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Abstract
TheU.S. air transportation network (ATN) is critical to themobility and the functioning of the
United States. It is thus necessary to ensure that it is well-connected, efficient, robust, and
secure. Despite extensive research on its topology, the temporal evolution of the network’s
robustness remains largely unexplored. In the present paper, a methodology is proposed to
identify long-term trends in the evolution of the network’s topology and robustness over time.
The study of the U.S. domestic ATN’s robustness was performed based on annual flight data
from 1996 to 2016 and network analytics were used to examine the effects of restructuring
that followed the 9/11 events. Centrality measures were computed and a node deletion
method was applied to assess the network’s tolerance to a targeted attack scenario. The
outcome of this study indicated that the 9/11 terrorist attacks triggered vast restructuring of the
network, in terms of efficiency and security. Air traffic expanded, as new airports and air
routes were introduced, allowing the network to recover rapidly and become more efficient.
Security concerns resulted in significant improvement of the network’s robustness. Since
2001, the global traffic and topological properties of theU.S.ATNhave displayed continuous
growth, due to the network’s expansion. On the other hand, the results suggest that although
the system’s ability to sustain its operational level under extreme circumstances has lately
improved, its tolerance to targeted attacks has deteriorated. The presented methodology has
shown its potential to be applied on different network levels or different transportation
networks, in order to provide a general perspective of the system’s vulnerabilities.
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Introduction

The U.S. aviation industry has evolved significantly since the airline deregulation act of
1978, as evidenced by the spectacular growth of commercial aviation in the United
States during recent years. However, the current state of U.S. commercial aviation has
been largely shaped by the 9/11 attacks and the drastic restructuring that followed.

The 9/11 attacks inflicted a severe blow to U.S. commercial aviation. Increased costs
were immediately introduced by the stringent security measures enforced on air travel,
mainly as high landing fees related to airport security modifications. These costs were
combined with a suffering demand, as passengers became wary of air travel and
discouraged by cumbersome security inspections (Ito and Lee 2005). These events
intensified the economic downfall for major airlines, eventually requiring governmental
subsidies to keep them afloat (Ghobrial and Irvin 2004; Nolan et al. 2004). The
economic impact on commercial aviation had additional long-term implications (Chi
and Baek 2013) due to the subsequent Iraq war and outbreak of the Severe Acute
Respiratory Syndrome (Anderson et al. 2004).

The evident severe impact of the 9/11 attacks on the commercial air-travel market
justified the need for drastic restructuring. The U.S. air transportation network (ATN)
has since undergone restructuring on many scales, including the airlines, airports,
routes, and regulatory context. Main actors of the restructuring were the domestic
airlines and the U.S. government. Major carriers reevaluated their business model
(Franke 2004; Ghobrial and Irvin 2004) to retain a strategic advantage over emerging
low-cost carriers (Tam and Hansman 2003). On the other hand, the focus of the U.S.
government was the protection of the U.S. air transportation network (ATN) from
future disruptive events (Seidenstat 2004) and particularly from terrorist attacks. The
Transport Security Administration (TSA) was founded, aiming to centralize aviation
security (Ghobrial and Irvin 2004). U.S. policy has since introduced several programs
towards the development of an integrated network structure, with high tolerance to
disruptive events and particularly to terrorist attacks (National Research Council (NRC)
2002; Federal Transit Administration (FTA) 2007; Transportation Research Board
(TRB) 2012). Other disruptive events worth addressing are bad weather phenomena,
natural disasters, failures of network components, industrial actions of aviation staff,
and accidents. Although such occurrences are generally rare, they can have crippling
effects. The importance of transport system robustness and capacity of recovering after
an external shock has been further highlighted by European policymakers (European
Commission 2011).

Like other transportation networks, the U.S. ATN can benefit from network analytics to
render it well-connected and robust, while obtaining an understanding of critical infrastruc-
ture (Reggiani 2013). Despite their importance for society and local economies, little effort
has been directed towards understanding the relationships between the topology of air
transport networks and their vulnerability under severe circumstances (Zanin and Lillo,
2013). Air transport networks are generally resilient to random errors, but exceptionally
vulnerable to intentional targeted attacks (Crucitti et al. 2003), since their network properties
deteriorate in a dramatic manner when critical nodes are isolated. It is therefore essential to
identify those nodes, in order to prevent major collapses. Critical events, such as the 1978
deregulation act and the 9/11 terrorist attacks, have significant impact on the evolution of the
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system. Since air transport systems are dynamic and inherently complicated, the design of an
efficient and robust ATN requires a multi-dimensional and dynamic research approach. A
network analysis can be used to identify critical infrastructure (Reggiani 2013) and analyze
properties that determine its dynamic behavior and robustness (Lordan et al. 2014a).

