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Abstract
At the checkpoint, the detection of illicit inorganic powders in passenger luggage 
using conventional X-ray can be challenging. An algorithm is presented for the 
automated detection of inorganic powder-like substances from complex X-ray 
images of highly cluttered passenger bags using computer vision. The proposed 
method utilizes support vector machine (SVM) classifiers built from local binary 
patterns (LBP) texture features. When tested on a dataset created in-house, the 
algorithm achieves a detection precision of 97% and a false positive rate of 3%. This 
is the first study performed on a realistic dataset, including different amounts and 
shapes of powders and electronic clutter, and where the success of the automated 
method is compared with inter-observer variability.
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Introduction

Since air passengers’ cabin baggage can be accessed during flight, objects that can 
be used for both hijacking and sabotaging the aircraft are prohibited (Vukadinovic 
and Anderson 2022). At the security checkpoint prior to boarding, X-ray images of 
cabin baggage are visually inspected by human screeners for prohibited items such 
as guns, knives, and improvised explosive devices (IEDs), as well as other items 
such as self-defence gas sprays or electric shock devices (Hancock and Hart 2002). 
The list of prohibited items is long and increasing (European Commission 2021; 
Transport Security Administration 2021). However, explosives are still considered to 
be the most dangerous prohibited articles in passenger baggage. Bare explosives are 
especially challenging to detect because – in the absence of other IEDs components 
– they can look like a shapeless mass, and are hence difficult to spot even by well-
trained observers (Huegli et  al. 2020). Bare explosives in cabin baggage pose a 
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threat because they can be combined with other IED components after passing an 
airport security checkpoint (Hättenschwiler et  al. 2018). Furthermore, the target 
prevalence of real explosives (IEDs and bare explosives) is extremely low which 
makes the tasks of the screeners more difficult (Vukadinovic and Anderson 2022). 
Many explosives of concern traditionally fall into the organic range because of their 
effective atomic number  (Zeff). Therefore, they appear orange in pseudo-coloured 
dual energy X-ray images, and that is how human screeners are taught to recognize 
them. Inorganic substances, on the other hand, appear green and easily blend in with 
electronic devices that also appear green or blue, and that are increasingly prevalent 
in passengers’ luggage (Fig. 1).

Contraband materials, including powders, can be automatically detected with 
other methods with varying success. For example, infrared hyperspectral imaging 
can be used for detection of traces of explosive manipulation on passengers’ fingers 
as described in Fernández de la Ossa et  al. (2014). It took 5  min to successfully 
analyse fingerprints of volunteers previously manipulating typical substances used 
to make an IED, such as ammonium nitrate, black powder, single-and double-base 
smokeless gunpowder and dynamite. Although it requires a long processing time, 
this is a potentially promising forensic tool for the detection of explosive residues 
and other related samples. Another method is X-ray diffraction (XRD) (Harding 
et al. 2012). Such systems achieve a high detection rate and a low false alarm rate 
for crystalline substances detection, including inorganic powders. These systems 
are comparatively slow and expensive and therefore tend to be used only as a third 
tier for hold baggage false alarm clearing (Vukadinovic and Anderson 2022). Faster 
detection is achieved using automated detection systems (EDS) that analyses X-ray 
attenuation data for potential explosives before the X-ray image is displayed to the 
X-ray screener. However, EDS with high detection rates (close to 90%) have false 
alarm rates in the range of 15–20% (Hättenschwiler et al. 2018).

The automatic detection of illicit inorganic powders in passenger luggage is 
clearly a challenging problem, both in terms of accuracy and speed. In X-ray 
imagery, bare explosives cannot be detected using shape, and colour is not a reliable 

Fig. 1  An inorganic substance (marked with red arrow) appears similar to consumer electronics (marked 
with purple arrow) on X-ray pseudo-coloured image
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feature since it changes due to overlapping with other materials. However, powdery 
texture could be a promising feature to enable more accurate detection of inorganic 
powders.

In this paper, a computer-vision based method developed for fully automated 
detection of inorganic powders from dual-source X-ray images of airport passen-
ger bags packed with realistic electronic clutter is presented. The algorithm achieves 
both a high level of automation and accuracy. The algorithm consists of several 
steps; firstly, the region of interest (ROI) where inorganic powder could be located is 
automatically segmented. Secondly, LBP texture features are extracted from a slid-
ing window that slides over the ROI and the features are fed into a binary classifier 
that classifies each pixel in the ROI as belonging to a powder or not. Finally, post 
processing of the classification probabilities results in a segmented area of the target.

This paper is structured as follows: in Sect.  2 related work is presented and 
discussed, followed by a description of the methodology in Sect. 3. Subsequently, 
in Sect.  4, the experimental setup is described, including the datasets used, and 
the evaluation methodology. In Sect.  5, the results are presented, followed by a 
discussion in Sect. 6 and a conclusion in Sect. 7.

Related work

An overview of the principles of X-ray technology for screening of baggage is given 
in Vukadinovic and Anderson (2022). In the published literature, threat detection 
using X-ray and CT images focus on the prohibited items with a characteristic shape; 
methods dealing with contraband materials are very few. Additionally, no research 
was published on the detection of powder-like inorganic substances using X-ray 
images of cluttered airport bags. Therefore, in this section an overview is given 
of published computer vision methods applied to X-ray images of materials with 
similar characteristics to contraband materials in airport baggage, although these 
methods are not necessarily representative of realistic airport checkpoint situations 
where materials are placed in cluttered bags. Additionally, computer vision methods 
for the detection of prohibited items such as guns, knives are presented.

Benedykciuk et  al. (2020) published work on material classification using one 
million patches of dual-energy X-ray images, using machine learning with pixel val-
ues as features, and classifying between light organic materials, heavy organic mate-
rials, mixed materials, and heavy metals. A year later, the same authors published 
their work on the same topic, and using the same database, but with a CNN approach 
instead of conventional machine learning (Benedykciuk et  al. 2021). The average 
accuracy was equal to 95%, and not higher than in Benedykciuk et al. (2020). Both 
algorithms (Benedykciuk et al. 2021; 2020) were trained and tested on patches of 
different materials and not on cluttered bags. Morris et  al. (2018) tested several 
CNNs on the Passenger Baggage Object Database (PBOD) (Gittinger et al. 2018) 
consisting of dual-energy X-ray images of bags containing explosives. The best 
results were obtained using a hybrid model consisting of VGG19 (Simonyan and 
Zisserman 2015) convolutional layers and Xception (Chollet 2017) and InceptionV3 
(Szegedy et  al. 2016) top layers, achieving an area under curve (AUC ) of 0.95, a 
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false positive rate (FPR) of 0.06 and a false negative rate (FNR) of 0.24. The types 
of explosives used in the study were not described for security reasons. Chouai et al. 
(2020) used a modified YOLO V3 (Redmon and Farhadi 2018) to detect all objects 
in dual-energy X-ray images of baggage, an adversarial autoencoder (Makhzani 
et al. 2016) to extract features, and a SVM classifier to detect explosives and fire-
arms among selected objects. The dataset consisted of 10,000 objects. The types of 
explosives used in this study are not described, nor the creation of the dataset, but 
based on example images shown in Chouai et al. (2020), low-complexity to high-
complexity images were used. The accuracy of the presented method was 96.5% and 
the F1 score was 0.94, while the time needed to perform object classification varied 
between 350 and 425 ms, based on the image size. Kayalvizhi et al. (2022) devel-
oped a CNN-based algorithm for the automated detection of threat materials in dual-
energy X-ray images. The dataset consisted of grey and pseudo-coloured images of 
threat materials (explosive simulants) and non-threat organic materials having a sim-
ilar  Zeff. In contrast to the dataset used in this paper, imaged bags in Kayalvizhi et al. 
(2022) were sparsely packed and with no overlapping objects. The initial dataset 
was expanded using a deep convolutional generative adversarial network (DCGAN) 
(Radford et al. 2016) and classical image augmentation (Bloice et al. 2019) to a final 
dataset comprising 20,000 grey images and 12,000 pseudo-coloured ones. On grey 
and pseudo-coloured images, the method achieved an accuracy of 97% and 98%, 
respectively, and a speed of 12 s and 6 s, respectively.

