Cambridge: Woodhead Publishing, 2018, 377–413

    Google Scholar 

  136. Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A, De Angelis F. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713

    Google Scholar 

  137. Herz L M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annual Review of Physical Chemistry, 2016, 67(1): 65–89

    Google Scholar 

  138. Xing G, Wu B, Wu X, Li M, Du B, Wei Q, Guo J, Yeow E K, Sum T C, Huang W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8(1): 14558

    Google Scholar 

  139. Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C. Long-range balanced electron- and holetransport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347

    Google Scholar 

  140. Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525

    Google Scholar 

  141. Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y. Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015, 137(5): 2089–2096

    Google Scholar 

  142. Zheng K, Zidek K, Abdellah M, Chen J, Chábera P, Zhang W, Al-Marri M J, Pullerits T. High excitation intensity opens a new trapping channel in organic-inorganic hybrid perovskite nanoparticles. ACS Energy Letters, 2016, 1(6): 1154–1161

    Google Scholar 

  143. Freppon D J, Men L, Burkhow S J, Petrich J W, Vela J, Smith E A. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(1): 118–126

    Google Scholar 

  144. Jin H, Debroye E, Keshavarz M, Scheblykin I G, Roeffaers M B J, Hofkens J, Steele J A. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7(2): 397–410

    Google Scholar 

  145. Yang L, Dall’Agnese C, Dall’Agnese Y, Chen G, Gao Y, Sanehira Y, Jena A K, Wang X F, Gogotsi Y, Miyasaka T. Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Advanced Functional Materials, 2019, 29(46): 1905694

    Google Scholar 

  146. Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P. Electrooptics of perovskite solar cells. Nature Photonics, 2015, 9(2): 106–112

    Google Scholar 

  147. Even J, Pedesseau L, Katan C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. Journal of Physical Chemistry C, 2014, 118(22): 11566–11572

    Google Scholar 

  148. Galkowski K, Mitioglu A, Miyata A, Plochocka P, Portugall O, Eperon G E, Wang J T W, Stergiopoulos T, Stranks S D, Snaith H J, Nicholas R J. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy & Environmental Science, 2016, 9(3): 962–970

    Google Scholar 

  149. Mauck C M, Tisdale W A. Excitons in 2D organic-inorganic halide perovskites. Trends in Chemistry, 2019, 4(1): 380–393

    Google Scholar 

  150. Munson K T, Kennehan E R, Doucette G S, Asbury J B. Dynamic disorder dominates delocalization, transport, and recombination in halide perovskites. Chem, 2018, 4(12): 2826–2843

    Google Scholar 

  151. Kim Y H, Kim J S, Lee T W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Advanced Materials, 2019, 31(47): 1804595

    Google Scholar 

  152. Kim Y H, Wolf C, Kim H, Lee T W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy, 2018, 52: 329–335

    Google Scholar 

  153. Shi E, Deng S, Yuan B, Gao Y, Akriti, Yuan L, Davis C S, Zemlyanov D, Yu Y, Huang L, Dou L. Extrinsic and dynamic edge states of two-dimensional lead halide perovskites. ACS Nano, 2019, 13(2): 1635–1644

    Google Scholar 

  154. Cheng B, Li T Y, Wei P C, Yin J, Ho K T, Retamal J R D, Mohammed O F, He J H. Layer-edge device of two-dimensional hybrid perovskites. Nature Communications, 2018, 9(1): 5196

    Google Scholar 

  155. Thomson S. Measuring Charge Carrier Lifetime in Halide Perovskite Using Time-Resolved Photoluminescence Spectroscopy. Edinburgh Instruments, 2018, 23

  156. Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Advanced Materials, 2016, 28(11): 2253–2258

    Google Scholar 

  157. Yang B, Han K. Charge-carrier dynamics of lead-free halide perovskite nanocrystals. Accounts of Chemical Research, 2019, 52(11): 3188–3198