Research objectives and methodology

The aim of the present paper is to assess the temporal evolution of an air transport
network’s robustness, using complex network theory. The domestic U.S. ATN is
chosen as an ideal real-life test case since it is characterized by a high share of domestic
flights (almost 88%) (Bureau of Transportation Statistics 2017). It has also undergone
radical restructuring after the 9/11 terrorist attacks, aiming towards a sustainable,
secure, and robust aviation network.

The research question to be addressed boils down to whether the restructuring that
occurred after 9/11 had a long-term impact on the network’s topology and robustness.
We begin from the evident hypothesis that the vast restructuring of 2001 resulted in a
short-term improvement of the network’s properties. We then propose a methodology
to identify long-term trends in the evolution of the network’s topology and robustness
over time. Global indicators are used to analyse the network at a high level, which is
important from a national security and an air traffic management perspective. Emphasis
is placed on the temporal evolution of the system’s tolerance to disruptive events. The
applicability of the proposed methodology in an air transport network is thus
demonstrated.

More specifically, annual flight data from 1996 until 2016 are analyzed to assess the
impact of restructuring on the network’s robustness. Robustness is defined as the
combination of resilience and tolerance to targeted attack, thus being directly related
to its topological properties and its connectivity. Initially, topological properties are
assessed and centrality measures are computed. Global resilience of the system to
disruptive events is calculated based on a parameter suggested by Janić (2015). The
robustness study relies on a topology analysis, which allows to locate critical nodes and
to detect scale-free properties that render the network vulnerable (Reggiani 2013).
Critical nodes are isolated and removed, thus simulating the worst-case scenario of a
targeted attack (Chi and Cai 2004). The network’s efficiency and largest connected
component are also monitored. The network’s present state is finally analysed and
managerial implications concerning its operations and security are discussed.

The structure of the paper is as follows: In this section, a research question is
established and the current scientific state of art is surveyed. Section 2 comprises of
the mathematical and theoretical background of the research, and the results of the
study are presented and discussed in section 3. Finally, the conclusions of the paper are
outlined in section 4.

Literature review

Air transportation networks are critical for the mobility of people. During the past few
decades, the air transportation system has evolved into a complex and heterogeneous
network (Barrat et al. 2004), having been shaped by geo-spatial relations, political
constraints, and economical developments, among others (Guimerà et al. 2005;
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Wuellner et al. 2010). Hence, the dynamics of air transport networks have been lately
the research focus in network analysis, complexity science, and geography (Vowles
2006).

Complex network theory considers air travel systems as networks, where airports are
nodes and flight routes are edges. Network analysis and robustness studies have been
performed by researchers in order to understand the network’s topological properties
and dynamic characteristics on a global or regional scale (e.g. Guimerà and Amaral
2004; Guimerà et al. 2005; Xu and Harriss 2008; and Guo et al. 2019). Due to the
dynamic nature of such systems, temporal analysis can provide insight on factors
affecting their operations (Gillen and Morrison 2005). The temporal evolution of
airport networks is assessed by treating the evolving network as a series of static
snapshots, each one representing a complex network for that specific time instance
(da Rocha 2009; Zhang et al. 2010; Lin and Ban 2014; Jia et al. 2014; Sun et al. 2015;
Wandelt and Sun 2015; Dai et al. 2018; Wandelt et al. 2019). An extensive review of
the research is provided by Rocha (2017).