Regarding computer vision methods for object detection in X-ray security images, 
an extensive review of the application of machine learning in X-ray security screen-
ing was published by (Vukadinovic and Anderson 2022) where it was shown that 
most of the methods for prohibited items detection rely on the bag of visual words 
(BoVW) concept. BoVW was used for handgun detection (Baştan et  al. 2011), 
firearm classification (Turcsany et al. 2013), and for 4-class classification of guns, 
shuriken, razor blades and clips (Mery et al. 2016). The typical approach for BoVW 
was to use different feature detectors to encode features of images in a vector quan-
tized representation. For example, Baştan (2015) used several feature detectors (Har-
ris–Laplace, Harris-affine, Hessian–Laplace, Hessian-affine), combined with SIFT 
and SPIN feature descriptors, and used an SVM classifier to discriminate several 
classes (guns, bottles and laptops). There are also several methods that don’t employ 
BoVW. Franzel et al. (2012) used histogram oriented gradient (HOG) features and 
machine learning applied on all four X-ray views (Dalal and Triggs 2005), Schmidt-
Hackenberg et al. (2012) used features inspired by the human visual cortex for the 
detection of guns, and Roomi (2012) used shape context descriptors (Belongie et al. 
2002) and Zernike moments for features (Khotanzad and Hong 1990) fed into a 
fuzzy k-NN classifier (32). For deep learning methods, it is normally necessary to 
use transfer learning due to a lack of data in this field. Akçay et  al. (2016) used 
AlexNet (Krizhevsky et  al. 2012) as a base model which they further optimized 
for handgun image classification. Training and testing datasets consisted of image 
patches cropped from 6,997 X-ray images created by the authors. They compared 
their transfer learning method directly with the approach of Turcsany et al. (2013), 
and the transfer learning method showed superior results. The same authors pub-
lished more elaborate studies on threat detection (Akçay and Breckon 2017; Akçay 
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et  al. 2018), with more data, comparing traditional sliding-window-based CNN 
detection with region-based object detection techniques (Ren et  al. 2017), region-
based fully convolutional networks (R-FCN) (Dai et  al. 2016) and the YOLOv2 
model (Redmon & Farhadi). Hassan et  al. (2019) proposed a contraband-object-
detection algorithm with complex, non-deep learning based ROIs extraction based 
on the variations of the objects directions and applied on heavily occluded and clut-
tered baggage using GDXray (Mery et al. 2015) and SIXray (Miao et al. 2019) data-
sets. ROIs were then fed into a CNN model using a pre-trained ResNet50 model (He 
et al. 2016), achieving a very high accuracy of 99.5% and a FPR of 4.3%.

Methodology

The method used to solve the difficult task of automated detection of inorganic pow-
der in cluttered bags is based on pixel-based machine learning approach, with col-
our-texture features extracted using a sliding window approach (Benedykciuk et al. 
2020; Franzel et  al. 2012; Schmidt-Hackenberg et  al. 2012; Akçay and Breckon 
2017). Overall, the method can be separated into three parts:

• a pre-processing step with ROI candidates extraction
• texture feature extraction using a sliding-window approach
• classification and post-processing.

Pre‑processing: ROI candidates extraction

In order to extract the initial region of interest (ROI) where the threat might be 
located, the RGB images are pre-processed. First, the bag area of the image is 
extracted from the original image by thresholding the local entropy image. The local 
entropy image is calculated using a grey-scale image of the original RGB X-ray 
image. The local entropy is related to the complexity contained in a given neigh-
bourhood, typically defined by a structuring element. The entropy filter can detect 
subtle variations in the local grey level distribution and it is calculated using the fol-
lowing formula within the structuring element:

where pi is the probability (obtained from the normalized local histograms of the 
image) associated with the grey level, i. In this work, the structuring element, chosen 
by educated guess, was a disk-shaped structuring element of radius = 10 pixels. The 
scikit-image Python library was used to perform morphology operations. The final 
ROI depicting the bag is the result of applying an Otsu threshold (Otsu 1979) on the 
local entropy image (Fig. 2). Inorganic powders appear in the X-ray images as green 
or green-bluish areas. Even if there is an organic object overlapping it, there will be 
a trace of green–blue colour visible in the orange object area. In order to exclude all 
the pure orange and white areas from the segmented bag, and keep the remaining 

(1)H = −

∑255

i=0
pilog2pi,
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part of the image for further analysis, colour-based thresholding was performed. 
First, the red channel of the RGB image is blurred using a Gaussian kernel of 5 × 5 
pixels, and is thresholded with the fixed threshold, th = 100. Filtering out connected 
components (Rosenfeld and Pfaltz 1966) smaller than 500 pixels results in the area 
of interest where inorganic powders could be located. The resulting area is a heavily 
overestimated region where the powder of interest, if in the bag, is located with high 
certainty, while many false positive pixels are included. This area is referred to as 
the Initial ROI, and the process of deriving it from an image is illustrated in Fig. 2.

During training, positive and negative samples were extracted from the Ini-
tial ROI area. Positive samples were extracted from an area created by dilating the 
ground truth (GT) ROIs with a disk-shaped element with a radius of 10 pixels. This 
area is referred to as Positive ROI. Negative samples were extracted from an area 
defined with the following equation:

where Negative ROI, Positive ROI and Initial ROI are sets consisting of pixels, 
and the—operator is a difference operator applied to two sets. The thresholds and 
the minimum connected component sizes used in this process were chosen after a 
few trial-and-error educated guesses on the tuning set. In the training phase, pixels 
belonging to the Positive ROI area represent positive samples, and pixels belonging 
to the Negative ROI represent negative samples. Every  10th pixel selected from the 
Initial ROI represented test samples. For each sample (positive, negative or test), the 
same set of features is extracted.

LBP features extraction

In case of inorganic powders, it is very difficult for a human screener to see 
powders in a cluttered X-ray image because of their arbitrary form. The issue 
of green–blue clutter is a growing problem, due to the increasing amounts of 
electronic items carried in passengers’ bags, such as cables, phones, tablets, 

(2)NegativeROI = InitialROI − PositiveROI

Fig. 2  a RGB X-ray image of luggage containing an inorganic powder; b a bag mask resulting from Otsu 
thresholding of the local entropy image. c red component of the bag area of the image on which thresh-
old is applied to extract the ROI within the bag mask, d connected components smaller than 500 pixels 
removed from (c) to create the initial ROI mask
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headphones and laptops (see Fig.  1). Perhaps the only distinguishable feature, 
visible to human screeners, besides colour, is texture. One of the most widely 
used texture descriptors are local binary patterns (LBPs), first presented by Ojala 
et al., in 1996 (Ojala et al. 1996). Lately, several studies claim an improved per-
formance of CNNs if the LBP transformation of input images is performed before 
the convolution (de Souza et  al. 2017; Sharifi et  al. 2020; Xi et  al. 2016). In a 
recent survey on texture feature extraction methods (Ghalati et al. 2021), among 
rotation and scale invariant methods, one of the most successful texture descrip-
tors were LBPs. In aviation security applications, LBP texture descriptors have 
not been used often. One study where they showed good performance was Mery 
et al. (2016), where they were successfully used within a BoVW framework.

The original version of LBP (Ojala et  al. 1996) encodes the local structure 
around each pixel with LBP patterns calculated in its 3 × 3 neighbourhood. Each 
image pixel is compared with its eight neighbours in a 3 × 3 neighbourhood by 
subtracting the centre pixel grey value from the neighbourhood pixels grey val-
ues. The resulting negative values are encoded with a 0, and the positive ones 
with 1 (Huang et al. 2011) forming a binary LBP code (see Fig. 3).

Using variable neighbourhood sizes was necessary to capture multiscale tex-
tures. For this reason, and to be able to apply modifications that would allow 
extension to rotation invariant version, circular neighbourhoods were used for 
LBP code calculation. LBP code is computed by sampling evenly distributed p 
pixels on a circle of radius r from a central pixel, c, and comparing their grey val-
ues 

{

gi
} p − 1

i = 0
 with the central pixel grey value, gc.

If the coordinates of gc are (0, 0), then the coordinates of gP are given by 
(−rsin

(

2�p

P

)

, rcos
(

2�p

P

)

) – see Fig.  4. In practice, the neighbouring pixels grey 
values that do not fall exactly in the centre of pixels, are interpolated. The LBP 
patterns resulting from Eq.  (3) is a binary code that is, due to the sign function 
s(x), invariant against any monotonic transformation of image brightness.

If LBP patterns are calculated for each part of an N x M image, then that image 
texture could be characterized by the distribution of LBP patterns presented in the 
form of a histogram vector, H (see Eq. (4).

(3)LBPr,p(c) =

p−1
∑

i=0

s(gi − gc)2
i, s(x) =

{

1, x ≥ 0

0, x < 0

Fig. 3  Example of the basic LBP pattern (Huang et al. 2011)
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where 0 ≤ k < d = 2p is the number of LBP patterns (Liu et al. 2017).
For the problem addressed in this study, a rotationally invariant texture detector is 

needed. The basic LBP approach is easy to implement, invariant to monotonic illu-
mination changes, and has low computational complexity. However, there are num-
ber of shortcomings, such as sensitivity to image rotation and sensitivity to noise 
(since the slightest fluctuation above or below the value the central pixel changes the 
LBP code). Furthermore, producing large histograms even for small neighbourhoods 
leads to decreased distinctiveness and large storage requirements (Liu et al. 2017). A 
number of modifications were introduced to the basic LBP implementation to over-
come these shortcomings.