    Google Scholar 

  158. Zhi R, Hu J, Yang S, Perumal Veeramalai C, Zhang Z, Saleem M I, Sulaman M, Tang Y, Zou B. A facile method to synthesize two-dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution-processed photodetectors. Journal of Alloys and Compounds, 2020, 824: 153970

    Google Scholar 

  159. Passarelli J V, Fairfield D J, Sather N A, Hendricks M P, Sai H, Stern C L, Stupp S I. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. Journal of the American Chemical Society, 2018, 140(23): 7313–7323

    Google Scholar 

  160. Van Gompel W T M, Herckens R, Van Hecke K, Ruttens B, D’Haen J, Lutsen L, Vanderzande D. Towards 2D layered hybrid perovskites with enhanced functionality: introducing chargetransfer complexes via self-assembly. Chemical Communications (Cambridge), 2019, 55(17): 2481–2484

    Google Scholar 

  161. Gélvez-Rueda M C, Fridriksson M B, Dubey R K, Jager W F, van der Stam W, Grozema F C. Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores. Nature Communications, 2020, 11(1): 1901

    Google Scholar 

  162. Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 2015, 5(15): 1500615

    Google Scholar 

  163. Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14(2): 193–198

    Google Scholar 

  164. Juarez-Perez E J, Sanchez R S, Badia L, Garcia-Belmonte G, Kang Y S, Mora-Sero I, Bisquert J. Photoinduced giant dielectric constant in lead halide perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(13): 2390–2394

    Google Scholar 

  165. Deng Y, Xiao Z, Huang J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721

    Google Scholar 

  166. Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q. A polymer scaffold for self-healing perovskite solar cells. Nature Communications, 2016, 7(1): 10228

    Google Scholar 

  167. Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nature Communications, 2016, 7(1): 11574

    Google Scholar 

  168. Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science (Cambridge), 2015, 6(1): 613–617

    Google Scholar 

  169. Lee J W, Kim S G, Yang J M, Yang Y, Park N G. Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7(4): 041111

    Google Scholar 

  170. Yang D, Li X, Zeng H. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Advanced Materials Interfaces, 2018, 5(8): 1701662

    Google Scholar 

  171. Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S, Luther J M, Berry J J, Beard M C, Al-Jassim M M, Zhu K. Extrinsic ion migration in perovskite solar cells. Energy & Environmental Science, 2017, 10(5): 1234–1242

    Google Scholar 

  172. Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y, Xiao M. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nature Communications, 2019, 10(1): 1088

    Google Scholar 

  173. Cho J, DuBose J T, Le A N T, Kamat P V. Suppressed halide ion migration in 2D lead halide perovskites. ACS Materials Letters, 2020, 2(6): 565–570

    Google Scholar 

  174. Zhao Y C, Zhou W K, Zhou X, Liu K H, Yu D P, Zhao Q. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light, Science & Applications, 2017, 6(5): e16243–e16248

    Google Scholar 

  175. Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18(44): 30484–30490

    Google Scholar 

  176. Lamberti F, Litti L, De Bastiani M, Sorrentino R, Gandini M, Meneghetti M, Petrozza A. High-quality, ligands-free, mixed-halide perovskite nanocrystals inks for optoelectronic applications. Advanced Energy Materials, 2017, 7(8): 1601703

    Google Scholar 

  177. Miao J, Zhang F. Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(7): 1741–1791

    Google Scholar 

  178. Yang Y, Dai H, Yang F, Zhang Y, Luo D, Zhang X, Wang K, Sun X W, Yao J. All-perovskite photodetector with fast response. Nanoscale Research Letters, 2019, 14(1): 291

    Google Scholar 

  179. Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale, 2020, 12(4): 2201–2227

    Google Scholar 

  180. Wang X, Li M, Zhang B, Wang H, Zhao Y, Wang B. Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52: 172–183

    Google Scholar 

  181. Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies. Nature Photonics, 2016, 10(2): 81–92

    Google Scholar 

  182. Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686

    Google Scholar 

  183. Gao L, Zeng K, Guo J, Ge C, Du J, Zhao Y, Chen C, Deng H, He Y, Song H, Niu G, Tang J. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Letters, 2016, 16(12): 7446–7454