The aforementioned studies suggest that air transportation networks are usually
small-world networks with power-law decaying degree and betweenness distributions,
corresponding to scale-free networks. They are thus highly resistant to random failures,
retaining their operational characteristics when a substantial number of links fail.
However, they are also very vulnerable to intentional attacks against critical hubs
(Barabási and Albert 2002; Crucitti et al. 2003). The U.S. ATN in particular displays
a well-developed hub and spoke (HS) structure, being among the most efficient and
mature networks in the world (Xu and Harriss 2008; Wandelt et al. 2019). Temporal
studies of the U.S. ATN indicate that the restructuring which occurred after 2001 had a
huge impact on its structural features (Jia et al. 2014; Lin and Ban 2014).

Despite the vulnerability of such networks to intentional attacks against critical hubs
(Barabási and Albert 2002; Crucitti et al. 2003), very few researchers have addressed
the relationship between ATN topology and its robustness or tolerance to significant
disruptive events. Organizational complexities should be accounted for during a ro-
bustness evaluation, thus rendering a complex network analysis necessary (Lordan
et al. 2014a). In this context, studies have been focused on the robustness of ATN using
network analytics. Chi and Cai (2004) used complex network theory to study the effect
of random failures and intentional attacks on the topological properties of the U.S.
ATN. The impact of intentional attacks was investigated by a node deletion method,
similar to the edge deletion method of Girvan and Newman (2002). Wuellner et al.
(2010) and Lordan et al. (2014b) proved that the effects of targeted attack based on
betweenness centrality, rather than by degree can be more destructive for the network.
Recent research on identifying critical airports and assessing the ability of the ATN to
maintain its performance during closure of those airports can be found in the work of
Zhou et al. (2019) and Lordan and Sallan (2019). A literature survey of studies focused
on ATN robustness was provided by Lordan et al. (2014a).

Evidently, the topological properties of air transportation networks worldwide have
been extensively examined from a complex network perspective. The temporal evolu-
tion of air transportation networks has also been the topic of several studies. On the
other hand, the robustness of such networks still remains largely unexplored, with few
publications focusing on the system’s vulnerability to targeted attacks of the most
central nodes. Furthermore, to the authors’ knowledge, a temporal study of the
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robustness of air transportation networks and their tolerance to targeted attacks, using
network analytics theory has not been performed in the literature. Due to the critical
nature of air transportation systems, the temporal evolution of their robustness can
identify weaknesses inherent to the network structure or emerging naturally as a result
of organic growth of such network, thus allowing to define future operational strategies
and policies.

Data and theoretical background

In the following section, the input dataset is outlined. Subsequently, the basic network
theory is described, and all topological parameters used in this study are concisely
defined. The network analysis is performed based on data collected by the U.S. Bureau
of Transportation statistics (BTS), and is executed in MATLAB. The developed code
for the simulations has been made publicly available (on https://github.com/vub-dl/atn-
na) to facilitate reproduction of the results and application to alternative networks.

The present study adopts an unweighted high-level analysis. The methodology itself
can be however easily replicated and applied on different levels of the U.S. ATN (e.g.
airline or seasonal level), as well as on different transportation networks. Weights can
be also accounted for (e.g. passenger capacity, seat pricing, or cargo value) depending
on the different regions or transportation modes.

Dataset

The study of the U.S. ATN is realized based on the dataset provided by the U.S. BTS,
which can be obtained through the official website (https://www.transtats.bts.gov/).
Total annual commercial domestic flight data are downloaded for each year between
1996 and 2016. The input raw data comprises of airport origin and destination
information, number of flights performed between the given airport pair, and number
of passengers flown.

The U.S. ATN is modelled at each time as a binary directed network. A complex
network analysis methodology is applied, in which nodes represent airports and edges
represent flight route connections. Two airports are considered to be connected if at
least one non-stop commercial airline route exists between them.

Topological properties

Several parameters are used to identify the most connected and central nodes of the
network, in order to conduct further research on its global topological properties.
Subsequently, network resilience and tolerance to intentional attack are evaluated.

Centrality measures

The centrality of nodes, thus the identification of nodes which are more central than
others is of critical importance in network analytics. In the present study, node
centrality is evaluated based on node degree and betweenness. According to
Freeman (1978), the degree of a node is equal to the number of adjacencies in the
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network, thus the number of nodes that node is connected to. This measure can be
generalized as

ki ¼ ∑
N

j¼1
eij ð1Þ

where i is the focal node and j represents all other nodes in the network. N is the
total number of nodes in the network and eij defines the elements of the adjacency
matrix. The topology of the network can be represented by an adjacency matrix,
where the elements of eij are 1 if i and j are connected, and 0 otherwise. A large
degree indicates a well-connected node.