The rotation of the image, inevitably move the values gp along the circle around 
gc. Given that value g0 is always assigned to the (0, r) coordinate, right from the cen-
tral pixel (see Fig. 4), rotation of the image changes the  LBPr,p value. To remove the 
effect of rotation, a rotationally invariant version of LBP was obtained by grouping 
together LBPs that are rotated versions of the same patterns and mapping them to 
the minimum value LBP code of that pattern (see Eq. (5).

where ROR(x, i) performs a circular bit-wise right-shift on the p-bit number x, i 
times to the right (|i|< p). In terms of image pixels, this operation corresponds to 
rotating the neighbour set clockwise so many times that, the maximum number of 
the most significant bits, starting from gp-1 is 0. Besides ensuring rotational invari-
ance, this modification significantly reduces feature dimensionality. However, the 
number of LBP codes still increases rapidly with p.

Some LBP patterns occur more frequently than others. It was observed in Ojala 
et al. (2002) that certain LBPs are fundamental properties of texture, providing the 
vast majority of all patterns present. These are called “uniform” patterns since they 
have one thing in common—uniform circular structure that contains very few spatial 

(4)H(k) =

N
∑

i=1

M
∑

j=1

�
(

LBPr,p(i, j) − k
)

(5)LBPi
r,p,

= ���
{

ROR(LBPr,p, i|i = 0, 1,… , p − 1
}

Fig. 4  A typical (r, p) neighbourhood type used to derive a LBP-like operator: central pixel gc and its p 
circularly and evenly spaced neighbours g0, g1, … gp-1, on a circle of radius r. (Liu et al. 2017)
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transitions. Uniform patterns are illustrated in the upper part of Fig. 5. They func-
tion as templates for microstructures such as a bright spot and flat area or a dark spot 
(upper row), and edges of varying positive and negative curvature (bottom row).

“Uniform” patterns are defined using a uniformity measure, U, which corre-
sponds to the number of spatial transitions (bitwise 0/1 changes) in the given LBP 
pattern (Ojala et al. 2002). U is formally defined as:

where s, and gc are defined as in Eq. (3), g0 is always assigned to the (0, r) coordi-
nate right from the gc (see Fig. 4 and Fig. 5). Furthermore, a grey-scale and rotation 
invariant texture descriptor consisting of “uniform” LBP patterns is defined as:

The final texture features that are used in this study are calculated as histograms 
of the LBPriu

r,p
 texture descriptors. The reason why the histogram of “uniform” pat-

terns provides better discrimination compared to the histogram of all individual pat-
terns is due to differences in their statistical properties. The relative proportion of 
“non-uniform” patterns of all patterns accumulated into a histogram is so small that 
their probabilities cannot be estimated reliably. The inclusion of their noisy esti-
mates in the dissimilarity analysis of sample and model histograms would deterio-
rate performance (Ojala et al. 2002).

Pixel-based classification is used, i.e. any pixel that belongs to Initial ROI 
described in Sect. 3.1, represents a sample whose features are extracted in order to 
classify them. In order to extract texture features that describe those pixels, a sliding 

(6)U
(

LBPr,p

)

=

|

|

|

s
(

gp−1 − gc
)

− s(g0 − gc)
|

|

|

+

p−1
∑

i=1

|

|

|

s
(

gi − gc
)

− s(gi−1 − gc)
|

|

|

(7)LBPriu
r,p

=

⎧

⎪

⎨

⎪

⎩

p−1
∑

i=0

s
�

gi − gc
�

, ifU(LBPr,p) ≤ 2

p + 1, otherwise

Fig. 5  “Uniform” vs “non-uniform” LBP patterns, with P representing number of sampled points. (Pie-
tikäinen and Heikkilä, 2011)
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window centered at the pixel is utilized. In the training phase, pixels are randomly 
selected within Positive ROI area and Negative ROI area, representing positive and 
negative samples respectively. An example of randomly selected 100 positive sam-
ples from Positive ROI (green) and 200 negative samples from Negative ROI (red) is 
shown in Fig. 6.

Each sample is represented with several LBPs with different values of (r, p) pairs 
in LBPriu

r,p
 as defined in Eq. 7. Each LBP pattern is calculated for the sliding window 

image patch, and consequently represented as a histogram vector of LBP patterns. 
Each LBP histogram vector has p + 2 bins, making a total number of features of an 
LBPriu

r,p
 set extracted from one image patch equal to:

In the presented method, several image modes are used to extract features: all 
channels of RGB and Lab images and the greyscale image, for a total number of 
features of:

Classification and post‑processing

After normalizing the data to zero mean and unit variance, a classifier was trained 
on the training set. Several classification methods were investigated, namely, sup-
port vector machines (Vapnik 1999), AdaBoost (Freund and Schapire 1997; Fried-
man et  al. 2000; Schapire 2013), and decision trees (Rokach and Maimon 2005). 
All three classification methods were compared as described in the experimental 
set up (see Sect.  4.2). In the testing phase, features were extracted for every  10th 
pixel within Initial ROI and fed into a trained classifier for each of these pixels to be 
classified as belonging to the powder area or not. Sparse sampling was performed 
because calculating complete set of features for each pixel was time consuming, and 

(8)Nm =

i=numofLBPs
∑

i=1

(pi + 2)

(9)Nt = Nm ∗

i=numofLBPs
∑

i=1

(pi + 2)

Fig. 6  Example extraction of (a) 100 positive training samples; (b) 200 negative training samples
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there was no benefit given that the pixels representing inorganic powders were any-
way grouped in spatially compact clusters reflecting either positive or negative clas-
sification result.

The result of the classification that is assigned to the each pixel is the distance 
to the separation plane in feature space. Positive values mean that the given pixel 
belongs to the powder area and negative values that it does not. The higher the abso-
lute value of the pixel, the more confidence in the classification result. The resulting 
images can be considered classification confidence images. Some examples of confi-
dence images are shown in Fig. 7. Morphological closing was performed on positive 
values, and connected components smaller than 300 pixels were removed (Fig. 7c). 
The performance of the powder detection algorithm was analysed for each image 
separately and per bag.

Data and experimental set up

An in-house dataset was created to train and evaluate the proposed algorithm. The 
dataset comprises X-ray images of realistically packed bags with electronic clutter 
and different shapes and amounts of powders. Two human observers were involved 
in the labelling process to assess inter-observer variability.

(a) (b) (c)

Fig. 7  Example of morphological closing of confidence images, which was the first step in post process-
ing: (a) two RGB X-ray views of a bag; (b) classification values for each testing sample (i.e. confidence 
images); (c) morphological closing of positive values
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Data

The bag set consisted of cabin bags and hold bags supplied by Iconal Ltd, UK. Five 
different sets of electronic clutter were assembled and placed inside different bags 
during the imaging process (Fig. 8).

Inorganic powder threats are simulated by placing different amounts of course 
table salt, NaCl, in plastic bags, in masses of 50 g, 100 g and 200 g. Each bag with a 
simulated threat was always imaged with one of the sets of clutter.

Each threat was shaped in three different forms: spherical, cylindrical and thinly 
spread:

• 200 g amount was imaged thinly spread in each cabin and hold bag, amounting 
to 40 bags in total.

• 200 g amount was imaged in a cylindrical shape with every second cabin and 
hold bag, amounting to 20 bags in total.

• 200 g amount was imaged in a spherical shape with every second cabin and hold 
bag amounting to 20 bags in total.

• 100 g amount was imaged only in a spherical shape with every cabin and hold 
bag amounting to 40 bags in total.

• 2 × 50  g amount was imaged one package in cylindrical and the other one in 
thinly spread shape with every cabin and hold bag (15 bags) amounting to 40 
bags in total.

(a) (b)

Fig. 8  Two examples of X-ray images from the dataset created and used in this study: a two views of 
X-ray images with the red arrow pointing to the inorganic powder and the green arrow to the electronic 
clutter; b corresponding RGB images of the electronic clutter (b)
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The final number of bag-images was 225, each X-ray scan containing 2 views, out 
of which 65 scans (130 images) containing no threat, and 160 scans with threat (320 
images).

In-house labelling software was developed for the data annotation process. 
Observers could see both views, the amount and shape of the threat present, and 
the total number of threats was shown on the screen. Then, ROIs are drawn in one 
chosen view, and afterwards the other view is shown with the vertical lines showing 
the x-range where the object is positioned. Observers had unlimited time to spot the 
powder in the images, and could consult RGB images (photographs) of open bags 
with the threat in it made by smartphone immediately prior to scanning.

The conditions for human observers were deliberately made easier than in airport 
checkpoints in order to get a more accurate ground truth. Nevertheless, it was some-
times difficult for observers to spot the powders, for example, for small amounts 
of 50 g, especially if the powder was thinly spread and fully overlapped with the 
electronic clutter. The amount of time needed for observers to spot the powders was 
long, and even longer when small amounts of powder were observed; Observer 1, 
on average, spent 63  s per bag, and while labelling only bags with 50  g powder, 
Observer 1 spent 105 s per bag. Observer 2 spent on average 86 s per bag, and while 
labelling only bags with 50 g powder, Observer 2 spent on average 129 s per bag.