    Google Scholar 

  184. Geng X, Wang F, Tian H, Feng Q, Zhang H, Liang R, Shen Y, Ju Z, Gou G Y, Deng N, Li Y T, Ren J, Xie D, Yang Y, Ren T L. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14(3): 2860–2868

    Google Scholar 

  185. Fang Y, Huang J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Advanced Materials, 2015, 27(17): 2804–2810

    Google Scholar 

  186. Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G, Yang Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5(1): 5404

    Google Scholar 

  187. Zeng J, Li X, Wu Y, Yang D, Sun Z, Song Z, Wang H, Zeng H. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Advanced Functional Materials, 2018, 28(43): 1804394

    Google Scholar 

  188. Hu X, Zhang X, Liang L, Bao J, Li S, Yang W, Xie Y. Highperformance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373–7380

    Google Scholar 

  189. Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Organic light detectors: photodiodes and phototransistors. Advanced Materials, 2013, 25(31): 4267–4295

    Google Scholar 

  190. Liu C, Wang K, Yi C, Shi X, Smith A W, Gong X, Heeger A J. Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Advanced Functional Materials, 2016, 26(1): 101–110

    Google Scholar 

  191. Hu W, Wu R, Yang S, Fan P, Yang J, Pan A. Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal of Physics. D, Applied Physics, 2017, 50(37): 375101

    Google Scholar 

  192. Cheng Z, Liu K, Yang J, Chen X, Xie X, Li B, Zhang Z, Liu L, Shan C, Shen D. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS Applied Materials & Interfaces, 2019, 11(37): 34144–34150

    Google Scholar 

  193. Wang F, Mei J, Wang Y, Zhang L, Zhao H, Zhao D. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Applied Materials & Interfaces, 2016, 8(4): 2840–2846

    Google Scholar 

  194. Shen Y, Yu D, Wang X, Huo C, Wu Y, Zhu Z, Zeng H. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer. Nanotechnology, 2018, 29(8): 085201

    Google Scholar 

  195. Li P, Shivananju B N, Zhang Y, Li S, Bao Q. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. Journal of Physics. D, Applied Physics, 2017, 50(9): 094002

    Google Scholar 

  196. Hu Q, Wu H, Sun J, Yan D, Gao Y, Yang J. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8(9): 5350–5357

    Google Scholar 

  197. Liu J, Xue Y, Wang Z, Xu Z Q, Zheng C, Weber B, Song J, Wang Y, Lu Y, Zhang Y, Bao Q. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano, 2016, 10(3): 3536–3542

    Google Scholar 

  198. Deng H, Dong D, Qiao K, Bu L, Li B, Yang D, Wang H E, Cheng Y, Zhao Z, Tang J, Song H. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 2015, 7(9): 4163–4170

    Google Scholar 

  199. Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622–5632

    Google Scholar 

  200. Li X, Yu D, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun Z, Ji J, Shen Y, Sun H, Zeng H. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015–2023

    Google Scholar 

  201. Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S. Allinorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical Communications, 2016, 52(10): 2067–2070

    Google Scholar 

  202. Li Y, Lv Y, Guo Z, Dong L, Zheng J, Chai C, Chen N, Lu Y, Chen C. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Applied Materials & Interfaces, 2018, 10(18): 15888–15894

    Google Scholar 

  203. Jang D M, Kim D H, Park K, Park J, Lee J W, Song J K. Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(45): 10625–10629

    Google Scholar 

  204. Hamed M S, Mola G T. Mixed halide perovskite solar cells: progress and challenges. Critical Reviews in Solid State and Material Sciences, 2029, 45(2): 85–112

    Google Scholar 

  205. Ludwigs S, ed. P3HT Revisited-From Molecular Scale to Solar Cell Devices (Vol. 265). Berlin: Springer, 2014

  206. Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519

    Google Scholar 

  207. Chen B, Yang M, Priya S, Zhu K. Origin of J-V hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 905–917

    Google Scholar 

  208. Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells. Advanced Materials, 2018, 30(52): 1805323