According to Barrat et al. (2004), node strength is defined as

si ¼ ∑
N

j¼1
eijwij ð2Þ

where wij is the weight of the connection between nodes i and j. The degree defines the
number of flight route connections of an airport, whereas strength indicates cumulative
traffic handled through that airport. Weights can be based on total flights wF

ij or total

passengers wP
ij . Evidently, the airport degree measures how connected the airport is,

whereas its strength indicates how travel intensive it is. In the current study global
statistics are sought, since they are of importance from a national security and an air
traffic management perspective. Hence, an unweighted analysis is considered
sufficient.

Airports as nodes are almost always connected in both directions, hence the indegree
and outdegree (degree based on inbound and outbound flights, respectively) of a given
node are almost equal. Therefore, in the present study all edges are considered as
undirected. The sum of indegree and outdegree is considered as the total degree.

For an aviation network, betweenness centrality is important to quantify the bridge
importance of an airport to the system (Guimerà et al. 2005). Betweenness is indicative
of the probability that a node is in the shortest paths between all node pairs in the
network (Freeman et al. 1979). In a binary network, the shortest path dij between nodes
i and j, is defined as the shortest geodesic distance between any two nodes. It should be
noted that dij is an indicator of geodesic distance, whereas the spatial distance will be
denoted as Dij. The geodesic distance dij is adopted for shortest path calculation, since
in the airline industry, passengers care more about the number of connections they need
from origin to destination (Latora and Marchiori 2001). A necessary assumption is that
intermediary nodes lead to increased interaction costs and thus the shortest path
involves the least number of intermediary nodes. According to Freeman et al. (1979),
betweenness centrality is expressed as

Bi ¼ 1

N−1ð Þ N−2ð Þ ∑
i≠ j≠k

gjk ið Þ
gjk

ð3Þ

where gjk is the number of binary shortest paths between two nodes, whereas gjk(i) is the
number of those paths that pass through node i.
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Network assortativity

The network assortativity can be used to assess whether a given network follows a point to
point (PP) or HS paradigm. The tendency of high-degree nodes to connect to other high-
degree nodes is proof of PP (hence assortative) structures, whereas high-degree nodes
tending to connect to low-degree nodes is an indication of HS (disassortative) structures.

In PP connectivity, passengers take direct non-stop flights, usually covering a short
distance. Point to point networks reduce travel time, thus being valued by travelers.
They require however large markets for connection of large city pairs, in order to be
economically viable (Cook and Goodwin 2008). Hub and spoke systems typically
enable passengers to travel non-stop only to a few hubs, from which they can
subsequently transit to their final destination. They minimize the number of connec-
tions, instead of overall distance travelled (Gastner and Newman 2006) thus requiring
the fewest aircraft and allowing airlines to exploit economies of scale and scope.
Despite the obvious advantages, main shortcomings of HS systems lie in their com-
plexity and operational cost. Moreover, they are highly susceptible to delays, since
delays can propagate over the network. In a HS network, hubs are the most critical and
undoubtedly vulnerable nodes of the system (Cook and Goodwin 2008).

In order to quantify the network’s assortativity, the Gini coefficient is chosen. It has
been commonly used in economics as a measure of inequality (Sen 1973) and has been
further applied for characterization of airline traffic patterns (Reynolds-Feighan 1998;
Wuellner et al. 2010). It has been preferred over the assortativity coefficient for
measuring assortative structures, since the latter is very sensitive to outliers (Devlin
et al. 1975) which can introduce erroneous artifacts (Wuellner et al. 2010). Such
outliers are present in airline networks (i.e. superhubs).

The Gini coefficient, G, is defined as

G ¼
∑
N

i¼1
∑
N

j¼1
ki−k j
�� ��

2MN
ð4Þ

whereM is the total number of edges in the network. It allows measuring the magnitude
of node degree difference between each node pair in the network, normalized by
average node degree.