Experimental set‑up

The algorithm was trained with the ground truth labelled by Observer 1 only. 
Observer 2 labels were used to assess the inter-observer variability of detec-
tion. From the set of images where the simulated threat was present, those where 
Observer 1 labelled each image were selected. This set – referred to as Set A – con-
tained 264 images.

The test set was created in the following way. From Set A, 25 bags (50 images) 
were randomly selected. Added to this set were 25 randomly selected bags (50 
images), from the set of images with no threat present. In total, the test set contained 
50 bags (100 images).

A small tuning set was created in the following way. From the remaining images 
in set A, 10 bags (20 images) were randomly selected. Added to this set were 10 
bags (20 images) selected randomly from the remainder of the image set with no 
threat present. The tuning set contained 20 bags (40 images) in total. The final test 
set for powder detection was created by merging the test set and tuning set, contain-
ing in total 140 images of 70 bags (35 with powder and 35 without powder).

The remaining images of set A, 194 images, were used for training. Both positive 
and negative samples were extracted from the Initial ROI of each image belonging 
to this set as described in Sect. 3. From each train image Initial ROI, 100 positive 
and 200 negative samples were randomly selected.

A tuning set was used in order to choose the best classifier and its parameters, and 
the optimal threshold applied on the pixel-based classification result. Four classifiers 
were used initially: SVM (Vapnik 1999) with linear kernel, SVM with RBF kernel, 
AdaBoost (Freund and Schapire 1997; Friedman et  al. 2000; Schapire 2013), and 
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decision trees (Rokach and Maimon 2005). The parameters of each classifier were 
determined empirically on a few examples from the tuning set using the scikit-learn 
Python library. The parameters of the linear SVM classifiers were C = 100, L2 norm 
for penalty, and the number of maximum iterations were set to 4,000. For the SVM 
classifier with RBF kernel, C = 100, and 1/gamma that is equal to number of train-
ing samples was used. AdaBoost classifier was used with decision tree classifier as 
a base classifier, a number of estimators equal to 300, and the learning rate equal 
to 1. The maximum depth of the decision trees classifier was equal to 10. Each of 
the classifiers was trained on the training set, and tested on the tuning set, using 
the ground truth labelled by Observer 1. The test set and final test set were used to 
test the performance of the chosen classifier against the ground truth labelled by the 
Observer 1.

The features used were rotation invariant and the uniform LBP feature, LBPriu
r,p

 
with (r, p) pairs values equal to:

where (r, p) pairs are defined in Fig. 4, and the sliding window size used for each 
pixel classification was set to 80 × 80 pixels.

Evaluation measures

For pixel-based classification, the classes are highly imbalanced: there are many 
more negative examples than positive ones in each image. In the testing phase, each 
of the pixels belonging to the Initial ROI was classified as belonging to the powder 
or not, and the number of non-powder pixels, according to the GT, was, on average, 
more than 10 times higher than the number of powder GT pixels. The result of such 
an imbalance is typically that the error rate for the majority class is much smaller 
than for the minority class (Monard and Batista 2002), hence, the minority class 
has a much higher misclassification cost. F-measure is a harmonic mean between 
recall and precision, and tends to be closer to the smaller of the two. Therefore, 
a high F-measure value ensures that both recall and precision are reasonably high 
(Sun et al. 2009). F-measure is defined as:

where R represents recall, and P precision.
The performance of the presented algorithm is evaluated per powder and per bag. 

When using standard evaluation measures for detecting a powder (not an alarmed 
bag) defining true negatives (TN) is not possible. Hence, in the evaluation of the 
algorithm’s detection performance per powder, TNs are not included, while for 
detection per bag they are.

With detection per powder, a true positive (TP) detected object is one whose 
bounding box overlaps with the ground truth (GT) object bounding box marked by 
Observer 1, and a false positive (FP) is one that does not. If there is a ROI marked 

(10)(r, p) = [(1, 24), (2, 24), (5, 24), (8, 24)]

(11)F =

2

1

R
+

1

P
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by Observer 1, and no automated detection in this location, this is counted as a false 
negative (FN).

The evaluation per bag is performed following the algorithm described in Fig. 9. 
Namely, if there is an object placed in a bag, detected by the observer from images, 
GT_bag = 1, otherwise, GT_bag = 0. If GT_bag = 1, and if there is at least one cor-
rectly detected object of interest in either of the two views, TP_bag is equal one. If 
GT_bag = 1, and TP and FP in both views are equal to 0, then the false negative of 
this bag is set to 1. If the Observer 1 did not see the threat, GT_bag is set to 0, and if 
false positives are detected by the algorithm, FP_bag is set to 1, otherwise, TN_bag 
is set to 1. Inter-observer variability is assessed by performing the same detection 
analyses, per powder and per bag, by comparing Observer 2 labels with the ground 
truth (Observer 1 labels).

The following evaluation metrics were used:

Because TN is possible to calculate for evaluation per bag, the ROC curve (TPR 
vs FPR) using FPR is also presented. FPR is calculated as:

Results

The F-measure calculated on the tuning set for all four classifiers is presented in 
Fig. 10.

(12)Precision = TP∕(TP + FP)

(13)Recall = TPR = TP∕(TP + FN)

(14)FNR =

FN

P
=

FN

FN + TP

(15)FPR =

FP

N
=

FP

FP + TN

IF GT object exists in either view1 or view2 of a bag
THEN:

GT_bag = 1
IF (TP_view1 >0 OR TP_view2>0)
THEN: TP_bag = 1
ELSE: FN_bag = 1

ELSE:
GT_bag = 0
IF FP_view1>0 OR FP_view2 >0:
THEN: FP_bag = 1
ELSE: TN_bag = 1

Fig. 9  Pseudocode describing the algorithm for determining if a bag is a hit (TP_bag = 1), correctly 
cleared (TN = 1), false alarm (FP_bag = 1) or a miss (FN_bag = 1). The algorithm input is the detection 
success per powder in two views (i.e., TP_view1, TP_view2, FP_view1, FP_view2)
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The following performance curves for all four classifiers used on the tuning set 
are shown: Precision-Recall curves in Fig.  11, TPR curves in Fig.  12, and FNR 
curves in Fig. 13. Each of the curves is created by varying classification thresholds, 
and the results of the detection per bag and per powder are presented in each figure.

ROC curves for detection per bag, for all four classifiers, tested on the tuning set 
are presented in Fig. 14.

As indicated from the F-measure for the pixel-based classification (see 
Fig. 10) where the best performing classifier was SVM-RBF (F-measure = 0.90), 
the same classifier had the best performance for powder detection. After select-
ing the optimal threshold from P-R and ROC curves for the SVM-RBF classifier 

(a) (b)

Fig. 10  F-measure vs. threshold applied on the pixels of the confidence image. F-measure is plotted for 
four different classifiers: SVN with RBF kernel (upper left), SVM with linear kernel (upper right), Ada 
Boost (bottom left), and Decision Trees (bottom right)

(a) (b)

Fig. 11  Precision-recall curves for all four classifier applied on the tuning set and calculated for detec-
tion: a per powder and b per bag
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 (thopt = 1.1), the method was tested on the test set and the final test set (test 
set + tuning set), and the results are presented in Table  1 and Table  2 respec-
tively. These results are also compared with the inter-observer variability, i.e. 
applying the same metrics for evaluating the performance of Observer 2 versus 
Observer 1 annotations. The inter-observer variability is calculated only on the 
samples with powder present since only on these images the observers annotated 
powder ROIs. TNs in the calculation of FPR between two observers are the bags 
that Observer 1 did not annotate, irrespective of whether the powder was present 
in the bag or not.

Additionally, the precision-recall curves for positive and negative class of the 
final test set are shown in Fig. 15, where mAP over both classes is equal to 88%.

(a) (b)

Fig. 12  True Positive Rate (TPR) curves for all classifiers applied on the tuning set and calculated for 
detection: a per powder, and b per bag

(a) (b)

Fig. 13  False negative rate (FNR) curves for all classifiers applied on the tuning set and calculated for 
detection: a per powder, and b per bag
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Some examples of correct and incorrect positive classifications are shown in 
Fig. 16.

The algorithm presented in this study was implemented in the Python program-
ming language using standard Python libraries. Machine learning was implemented 
using the scikit-learn Python library. The algorithm was developed using a laptop of 
modest computational power: 16 GB of RAM and i7-855U CPU with two cores. On 
this laptop, testing one image took around 8 min. When the same algorithm was exe-
cuted on the JRC Big Data Platform (Soille et al. 2018), utilizing parallel processing 

Fig. 14  ROC curves for all four classifiers applied on the tuning set and calculated for detection per bag

Table 1  Test set: evaluation of the results. Automated detection (AM) vs ground truth (GT) as annotated 
by Observer 1, and Observer 2 detection vs Observer 1. Observer 1 is marked as O1, Observer 2 as O2, 
number of true positives as TPs, number of false positives as FPs, precision as P, recall as R, false posi-
tive rate as FPR, and accuracy as ACC 

Detection type No. of 
powders 
(O1)

TPs FPs FNs P R

Per powder AM vs. O1 44 33 - 5 11 87% 75%
O2 vs. O1 39 - 14 5 74% 89%

No. of 
bags with 
powder 
(O1)

TPs TNs FPs FNs P R FPR ACC 

Per bag AM vs. O1 24 21 25 1 3 95% 87% 4% 92%
O2 vs O1 22 25 1 2 96% 92% 4% 94%
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with 100 cores and in a Linux-based environment, the processing time was reduced 
to around 15 s per bag on average.