    Google Scholar 

  209. Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103

    Google Scholar 

  210. Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379

    Google Scholar 

  211. Snaith H. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630

    Google Scholar 

  212. Wurfel U, Cuevas A, Wurfel P. Charge carrier separation in solar cells. IEEE Journal of Photovoltaics, 2015, 5(1): 461–469

    Google Scholar 

  213. Zhou D, Zhou T, Tian Y, Zhu X, Tu Y. Perovskite-based solar cells: materials, methods, and future perspectives. Journal of Nanomaterials, 2018, 2018: 8148072

    Google Scholar 

  214. Calió L, Kazim S, Grätzel M, Ahmad S. Hole-transport materials for perovskite solar cells. Angewandte Chemie International Edition, 2016, 55(47): 14522–14545

    Google Scholar 

  215. Guo Z, Gao L, Zhang C, Xu Z, Ma T. Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(11): 4572–4589

    Google Scholar 

  216. Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727–3732

    Google Scholar 

  217. Yu J C, Hong J A, Jung E D, Kim D B, Baek S M, Lee S, Cho S, Park S S, Choi K J, Song M H. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8(1): 1070

    Google Scholar 

  218. Fang Y, Bi C, Wang D, Huang J. The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Letters, 2017, 2(4): 782–794

    Google Scholar 

  219. Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2(4): 17009

    Google Scholar 

  220. Swain B S, Lee J. Fabrication and optimization of nanocube mixed halide perovskite films for solar cell application. Solar Energy, 2020, 201: 209–218

    Google Scholar 

  221. Liu Q, Zhao Y, Ma Y, Sun X, Ge W, Fang Z, Bai H, Tian Q, Fan B, Zhang T. A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(31): 18275–18284

    Google Scholar 

  222. Hou W, Xiao Y, Han G, Qin C, Xiao L, Chang Y, Li H. Dimethyl sulfoxide and bromide methylamine co-treatment inducing defect healing for effective and stable perovskite solar cells. Materials Research Bulletin, 2019, 112: 165–173

    Google Scholar 

  223. Lyu M, Chen J, Park N G. Improvement of efficiency and stability of CuSCN-based inverted perovskite solar cells by post-treatment with potassium thiocyanate. Journal of Solid State Chemistry, 2019, 269: 367–374

    Google Scholar 

  224. Wang X D, Li W G, Liao J F, Kuang D B. Recent advances in halide perovskite single-crystal thin films: fabrication methods and optoelectronic applications. Solar RRL, 2019, 3(4): 1800294

    Google Scholar 

  225. Zhang J, Zhai G, Gao W, Zhang C, Shao Z, Mei F, Zhang J, Yang Y, Liu X, Xu B. Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(8): 4190–4198

    Google Scholar 

  226. Xia Y, Ran C, Chen Y, Li Q, Jiang N, Li C, Pan Y, Li T, Wang J, Huang W. Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(7): 3193–3202

    Google Scholar 

  227. Zhou X, Zhang Y, Kong W, Hu M, Zhang L, Liu C, Li X, Pan C, Yu G, Cheng C, Xu B. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(7): 3012–3021

    Google Scholar 

  228. Ye F, Chen H, Xie F, Tang W, Yin M, He J, Bi E, Wang Y, Yang X, Han L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016, 9(7): 2295–2301

    Google Scholar 

  229. Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P H, Kanatzidis M G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 2015, 137(35): 11445–11452

    Google Scholar 

  230. Ma C, Shen D, Huang B, Li X, Chen W C, Lo M F, Wang P, Hon-Wah Lam M, Lu Y, Ma B, Lee C S. High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(15): 8811–8817

    Google Scholar 

  231. You P, Tang G, Yan F. Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11: 128–158

    Google Scholar 

  232. Wei Y, Chu H, Chen B, Tian Y, Yang X, Cai B, Zhang Y, Zhao J. Two-dimensional cyclohexane methylamine-based perovskites as stable light absorbers for solar cells. Solar Energy, 2020, 201: 13–20