Network efficiency

The network efficiency E can be defined as a global parameter by assuming that
communication efficiency between nodes depends on the shortest path length. Accord-
ing to (Latora and Marchiori 2001):

E ¼ 1

N N−1ð Þ ∑i≠ j
1

dij
ð5Þ

This is an indicator or local and global efficiency and measures how efficiently
information is exchanged within a network.
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Small-world properties

The network is examined aiming to identify its small-world properties. A small-
world property is indicative of a network whose nodes can be reached by a
small number of connections (Watts and Strogatz 1998). The existence of
cliques, hence sub-networks which have connections between almost any two
nodes within them is such an indicator. To this end, the clustering coefficient
and the characteristic path length are introduced. Mathematically, small-world
properties are expressed by a large clustering coefficient and a small character-
istic path length.

The clustering coefficient Ci represents the possibility that two neighbors of a node
may be themselves connected, thus quantifying the inherent tendency to cluster:

Ci ¼ 2mi

ki ki−1ð Þ ð6Þ

It measures how interconnected a neighborhood is, based on the interconnected triples
in the said neighborhood. The clustering coefficient ranges between 0 (if no ties exist
between the neighbors) and 1 (if all possible ties exists). Here, mi is the number of
edges connecting the neighbors of node i (Watts and Strogatz 1998). The global
clustering coefficient of a network is equal to the mean of the clustering coefficients
of all nodes in the network.

The characteristic path length is additionally introduced to characterize the average
shortest-path length between any two airports in the system:

L ¼ 1

N N−1ð Þ ∑i≠ j dij ð7Þ

It quantifies the average of least possible connections between any two airports in the
network. Evidently, a network of a small characteristic path length is associated with
high efficiency (Εq. (5)), where passengers can conveniently reach their destination
through few connections.

Scale-free properties

Topology studies of the ATN have shown that it is a scale-free network, following a
truncated power-law distribution (Guimerà and Amaral 2004; Guimerà et al. 2005).
Scale-free networks are free of a characteristic scale. Therefore, the degree distribution
P(k) decays as a power-law, that is P(k) ∝ k−γ, where γ is the exponent (Barabási and
Albert 2002).

Network robustness

A network’s robustness is defined in this work as a combination of the
network’s resilience to randomly occurring disruptive events and its tolerance
to a targeted attack.
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Network resilience

The resilience of an ATN can be defined as the network’s ability to maintain its
operations at the required safety levels, during a disruptive event. Resilience does not
relate to the aftermath of a given event, but rather to the immediate impact (Chen and
Miller-Hooks 2012). Disruptive events can be identified as bad weather conditions,
natural disasters, network infrastructure failures, personnel strikes, accidents, and
terrorist attacks. Based on the magnitude of such an event, closure of one or more
airports may lead to flight delays and/or cancellations, which may in turn propagate and
affect other nodes.

The network’s resilience to a large-scale disruptive event is assessed based on the
methodology suggested by Janić (2015) and is indicative of the network’s ability to
sustain its operability during the impact of a given disruptive event. The author
empirically validated their approach for air transportation systems by applying it to
demonstrate how hurricane Sandy compromised the resilience of the network on the
north-east U.S., during October 2012.

According to the model of Janić (2015), the relative importance of each airport
should be considered first. Relative strength based on the total number of inbound and

outbound flights bsFi (obtained from Eq. (2)) is computed at each node:

bsFi ¼ sFi

∑
N

j¼1
sFj

ð8Þ

The relative strength is indicative of airports operating at regular conditions and at the
nominal flight capacity ratio.

Subsequently, the self-excluding importance of a given airport is then defined by
assuming that its other connected airports do not include it:

υi ¼ sFi

∑
N

j¼1
sFj −2sFi s

ð9Þ

Finally, resilience of a given airport can be calculated as

Ri ¼ ∑
N

j¼1= j≠i
υ j δjiwF

ji

� �
ð10Þ

with δji representing the Kronecker delta. Evidently, resilience is proportional to the sum
of the product of the self-excluding importance and the number of total flights realized to
and from each connected airport. The global resilience of the network is then defined as
the sum of the weighted resilience of each airport (node) belonging to the said network:

R ¼ ∑
N

i¼1
bsFi Ri ð11Þ
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Targeted attack tolerance

A node deletion method (Chi and Cai 2004) is applied to assess the network’s
behavior to airport closure after a targeted attack. This approach is based on the
edge deletion algorithm of Girvan and Newman (2002), which was first used for
community finding in social and biological networks. According to Girvan and
Newman (2002), the edges with the highest betweenness connect communities. As
such, removal of those edges allows groups to be separated from one another, in
order to reveal the network’s underlying community structure. A targeted removal
is preferred to provide insight on the worst-case scenario. Although the probability
of such an incidence is low, the magnitude of the impact on the system would be
maximized (Lordan et al. 2014b). Hence, the most critical nodes are targeted by
simulated intentional attacks.