Discussion

Classifiers comparison

From F-measure calculated for pixel-based classification, and for Precision-Recall 
curve and TPR and FNR curves calculated on the tuning set, it is clear that the 

Table 2  Final test set (test set + tuning set): evaluation of the results. Automated detection (AM) vs 
ground truth (GT) as annotated by Observer 1, and Observer 2 detection vs Observer 1. Observer 1 is 
marked as O1, Observer 2 as O2, number of true positives as TPs, number of false positives as FPs, 
number of false negatives as FNs, precision as P, recall as R, false positive rate as FPR, and accuracy as 
ACC 

Detection type No. of 
powders 
(O1)

TPs FPs FNs P R

Per powder AM vs. O1 66 51 - 5 15 91% 77%
O2 vs. O1 60 - 17 6 78% 91%

No. of 
bags with 
powder 
(O1)

TPs TNs FPs FNs P R FPR ACC 

Per bag AM vs. O1 34 31 35 1 3 97% 91% 3% 94%
O2 vs O1 32 35 1 2 97% 94% 3% 96%

Fig. 15  PR curves for SVM-RBF based classification per positive (blue) and negative (orange) class. The 
area under curve (AUC ) for both classes is 88%
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Support Vector Machine with RBF kernel performs best. That is mostly reflected in 
the small num-ber of false positives that SVM-RBF classifier generates. To better 
illustrate classifier performances, typical examples of a bag containing a powder 
(Fig. 17) and a bag with no powder and a laptop inside (Fig. 18) are shown, together 
with confidence images resulting from implementation of different classifiers.

(a) (b)

Fig. 16  Examples of correct and incorrect automated detection presented on both views of X-ray images 
of bags. TPs are marked with a yellow rectangle, FNs with white, and FP with red

(a) (b)

(c) (d)

(e) (f)

Fig. 17  Qualitative evaluation of detection results using different classifiers: (a) RGB images of a bag 
containing powder, (b) manual annotations of observers with overlapping area between two observers 
ROIs marked with blue, and confidence images after pixel classification using: (c) AdaBoost classifier, 
(d) SVM-RBF, (e) Decision Trees classifier, and (f) SVM linear classifier
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Compared with other classification methods, the SVM-RBF classifier shows 
a high pixel classification accuracy and a low number of pixels classified as false 
positives. In the example with no powder present (Fig. 18), a number of pixels are 
classified as positive, but the classification confidence is low and they are not well 
grouped, hence they would be discarded in the post processing step. This superior 
performance of the SVM with RBF kernel can be attributed to the fact that the 
problem addressed is not linear and the samples are not linearly separable in the 
complex feature space of 728 features. AdaBoost, and other boosting algorithms, 
although consisting of simple base classifiers, usually perform well on complex 
problems with classes that are not linearly separable (Huang et al. 2011; Friedman 
et al. 2000). Indeed, as shown in Fig. 12, the TPR of AdaBoost is equal to 1, as is 
the TPR of SVM-RBF classifier. This is also reflected in the qualitative evaluation 
of classifiers performance on a bag containing powder (Fig. 17). However, a high 
number of false positives reduces its performance which is reflected in a low 
precision on the Precision-Recall curve (Fig.  11) and also illustrated in Fig.  18 
showing classifiers performance on a bag without powder.

The AdaBoost algorithm uses a number of “weak” classifiers and boosts their per-
formance by an iterative procedure where in each stage classifiers are focusing more 
on mis-classified examples from the previous stage, in order to improve the global 
classification accuracy (Freund and Schapire 1997). The samples’ weights and the 
classifiers’ weights are updated for all samples, positive and negative, following 
the same set of rules, and the sole criteria is the error on the training set. If two 
“weak” classifiers have the same error, the same weights are going to be assigned 
to them, without taking into account their differences in probabilities of classifying 
positive and negative samples. An adjustment of the algorithm to take into account 

(a) (b)

(c) (d)

(e)

Fig. 18  Qualitative evaluation of detection results using different classifiers: (a) RGB images of a bag not 
containing powder, and confidence images after pixel classification using: (b) Ada-Boost classifier, (c) 
SVM-RBF, (d) Decision Trees classifier, and (e) SVM linear classifier
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false positive rate during an iterative weight adjusting procedure (Niyomugabo et al. 
2016) or improving class imbalance problem by adding higher misclassification cost 
to minority class (Sun et  al. 2007; Wang and Sun 2021; Zhou et  al. 2017) could 
improve the results. Additionally, other modifications of boosting algorithms, could 
be more successful, such as GentleBoost (Friedman et al. 2000) that performs par-
ticularly well on problems with a significant class overlap.

Detection with SVM – RBF classifier and inter‑observer variability

Inter-observer variability was comparable or even higher than the error of the 
automated detection on the test sets (Table 1 and Table 2). This was especially true 
for the precision of detection per powder (87% vs 74% and 91% vs 78%). As the 
number of TPs of Observer 2 was usually higher than the TPs of the automated 
method (39 vs 33 and 60 vs 51), this lower precision indicates that the number of 
FPs of Observer 2 was higher (14 vs 5 and 17 vs 5). Observer 1 had a tendency to 
annotate only when fairly certain about the location of the powder, while Observer 
2 annotated more powders. This could explain why there is such a large number of 
FPs that Observer 2 created. This could also explain the higher recall of Observer 2 
compared to that of the automated method (89% vs 75% and 91% vs 77%). Observer 
2 rarely missed a powder marked by the Observer 1, hence had a low number of FNs 
(5 vs 11 and 6 vs 15).

When the analysis was done per bag, the number of FPs created by the Observer 
2 and the automated method were equal: in both cases, and for both test set and 
final test set, equal to 1. The precision of Observer 2 was equal or better than that 
of the automated method (96% vs 95% and 97% for both on the final test set). The 
Recall of the second observer remained higher, but the difference was reduced (92% 
vs 87% and 94% vs 91%). This is a logical consequence of the detection on one 
view of the bag being enough to achieve a TP – see the detection per bag algorithm 
(Fig. 9). Similarly, a FN for a powder on one view would not cause the whole bag to 
be a FN if there is a TP in the second view. Both detection of Observer 2 and of the 
automated method improve with the detection per bag, where both views are taken 
into account. FPR was also calculated for the evaluation per bag, and in both sets, 
test and final test set, they are equal for Observer 2 and the automated method (3% 
and 4%). Finally, mAP calculated over both classes was 88% (equal for each class).

The results overall are better in the final test set than on the test set. This could 
be explained by the fact that the tuning set on which the best classification threshold 
was chosen was included in the final test set. Regarding difficult types of bags, the 
two test sets were almost equal: bags with a laptop were almost the same percentage 
of both sets (12% and 13%), of thinly spread powders were 14% and 11%, and 50 g 
amounts constituted 10% and 10% of test set and final test respectively.

It is important to underline that the ground truth in this study was the annota-
tions of Observer 1. It is therefore possible that according to the ground truth, there 
is no powder in the bag, hence, potentially a correct automated detection would be 
marked as a FP—see an example with a red rectangle in Fig. 16. Although it was 
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known for each bag whether the powder was present or not, it was necessary to be 
sure that the algorithm detected the powder and not some other object in that bag.

To the best of our knowledge, no other study focused on the automated detection 
of inorganic powders in X-ray images with additional electronic clutter added 
to make the bags more realistic. In (Kayalvizhi et  al. 2022), explosive simulants 
and substances with similar  Zeff are automatically classified using a CNN-based 
algorithm and achieving a FPR of 1% and an AUC  of 0.98% compared to a FPR of 
3% and an AUC  of 0.88 of the algorithm presented here. However, the bags used to 
evaluate the algorithm in Kayalvizhi et al. (2022) are of low complexity, with non-
overlapping objects and containing only objects that the algorithm was trained on 
(explosive simulants and substances with similar  Zeff). Another two studies present 
methods for the automated detection of explosives (Morris et  al. 2018; Chouai 
et al. 2020). In Morris et al. (2018), several CNN-based methods are tested and the 
best performance reported was an AUC  of 0.95 and a FPR of 6%. In Chouai et al. 
(2020), an SVM using features chosen by an autoencoder achieved an Accuracy 
of 96% which is comparable with 94% achieved by the algorithm presented here 
(see Table 2). In both Morris et  al. (2018) and Chouai et  al. (2020), the datasets 
are not disclosed, nor were the explosives to be detected described due to security 
issues, but data used in Morris et  al. (2018) does include high-complexity bags. 
Regarding processing time, the algorithm proposed by Morris et  al. (2018) takes 
350 ms to 450 ms, depending on the image size, which is significantly faster than 
the presented algorithm (8 s), while Kayalvizhi et al. (2022) reported 6 s processing 
time for pseudo-coloured images which is comparable to the results in this work.