    Google Scholar 

  233. Chang C Y, Tsai B C, Lin M Z, Huang Y C, Tsao C S. An integrated approach towards the fabrication of highly efficient and long-term stable perovskite nanowire solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(43): 22824–22833

    Google Scholar 

  234. Wang S W, Yan S, Wang M A, Chang L, Wang J L, Wang Z. Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique. Solar Energy Materials and Solar Cells, 2017, 167: 173–177

    Google Scholar 

  235. Singh R, Suranagi S R, Yang S J, Cho K. Enhancing the power conversion efficiency of perovskite solar cells via the controlled growth of perovskite nanowires. Nano Energy, 2018, 51: 192–198

    Google Scholar 

  236. He J, Zhang F, Xiang Y, Lian J, Wang X, Zhang Y, Peng X, Zeng P, Qu J, Song J. Preparation of low dimensional antimonene oxides and their application in Cu:NiOx based planar pin perovskite solar cells. Journal of Power Sources, 2019, 435: 226819

    Google Scholar 

  237. Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 2017, 3(10): eaao4204

    Google Scholar 

  238. Mao L, Wu Y, Stoumpos C C, Traore B, Katan C, Even J, Wasielewski M R, Kanatzidis M G. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. Journal of the American Chemical Society, 2017, 139(34): 11956–11963

    Google Scholar 

  239. Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(14): 5580–5586

    Google Scholar 

  240. Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature Communications, 2018, 9(1): 1076

    Google Scholar 

  241. Niezgoda J S, Foley B J, Chen A Z, Choi J J. Improved charge collection in highly efficient CsPbBrI2 solar cells with light-induced dealloying. ACS Energy Letters, 2017, 2(5): 1043–1049

    Google Scholar 

  242. Mehdi H, Mhamdi A, Bouazizi A. Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3−xClx mixed halide perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 109: 104915

    Google Scholar 

  243. Guo N, Zhang T, Li G, Xu F, Qian X, Zhao Y. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. Journal of Semiconductors, 2017, 38(1): 014004

    Google Scholar 

  244. Yang F, Kamarudin M A, Zhang P, Kapil G, Ma T, Hayase S. Enhanced crystallization by methanol additive in antisolvent for achieving high-quality MAPbI3 perovskite films in humid atmosphere. ChemSusChem, 2018, 11(14): 2348–2357

    Google Scholar 

  245. Aydin E, Troughton J, Bastiani M D, Ugur E, Sajjad M, Alzahrani A, Neophytou M, Schwingenschlögl U, Laquai F, Baran D, De Wolf S. Room-temperature-sputtered nanocrystalline nickel oxide as hole transport layer for p-i-n perovskite solar cells. ACS Applied Energy Materials, 2018, 1(11): 6227–6233

    Google Scholar 

  246. Guo Y, Yin X, Liu J, Chen W, Wen S, Que M, Xie H, Yang Y, Que W, Gao B. Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 2019, 65: 207–214

    Google Scholar 

  247. Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y. Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx hole-extraction layer. ChemSusChem, 2017, 10(12): 2660–2667

    Google Scholar 

  248. Yin G, Zhao H, Jiang H, Yuan S, Niu T, Zhao K, Liu Z, Liu S F. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Advanced Functional Materials, 2018, 28(39): 1803269

    Google Scholar 

  249. Jiang H, Feng J, Zhao H, Li G, Yin G, Han Y, Yan F, Liu Z, Liu S. Low temperature fabrication for high performance flexible CsPbI2Br perovskite solar cells. Advancement of Science, 2018, 5(11): 1801117

    Google Scholar 

  250. Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials, 2019, 9(14): 1803241

    Google Scholar 

  251. Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S, Hao Y. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Advanced Energy Materials, 2018, 8(19): 1703432