The betweenness centrality is used as the criterion of node importance, since
targeting by betweenness has shown to cause a more rapid breakdown of the network,
compared to other measures (Wuellner et al. 2010; Lordan et al. 2014b). Betweenness
allows taking advantage of the multi-community structure of airport networks, by
selecting strategic hubs. Removal of these hubs can result in the disconnection of
whole geographical regions (Lordan et al. 2014b).

The adaptive procedure applied here starts with the detection of the node with the
highest betweenness, which is removed. Subsequently, the centrality measures are
recomputed for the updated network and the node with the highest betweenness is
removed once again. This procedure is realized for 50 iterations. The topological
measures used to assess the impact of node deletion is the size of the largest connected
component S, as well as the network efficiency E.

Results and discussion

In this section, the results obtained from the network analysis are presented and their
temporal evolution is discussed. Subsequently, the small-world and scale-free proper-
ties of the network are investigated, along with the presence of assortative or
disassortative structures. Finally, the robustness of the system is evaluated based on
the evolution of its resilience, efficiency, and vulnerability to targeted attacks. Conclu-
sions on the network’s evolution are finally drawn and a discussion of its present state
is provided, along with recommendations for improvement.

Network analysis

Initially, the results obtained using network analytics on the U.S. ATN between 1996
and 2016 are presented. Total passenger and flight data are acquired yearly. Thus, each
year is considered as a snapshot, finally leading to 21 snapshots. Each snapshot is then
analyzed as a separate network.

The centrality measures are initially computed and examined on a global basis.
The small-world and scale-free characteristics are additionally identified and
discussed. Finally, the evolution of assortative structures in the network is
addressed.

64 Siozos-Rousoulis L. et al.



Centrality measures

The network’s basic centrality measures for each year, are illustrated in Figs. 1 and 2.
Figure 1 displays the total number of network nodes (airports) and edges (routes),
whereas Fig. 2 depicts the average flight distance and average node betweenness
plotted against time.

The evolution of overall nodes and edges in the network follows similar trend
(Fig. 1). The most outstanding point in time is year 2002, right after the events of
9/11, when major restructuring occurred. In 2002, 538 new airports and 8150 new
routes were added to the network, aiming to improve its robustness (Lin and Ban 2014;
Jia et al. 2014). After 2002, some growth is noted, finally reaching a global maximum
in 2007, for both nodes and edges. Subsequently, the 2008 recession is evident.
Dobruszkes and Van Hamme (2011) mention that during January 2008 and 2010,
739 routes were suppressed and only 349 new routes were created. Since 2013,
network expansion recovers, eventually resulting in a total of 1217 airports and
26,060 routes, in 2016.

The growth and expansion of the U.S. ATN is corroborated by the increase observed
in nodes and edges, over time.

Figure 2 depicts the temporal variation of the average flight distance 〈D〉, plotted
alongside the calculated average node betweenness 〈B〉. Average quantities refer to the
global mean among all nodes in the network. The average flight distance displays a
generally increasing tendency which was interrupted by the network’s restructuring in
2002 (Lin and Ban 2014). Slow growth is observed thereafter, with a local minimum at
2009 amidst the recession. Since 2010, the average flight distance increases reaching a
global maximum of 1124 km in 2016.

On the other hand, the curve of average node betweenness initially shows declining
trend. A drastic increase is observed in 2002 when more airports were introduced and
airlines added new short-haul routes (see Fig. 1). The increase by almost 30% in
average betweenness from 2001 to 2002, coincides with the sharp decline of flight
distance. The average betweenness reaches a global maximum in 2002 and since then
decreases, with a peak amidst the recession. Its value eventually drops below 2 in 2016.