Regarding published literature on the detection of other prohibited objects, perhaps 
the most similar to this study is the work of (Baştan et  al. 2011). They detected 
handguns in 4 view X-ray images, using low-energy, high-energy and colour image 
and BoVW where feature descriptors used were SIFT, DoG and Harris. The best 
average precision achieved on 764 images was 57% and a TPR equal to 70%. In the 
improved version of the method (Baştan 2015; Baştan et al. 2013) where the geometry 
of the 4 scanner views was known and features were extracted from all 4 views for 
each bag, the performance improved to mAP equal to 66% for gun detection, 87% for 
laptop detection and 64% for bottle detection. Mery et al. (2016) achieved above 95% 
accuracy (different values depending on object occlusion) for detection of handguns, 
shuriken, razor blades, and clips on 100 images per class. This is better than the 94% 
accuracy of this work, however, the method was tested on patches of images, not 
images of cluttered bags. The same authors published a method for the detection of 
clips, springs and blades using 3D based k-NN classifier approach utilizing all views 
of the multi-view images (Mery et al. 2017) and achieving 100% precision and 93% 
recall for 15 blades and 96% precision and 85% recall for springs.

Regarding deep-learning based methods, mostly utilizing augmented data, 
including threat image projection (TIP), and transfer learning, (Bhowmik et  al. 
2019) achieved mAP = 91% for firearm and firearm parts detection, (Kim et  al. 
2020) achieved mAP = 91% for handgun (AP = 91%), shuriken (AP = 92%) and razor 
(AP = 91%) detection. In all these studies, the objects detected were easier to see than 
the powders in this study. Additionally, better mAP is achieved using deep learning 
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approach with many more datasets used. Perhaps the explanation for the success of 
this presented method is that LBP texture descriptors were used for the detection of 
objects that are indeed recognizable by its texture, while the other methods deal with 
the detection of objects with prominent shape characteristics that would not have a 
high response to texture detectors, even when similar LBPs versions are used.

Conclusions and future work

In this paper, an automated method is presented for the detection of inorganic 
powders from dual-energy X-ray images of airport luggage. A novel dataset was 
created, with variable shapes and sizes of powders and with inserted additional 
electronic clutter in order to have more challenging and realistic dataset. The method 
has a comparable error rate to the inter-observer variability.

For the future, it would be interesting to explore possibilities of using raw low 
and high energy sensor data to make the algorithm more robust for usage with 
data from different scanners. Attempts to run this algorithm on data obtained from 
a different model of scanner with a different colour code resulted in poor results. 
Additionally, knowing the geometry of the scanner might improve the performance 
of the automated method. Furthermore, exhaustive parameter tuning could lead to 
better results and more insight on why certain algorithms perform better than the 
others. The speed of the algorithm could probably be increased by performing 
feature selection. Finally, data augmentation could be utilized to expand the existing 
dataset and enable the use deep-learning algorithms.

Authors’ contributions D.V., M.R.O. and D.A. produced the images used in this work. D.V. performed 
the computer vision and machine learning. D.V. prepared the first draft of the manuscript. M.R.O. and 
D.A. reviewed the manuscript. D.A. was the project manager.

Funding Funded by the European Union’s Horizon Europe research and innovation programme under 
JRC Direct Actions.

Data availability Not applicable.

Declarations 

Ethical approval Not applicable.

Competing interests Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Automated detection of inorganic powders in X‑ray images of… Page 25 of 28 3

References

Akçay S, Breckon TP (2017) An evaluation of region based object detection strategies within X-ray bag-
gage security imagery. 2017 IEEE International Conference on Image Processing (ICIP), 1337–
1341. https:// doi. org/ 10. 1109/ ICIP. 2017. 82964 99

Akçay S, Kundegorski ME, Devereux M, Breckon TP (2016) Transfer learning using convolutional neural 
networks for object classification within X-ray baggage security imagery. 2016 IEEE International 
Conference on Image Processing (ICIP), 1057–1061. https:// doi. org/ 10. 1109/ ICIP. 2016. 75325 19

Akçay S, Kundegorski ME, Willcocks CG, Breckon TP (2018) Using Deep Convolutional Neural Net-
work Architectures for Object Classification and Detection Within X-Ray Baggage Security 
Imagery. IEEE Trans Inf Forensics Secur 13(9):2203–2215. https:// doi. org/ 10. 1109/ TIFS. 2018. 
28121 96

Baştan M (2015) Multi-view object detection in dual-energy X-ray images. Mach vis Appl 26(7–8):1045–
1060. https:// doi. org/ 10. 1007/ s00138- 015- 0706-x

Baştan M, Byeon W, Breuel T (2013) Object Recognition in Multi-View Dual Energy X-ray Images. Proc 
Br Mach Vision Conf 2013:130.1-130.11. https:// doi. org/ 10. 5244/C. 27. 130

Baştan M, Yousefi MR, Breuel TM (2011) Visual Words on Baggage X-Ray Images. In Real P, Diaz-
Pernil D, Molina-Abril H, Berciano A, Kropatsch W (Eds.), Computer Analysis of Images and 
Patterns (Vol. 6854, pp. 360–368). Springer Berlin Heidelberg. https:// doi. org/ 10. 1007/ 978-3- 642- 
23672-3_ 44

Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape context. IEEE 
Trans Pattern Anal Mach Intell 24(4):509–522. https:// doi. org/ 10. 1109/ 34. 993558

Benedykciuk E, Denkowski M, Dmitruk K (2021) Material Classification in X-Ray Images Based on 
Multi-Scale CNN. SIViP 2021(15):1285–1293. https:// doi. org/ 10. 1007/ s11760- 021- 01859-9

Benedykciuk E, Denkowski M, Dmitruk K (2020) Learning-based Material Classification in X-ray Secu-
rity Images: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging 
and Computer Graphics Theory and Applications, 284–291. https:// doi. org/ 10. 5220/ 00089 51702 
840291

Bhowmik N, Wang Q, Gaus YFA, Szarek M (2019) The Good, the Bad and the Ugly: Evaluating Convo-
lutional Neural Networks for Prohibited Item Detection Using Real and Synthetically Composited 
X-ray Imagery. British Machine Vision Conference, Workshop on Object Detection and Recogni-
tion for Security Screening, 13. https:// doi. org/ 10. 48550/ arXiv. 1909. 11508

Bloice MD, Roth PM, Holzinger A (2019) Biomedical Image Augmentation Using Augmentor. Bioinfor-
matics 2019(35):4522–4524. https:// doi. org/ 10. 1093/ bioin forma tics/ btz259

Chollet F (2017) Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of 
the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE: Honolulu, 
HI, July 2017, pp. 1800–1807. https:// doi. org/ 10. 48550/ arXiv. 1610. 02357

Chouai M, Merah M, Sancho-Gómez J-L, Mimi M (2020) Supervised Feature Learning by Adversarial 
Autoencoder Approach for Object Classification in Dual X-Ray Image of Luggage. J Intell Manuf 
31:1101–1112. https:// doi. org/ 10. 1007/ s10845- 019- 01498-5

Dai J, Li Y, He K, Sun J (2016) R-FCN: Object Detection via Region-based Fully Convolutional 
Networks. Advances in Neural Information Processing Systems (NIPS), 379–387. Retrieved from 
https:// dl. acm. org/ doi/ 10. 5555/ 31570 96. 31571 39. Accessed Mar 2023

Dalal N, Triggs B (2005) Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1, 886–893. https:// 
doi. org/ 10. 1109/ CVPR. 2005. 177

de Souza GB, da Silva Santos DF, Pires RG, Marana AN, Papa JP (2017) Deep Texture Features for 
Robust Face Spoofing Detection. IEEE Trans Circuits Syst II Express Briefs 64(12):1397–1401. 
https:// doi. org/ 10. 1109/ TCSII. 2017. 27644 60

European Commission. (2021). Information for air travellers. https:// trans port. ec. europa. eu/ trans port- 
modes/ air/ aviat ion- secur ity/ infor mation- air- trave llers_ en

Fernández de la Ossa MÁ, Amigo JM, García-Ruiz C (2014) Detection of Residues from Explosive 
Manipulation by near Infrared Hyperspectral Imaging: A Promising Forensic Tool. Forensic Sci Int 
242:228–235. https:// doi. org/ 10. 1016/j. forsc iint. 2014. 06. 023