    Google Scholar 

  252. Jo Y, Oh K S, Kim M, Kim K H, Lee H, Lee C W, Kim D S. High performance of planar perovskite solar cells produced from PbI2 (DMSO) and PbI2 (NMP) complexes by intramolecular exchange. Advanced Materials Interfaces, 2016, 3(10): 1500768

    Google Scholar 

  253. Gkini K E, Antoniadou M, Balis N, Kaltzoglou A, Kontos A G, Falaras P. Mixing cations and halide anions in perovskite solar cells. Materials Today: Proceedings, 2019, 19: 73–78

    Google Scholar 

  254. Jiang L L, Wang Z K, Li M, Zhang C C, Ye Q Q, Hu K H, Lu D Z, Fang P F, Liao L S. Passivated perovskite crystallization via g-C3N4 for high-performance solar cells. Advanced Functional Materials, 2018, 28(7): 1705875

    Google Scholar 

  255. Hadadian M, Correa-Baena J P, Goharshadi E K, Ummadisingu A, Seo J Y, Luo J, Gholipour S, Zakeeruddin S M, Saliba M, Abate A, Grätzel M, Hagfeldt A. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Advanced Materials, 2016, 28(39): 8681–8686

    Google Scholar 

  256. Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95

    Google Scholar 

  257. Ahmad K, Kumar P, Mobin S M. A two-step modified sequential deposition method-based Pb-free (CH3NH3)3Sb2I9 perovskite with improved open circuit voltage and performance. ChemElectroChem, 2020, 7(4): 946–950

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program, the support of Canada Foundation for Innovation through John R. Evans Leaders Fund, the support through New Frontier in Research Fund, Dr. Robert Gillespie through the Dr Robert Gillespie graduate Scholarship, and the Pengrowth-Nova Scotia Energy through the Pengrowth Energy Innovation Grant. The authors acknowledge the support of Dean Grijm, Mark Leblanc and Greg Everett in completing this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada I. Koleilat.

Additional information

Conflicts of interest

The authors declare no conflict of interest.

Rashad Kahwagi received a M.Sc. degree in Chemical Engineering from the University of Balamand, Lebanon in 2018 and is currently pursuing a Ph.D. degree at Dalhousie University, Canada under the supervision of Prof. Ghada Koleilat. His research focus is mainly on the different treatment development for perovskite materials in solar cells, with a future concentration on various energy generator applications.

Sean Thornton received a B.Eng. degree in Environmental Engineering from Dalhousie University, Canada in 2019. He is currently a Ph.D. student in Chemical Engineering at Dalhousie University, Canada under the supervision of Prof. Ghada Koleilat. His research interest is low-dimensional organic-inorganic hybrid perovskite solar cells.

Ben Smith received a bachelor’s degree in Materials Engineering from Dalhousie University, Canada and is currently pursuing a MASc in Chemical Engineering under the supervision of Prof. Ghada Koleilat. His current research interests focus on advanced materials in photovoltaic applications, including metal halide perovskites, and conductive polymer electrodes.

Prof. Ghada Koleilat received her BASc (2006) in Electrical Engineering from Concordia University, Canada, her MASc (2008) and her Ph.D. (2012) degrees in Electrical Engineering from the University of Toronto, Canada. During her graduate studies, she developed the world’s first functional colloidal quantum dot tandem solar cell employing a single quantum tuned material. She also conceived a material processing that enabled prolonged stability and improved electrical properties in photovoltaic junctions based on colloidal quantum dots. Before joining Dalhousie University, Canada in August 2016, Koleilat did her postdoctoral training at Stanford University, USA where she investigated the properties of single walled carbon nanotubes and their potential in photovoltaics. She has received several prestigious highly competitive awards for her research work, most recently she was one of the first awardee of the New Frontiers in Research Fund (Exploration stream). Her group focuses on investigating the properties of advanced materials for use in energy conversion applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahwagi, R.F., Thornton, S.T., Smith, B. et al. Dimensionality engineering of metal halide perovskites. Front. Optoelectron. 13, 196–224 (2020). https://doi.org/10.1007/s12200-020-1039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-020-1039-6

Keywords

Navigation