Fig. 1 Temporal evolution of the total nodes (N) and edges (M) in the U.S. ATN, between 1996 and 2016
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This can be considered an indication of growing robustness, since an even distribution
of betweenness centrality among nodes indicates higher tolerance to intentional attacks
(Lin and Ban 2014).

Further insight into the average flight distance is provided in Fig. 3, where the
absolute values of short-haul (lower than 700 miles) and long-haul (greater than
700 miles) flights are plotted. The ratio of short-haul over long-haul flights is also
displayed. This graph indeed verifies the introduction of several short distance flights in
2002, resulting in almost doubling of the short-haul over long-haul flight. After the
initial restructuring, the ratio tends to converge to the values observed before 9/11.

One may conclude that the increase of average flight distance between 2002 and
2016, is directly related to the decreasing average betweenness during the same period.
With the addition of intermediate airports, airlines can exploit HS structures to intro-
duce non-direct routes.

Small-world properties

The evolution of the network’s small-world properties is examined from a global
perspective. The variation of the global average clustering coefficient and global
average shortest path length is illustrated in Fig. 4.

The average clustering coefficient displays a global maximum in 1996 and eventu-
ally reaches its global minimum in 2001. On the other hand, the average shortest path
length reaches its global minimum during 1999 and its global maximum in 2002.
Hence, the 2001 events have a critical impact on small-world properties. Subsequently,
both parameters show a generally declining trend. In 2016, the values of 〈C〉 and 〈L〉 are
0.42 and 2.85, respectively, being indicative of a small-world network. On average, a
node can be reached by any other node in the network by less than 3 intermediate hops.

Evidently, small world properties are found in the domestic U.S. ATN. The U.S.
ATN shows a decline of average path length, hence evolving into a more efficient
network over time. The increase of average flight distance (see Fig. 2) implies that
passengers can fly further by fewer hops. Moreover, the U.S. ATN displays a tendency
to be gradually less clustered. This can be associated with the generally declining

Fig. 2 Temporal evolution of average flight distance and average node betweenness in the U.S. ATN,
between 1996 and 2016

66 Siozos-Rousoulis L. et al.



betweenness seen in Fig. 2, which leads to the central weight being shared among
nodes.

Scale-free properties

The main characteristic of scale-free networks is the existence of hub nodes with high
connectivity, whereas most nodes depict rather few connections. Such behavior was
intentionally forced to the U.S. ATN during the restructuring of 2002.

The cumulative distributions of degree and betweenness are plotted and analyzed in
order to identify scale-free properties. We analyze the distribution of in-degree (kin) and
out-degree (kout), with p(k) the observed probability of the degree of a given node to
have value k. Since raw probability distributions are noisy, the cumulative distributions
are constructed according to P(k) =∑i > kp(k).

Fig. 3 Temporal evolution of short- and long- haul flights in the U.S. ATN, between 1996 and 2016. Flights
over distance lower than 700 miles are considered as short-haul, whereas flights over distance greater than
700 miles are considered as long-haul

Fig. 4 Temporal evolution of small-world properties in the U.S. ATN, between 1996 and 2016
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Figure 5 shows the plots of cumulative in-degree and out-degree distributions with a
time interval of 5 years. The curves follow a power-law distribution with truncations. A
similar trend is observed between every time snapshot. These conclusions agree with
the results of Xu and Harriss (2008), Lin and Ban (2014), and Jia et al. (2014). The
power-law behavior of passenger distribution suggests high heterogeneity of air traffic
(Xu and Harriss 2008).

The cumulative betweenness distribution is presented in Fig. 6, also decaying as a
power law, with a large exponent value. This is a common characteristic among air
transportation networks and implies anomalously large betweenness centralities
(Guimerà et al. 2005; Wuellner et al. 2010), as specific airports which cannot be
considered hubs display a very large betweennesses (Guimerà et al. 2005).

The scale-free characteristics of the U.S. ATN show some convergence during
recent years. Hence the network retains its scale-free properties.