Franzel T, Schmidt U, Roth S (2012) Object Detection in Multi-view X-Ray Images. In Pinz A, Pock T, 
Bischof H, Leberl F (Eds.), Pattern Recognition (Vol. 7476, pp. 144–154). Springer Berlin Heidel-
berg. https:// doi. org/ 10. 1007/ 978-3- 642- 32717-9_ 15

https://doi.org/10.1109/ICIP.2017.8296499
https://doi.org/10.1109/ICIP.2016.7532519
https://doi.org/10.1109/TIFS.2018.2812196
https://doi.org/10.1109/TIFS.2018.2812196
https://doi.org/10.1007/s00138-015-0706-x
https://doi.org/10.5244/C.27.130
https://doi.org/10.1007/978-3-642-23672-3_44
https://doi.org/10.1007/978-3-642-23672-3_44
https://doi.org/10.1109/34.993558
https://doi.org/10.1007/s11760-021-01859-9
https://doi.org/10.5220/0008951702840291
https://doi.org/10.5220/0008951702840291
https://doi.org/10.48550/arXiv.1909.11508
https://doi.org/10.1093/bioinformatics/btz259
https://doi.org/10.48550/arXiv.1610.02357
https://doi.org/10.1007/s10845-019-01498-5
https://dl.acm.org/doi/10.5555/3157096.3157139
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/TCSII.2017.2764460
https://transport.ec.europa.eu/transport-modes/air/aviation-security/information-air-travellers_en
https://transport.ec.europa.eu/transport-modes/air/aviation-security/information-air-travellers_en
https://doi.org/10.1016/j.forsciint.2014.06.023
https://doi.org/10.1007/978-3-642-32717-9_15


 D. Vukadinovic et al.

1 3

3 Page 26 of 28

Freund Y, Schapire RE (1997) A Decision-Theoretic Generalization of On-Line Learning and an Appli-
cation to Boosting. J Comput Syst Sci 55(1):119–139. https:// doi. org/ 10. 1006/ jcss. 1997. 1504

Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: A statistical view of boosting 
(With discussion and a rejoinder by the authors). Ann Stat 28(2):337–407. https:// doi. org/ 10. 1214/ 
aos/ 10162 18223

Ghalati MK, Nunes A, Ferreira H, Serranho P, Bernardes R (2021) Texture Analysis and its Applications 
in Biomedical Imaging: A Survey. IEEE Rev Biomed Eng, 1–1. https:// doi. org/ 10. 1109/ RBME. 
2021. 31157 03

Gittinger JM, Suknot AN, Jimenez ES, Spaulding TW, Wenrich SA (2018) Passenger Baggage Object 
Database (PBOD). Provo, Utah, USA, 2018, p. 230021. https:// doi. org/ 10. 1063/1. 50316 68

Hancock PA, Hart SG (2002) Defeating Terrorism: What Can Human Factors/Ergonomics Offer? Ergon 
Des 10:6–16. https:// doi. org/ 10. 1177/ 10648 04602 01000 103

Harding G, Fleckenstein H, Kosciesza D, Olesinski S, Strecker H, Theedt T, Zienert G (2012) X-Ray 
Diffraction Imaging with the Multiple Inverse Fan Beam Topology: Principles, Performance and 
Potential for Security Screening. Appl Radiat Isot 2012(70):1228–1237. https:// doi. org/ 10. 1016/j. 
aprad iso. 2011. 12. 015

Hassan T, Khan SH, Akçay S, Bennamoun M, Werghi N (2019) Deep CMST Framework for the Autono-
mous Recognition of Heavily Occluded and Cluttered Baggage Items from Multivendor Security 
Radiographs. Comput Sci, 18. https:// doi. org/ 10. 48550/ arXiv. 1912. 04251

Hättenschwiler N, Sterchi Y, Mendes M, Schwaninger A (2018) Automation in Airport Security X-Ray 
Screening of Cabin Baggage: Examining Benefits and Possible Implementations of Automated 
Explosives Detection. Appl Ergon 2018(72):58–68. https:// doi. org/ 10. 1016/j. apergo. 2018. 05. 003

He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition. In Proceedings of 
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE: Las Vegas, 
NV, USA, June 2016, pp. 770–778. https:// doi. org/ 10. 48550/ arXiv. 1512. 03385

Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local Binary Patterns and Its Application to 
Facial Image Analysis: A Survey. IEEE Trans Syst Man Cyberne, Part C 41(6):765–781. https:// doi. 
org/ 10. 1109/ TSMCC. 2011. 21187 50

Huegli D, Merks S, Schwaninger A (2020) Automation Reliability, Human-Machine System Perfor-
mance, and Operator Compliance: A Study with Airport Security Screeners Supported by Auto-
mated Explosives Detection Systems for Cabin Baggage Screening. Appl Ergon 2020 86:103094. 
https:// doi. org/ 10. 1016/j. apergo. 2020. 103094

Kayalvizhi R, Malarvizhi S, Choudhury SD, Topkar A (2022) Automated Detection of Threat Materials 
in X-Ray Baggage Inspection Systems (XBISs). IEEE Trans Nucl Sci 2022(69):1923–1930. https:// 
doi. org/ 10. 1109/ TNS. 2022. 31827 71

Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern 
Anal Mach Intell 12(5):489–497. https:// doi. org/ 10. 1109/ 34. 55109

Kim J, Kim J, Ri J (2020) Generative adversarial networks and faster-region convolutional neural 
networks based object detection in X-ray baggage security imagery. OSA Continuum 3(12):3604. 
https:// doi. org/ 10. 1364/ OSAC. 412523

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural 
networks. Proc Adv Neural Inf Process Syst, 25(6): 1090–1098. Retrieved from https:// proce edings. 
neuri ps. cc/ paper/ 4824- image net- class ifica tion- with- deep- convo lutio nal- neural- netwo rks. pdf. 
Accessed 1 Mar 2023

Liu L, Fieguth P, Guo Y, Wang X, Pietikäinen M (2017) Local binary features for texture classification: 
Taxonomy and experimental study. Pattern Recogn 62:135–160. https:// doi. org/ 10. 1016/j. patcog. 
2016. 08. 032

Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2016) Adversarial Autoencoders. arXiv: 1511. 
05644 [cs] 2016. https:// doi. org/ 10. 48550/ arXiv. 1511. 05644

Mery D, Riffo V, Zscherpel U, Mondragón G, Lillo I, Zuccar I, Lobel H, Carrasco M (2015) GDXray: 
The Database of X-Ray Images for Nondestructive Testing. J Nondestruct Eval 2015(34):42. https:// 
doi. org/ 10. 1007/ s10921- 015- 0315-7

Mery D, Svec E, Arias M (2016) Object Recognition in X-ray Testing Using Adaptive Sparse Represen-
tations. J Nondestr Eval 35(3):45. https:// doi. org/ 10. 1007/ s10921- 016- 0362-8

Mery D, Riffo V, Zuccar I, Pieringer C (2017) Object recognition in X-ray testing using an efficient 
search algorithm in multiple views. Insight - Nondestruct Test Cond Monit 59(2):85–92. https:// doi. 
org/ 10. 1784/ insi. 2017. 59.2. 85

https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1109/RBME.2021.3115703
https://doi.org/10.1109/RBME.2021.3115703
https://doi.org/10.1063/1.5031668
https://doi.org/10.1177/106480460201000103
https://doi.org/10.1016/j.apradiso.2011.12.015
https://doi.org/10.1016/j.apradiso.2011.12.015
https://doi.org/10.48550/arXiv.1912.04251
https://doi.org/10.1016/j.apergo.2018.05.003
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1109/TSMCC.2011.2118750
https://doi.org/10.1109/TSMCC.2011.2118750
https://doi.org/10.1016/j.apergo.2020.103094
https://doi.org/10.1109/TNS.2022.3182771
https://doi.org/10.1109/TNS.2022.3182771
https://doi.org/10.1109/34.55109
https://doi.org/10.1364/OSAC.412523
https://proceedings.neurips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://proceedings.neurips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1016/j.patcog.2016.08.032
https://doi.org/10.1016/j.patcog.2016.08.032
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1511.05644
https://doi.org/10.48550/arXiv.1511.05644
https://doi.org/10.1007/s10921-015-0315-7
https://doi.org/10.1007/s10921-015-0315-7
https://doi.org/10.1007/s10921-016-0362-8
https://doi.org/10.1784/insi.2017.59.2.85
https://doi.org/10.1784/insi.2017.59.2.85


1 3

Automated detection of inorganic powders in X‑ray images of… Page 27 of 28 3

Miao C, Xie L, Wan F, Su C, Liu H, Jiao J, Ye Q (2019) SIXray: A Large-Scale Security Inspection 
X-Ray Benchmark for Prohibited Item Discovery in Overlapping Images. In Proceedings of the 
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE: Long 
Beach, CA, USA, June 2019, pp. 2114–2123. https:// doi. org/ 10. 48550/ arXiv. 1901. 00303

Monard MC, Batista GEAPA (2002) Learning with Skewed Class Distributions. Adv Log Artif Intell 
Robot 85:173–180

Morris T, Chien T, Goodman E (2018) Convolutional Neural Networks for Automatic Threat Detec-
tion in Security X-Ray Images. In Proceedings of the 2018 17th IEEE International Conference on 
Machine Learning and Applications (ICMLA), IEEE: Orlando, FL, December 2018, pp. 285–292. 
https:// doi. org/ 10. 1109/ ICMLA. 2018. 00049

Niyomugabo C, Choi H, Kim TY (2016) A Modified AdaBoost Algorithm to Reduce False Positives in 
Face Detection. Math Probl Eng 2016:1–6. https:// doi. org/ 10. 1155/ 2016/ 52894 13

Ojala T, Pietikäinen M, Harwood D (1996) A Comparative Study of Texture Measures with Clas-
sification Based on Feature Distributions. Pattern Recogn 29(1):51–59. https:// doi. org/ 10. 1016/ 
0031- 3203(95) 00067-4

Ojala T, Pietikäinen M, Maenpaa T (2002) Multiresolution grey-scale and rotation invariant texture 
classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. 
https:// doi. org/ 10. 1109/ TPAMI. 2002. 10176 23

Otsu N (1979) A Threshold Selection Method from Grey-Level Histograms. IEEE Trans Syst Man 
Cybern 9(1):62–66. https:// doi. org/ 10. 1109/ TSMC. 1979. 43100 76

Pietikäinen M, Heikkilä J (2011) Tutorial: Image and Video Description with Local Binary Pattern 
Variants. Conference on Computer Vision and Pattern Recognition, CVPR. Retrieved from 
https:// www. scribd. com/ docum ent/ 37369 0056/ Image- and- Video- Descr iption- with- Local- 
Binary- Patte rn- Varia nts- CVPR- Tutor ial- Final. Accessed 1 Mar 2023

Radford A, Metz L, Chintala S (2016) Unsupervised Representation Learning with Deep Convolu-
tional Generative Adversarial Networks. arXiv: 1511. 06434 [cs] 2016. https:// doi. org/ 10. 48550/ 
arXiv. 1511. 06434

Redmon J, Farhadi A (2018) YOLOv3: An Incremental Improvement. arXiv: 1804. 02767 [cs] 2018. 
https:// doi. org/ 10. 48550/ arXiv. 1804. 02767

Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: Towards Real-Time Object Detection with 
Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https:// doi. 
org/ 10. 1109/ TPAMI. 2016. 25770 31

Rokach L, Maimon O (2005) Decision Trees. In O. Maimon & L. Rokach (Eds.), Data Min-
ing and Knowledge Discovery Handbook (pp. 165–192). Springer US. https:// doi. org/ 10. 
1007/0- 387- 25465-X_9

Roomi MM (2012) Detection of Concealed Weapons in X-Ray Images Using Fuzzy K-NN. IJCSEIT 
2:187–196. https:// doi. org/ 10. 5121/ ijcse it. 2012. 2216

Rosenfeld A, Pfaltz JL (1966) Sequential Operations in Digital Picture Processing. J ACM 13(4):471–
494. https:// doi. org/ 10. 1145/ 321356. 321357

Schapire RE (2013) Explaining AdaBoost. In Schölkopf B, Luo Z, Vovk V (Eds.), Empirical Infer-
ence (pp. 37–52). Springer Berlin Heidelberg. https:// doi. org/ 10. 1007/ 978-3- 642- 41136-6_5

Schmidt-Hackenberg L, Yousefi MR, Breuel TM (2012) Visual cortex inspired features for object 
detection in X-ray images. In Proceedings of the 21st International Conference on Pattern Rec-
ognition (ICPR2012), Tsukuba, Japan, 2573–2576, Retrieved from https:// ieeex plore. ieee. org/ 
docum ent/ 64606 93. Accessed 1 Mar 2023

Sharifi O,Mokhtarzade M, Asghari Beirami B (2020) A Deep Convolutional Neural Network based on 
Local Binary Patterns of Gabor Features for Classification of Hyperspectral Images. 2020 Inter-
national Conference on Machine Vision and Image Processing (MVIP), 1–5. https:// doi. org/ 10. 
1109/ MVIP4 9855. 2020. 91874 86

Simonyan K, Zisserman A (2015) Very Deep Convolutional Networks for Large-Scale Image Rec-
ognition. Conference Track Proceedings: San Diego, CA, USA, May 2015. https:// doi. org/ 10. 
48550/ arXiv. 1409. 1556

Soille P, Burger A, De Marchi D, Kempeneers P, Rodriguez D, Syrris V, Vasilev V (2018) A versa-
tile data-intensive computing platform for information retrieval from big geospatial data. Futur 
Gener Comput Syst 81:30–40. https:// doi. org/ 10. 1016/j. future. 2017. 11. 007

Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbal-
anced data. Pattern Recogn 40(12):3358–3378. https:// doi. org/ 10. 1016/j. patcog. 2007. 04. 009

https://doi.org/10.48550/arXiv.1901.00303
https://doi.org/10.1109/ICMLA.2018.00049
https://doi.org/10.1155/2016/5289413
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TSMC.1979.4310076
https://www.scribd.com/document/373690056/Image-and-Video-Description-with-Local-Binary-Pattern-Variants-CVPR-Tutorial-Final
https://www.scribd.com/document/373690056/Image-and-Video-Description-with-Local-Binary-Pattern-Variants-CVPR-Tutorial-Final
http://arxiv.org/abs/1511.06434
https://doi.org/10.48550/arXiv.1511.06434
https://doi.org/10.48550/arXiv.1511.06434
http://arxiv.org/abs/1804.02767
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.5121/ijcseit.2012.2216
https://doi.org/10.1145/321356.321357
https://doi.org/10.1007/978-3-642-41136-6_5
https://ieeexplore.ieee.org/document/6460693
https://ieeexplore.ieee.org/document/6460693
https://doi.org/10.1109/MVIP49855.2020.9187486
https://doi.org/10.1109/MVIP49855.2020.9187486
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1016/j.future.2017.11.007
https://doi.org/10.1016/j.patcog.2007.04.009


 D. Vukadinovic et al.

1 3

3 Page 28 of 28

Sun Y, Wong AKC, Kamel MS (2009) Classification of Imbalanced Data: A Review. Int J Pattern 
Recognit Artif Intell 23(04):687–719. https:// doi. org/ 10. 1142/ S0218 00140 90073 26

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the Inception Architecture for 
Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), IEEE: Las Vegas, NV, USA, June 2016, pp. 2818–2826. https:// doi. org/ 10. 
48550/ arXiv. 1512. 00567

Transport Security Administration. (2021). What Can I Bring? Retrieved from https:// www. tsa. gov/ 
travel/ secur ity- scree ning/ whatc anibr ing/ all. Accessed 1 Nov 2022

Turcsany D, Mouton A, Breckon TP (2013) Improving feature-based object recognition for X-ray 
baggage security screening using primed visual words. 2013 IEEE International Conference on 
Industrial Technology (ICIT), 1140–1145. https:// doi. org/ 10. 1109/ ICIT. 2013. 65058 33

Vapnik VN (1999) The Nature of Statistical Learning Theory. Springer science & business media 
New York. https:// doi. org/ 10. 1007/ 978-1- 4757- 2440-0

Vukadinovic D, Anderson D (2022) X-ray Baggage Screening and Artificial Intelligence (AI), EUR 
31123 EN, Publications Office of the European Union, Luxembourg, JRC129088. https:// doi. org/ 
10. 2760/ 46363

Wang W, Sun D (2021) The improved AdaBoost algorithms for imbalanced data classification. Inf Sci 
563:358–374. https:// doi. org/ 10. 1016/j. ins. 2021. 03. 042

Xi M, Chen L,Polajnar D, Tong W (2016) Local binary pattern network: A deep learning approach for 
face recognition. 2016 IEEE International Conference on Image Processing (ICIP), 3224–3228. 
https:// doi. org/ 10. 1109/ ICIP. 2016. 75329 55

Zhou B, Wang T, Luo M, Pan S (2017)An online tracking method via improved cost-sensitive adaboost. 
2017 Eighth International Conference on Intelligent Control and Information Processing (ICICIP), 
49–54. https:// doi. org/ 10. 1109/ ICICIP. 2017. 81139 16

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1142/S0218001409007326
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://www.tsa.gov/travel/security-screening/whatcanibring/all
https://www.tsa.gov/travel/security-screening/whatcanibring/all
https://doi.org/10.1109/ICIT.2013.6505833
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.2760/46363
https://doi.org/10.2760/46363
https://doi.org/10.1016/j.ins.2021.03.042
https://doi.org/10.1109/ICIP.2016.7532955
https://doi.org/10.1109/ICICIP.2017.8113916

	Automated detection of inorganic powders in X-ray images of airport luggage
	Abstract
	Introduction
	Related work
	Methodology
	Pre-processing: ROI candidates extraction
	LBP features extraction
	Classification and post-processing

	Data and experimental set up
	Data
	Experimental set-up
	Evaluation measures

	Results
	Discussion
	Classifiers comparison
	Detection with SVM – RBF classifier and inter-observer variability

	Conclusions and future work
	References