Assortativity

The temporal evolution of the network’s assortativity is evaluated through the Gini
coefficient, which generally displays an increasing trend, hence encouraging the
development of HS structures. The minimum value of 0.64 appears in 1996, while
the global maximum value is just below 0.7 and occurs at the most recent time. The
U.S. ATN is thus highly disassortative, with increasing disassortative features over
time. The two local minima seen in Fig. 7 coincide with the 9/11 crisis and the 2008
recession. The former can be explained by the restructuring, as well as the dehubbing of
specific airports in the immediate aftermath of the attacks (Redondi et al. 2012). The
contribution of HS structures to the network’s restructuring is corroborated by the
findings of Fig. 2. The aviation fuel price surge between 2004 and 2008 amplified the
growth of HS structures, since connections to non-hub airports serving small commu-
nities were most sensitive to fuel price increases. Non-hub airports lost approximately
12% of their connections during this period (Morrison et al. 2010).

Overall, there is an evident trend towards stronger HS structures in the U.S. ATN
over time (Jia et al. 2014).

Fig. 5 The evolution of the cumulative in-degree P(kin) and out-degree P(kout) distribution on log-log scales
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Network robustness

Based on the initial network analysis a temporal robustness study is performed. The
variation of the efficiency and resilience of the U.S. ATN over time is initially
evaluated. Subsequently, the network’s targeted attack tolerance is estimated. Due to
the scale-free properties observed in section 4.1.3, a targeted removal of the most
critical nodes is realized.

Network efficiency and resilience

Figure 8 presents comparative plots of network efficiency and resilience. Both curves
display their global maxima a few years before the events of 2001 and show a steep
drop between 2001 and 2002. During that period, efficiency and resilience experience a
drop of almost 20%. The network resilience reaches its global minimum in 2003. The

Fig. 6 The evolution of the cumulative betweenness P(B) distribution on log-log scales

Fig. 7 Temporal evolution of the Gini coefficient of the U.S. ATN, between 1996 and 2016
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curve only shows notable growth again after the wake of the 2008 economic recession.
The system’s resilience has presented a continuously increasing trend since. The
network’s efficiency has shown a continuous decrease of efficiency since 2008. This
small decrease of efficiency does not necessarily imply a degradation of the system, due
to the continuous increase of nodes (airports) and edges (routes) throughout the
network during recent years (Lin and Ban 2014). Efficiency is evidently inversely
related to the average shortest path length (see Fig. 4).

Targeted attack tolerance

In order to assess the network’s tolerance to a targeted attack, we start by detecting
the most central node, hence the node with the highest betweenness. Since the node
isolation approach is adaptive, the said node is removed and the centrality measures
are recomputed for the updated network. This procedure is repeated for 50
iterations.

In Fig. 9, the impact of targeted node removal is displayed with a time interval of
5 years. The monitoring variables are the network’s largest connected component S
(Figs. 9 (a) and (c)) and the efficiency E (Figs. 9 (b) and (d)).

Figures 9 (a) and (b) illustrate the findings after the iterative removal of 50 airports,
which leads to the network retaining 86% of its structure (Fig. 9 (a)). This is certainly
an improvement, compared to the network in 1996 and 2001. In 2006, the U.S. ATN
displays the best tolerance among the five snapshots, whereas between 2011 and 2016,
convergence is observed. The removal of 50 nodes results in reduced network effi-
ciency by more than 40% for all time instances (Fig. 9 (b)). Figures 9 (c) and (d) are
zoomed in on the 10 first iterations, thus clearly depicting the immediate impact of a
targeted attack. The removal of the most connected node has the most severe effects in
year 2016 (see Figs. 9 (c) and (d)). The removal of the second most connected node has
the most critical impact for year 2016, in regard to S (Fig. 9 (c)). Generally, the
snapshot corresponding to 2016 displays the most rapid breakdown of S and E, being
only less vulnerable than 2001. This is proof of the system’s vulnerability to targeted
attacks becoming more prominent over time.

Fig. 8 Temporal evolution of the efficiency and resilience of the U.S. ATN, between 1996 and 2016

70 Siozos-Rousoulis L. et al.



Further insight on the restructuring following 9/11 is provided in Fig. 10, for the
period between 2000 and 2004. Figures 10 (a) and (b) display S and E results after the
iterative removal of 50 airports, generally illustrating the abrupt change of the net-
work’s characteristics after the restructuring. Notable convergence is observed between
2002 and 2004, and thus an improved tolerance compared to the network’s state before
9/11. Figures 10 (c) and (d) are zoomed in on the 10 first iterations, proving that the
most vulnerable structure is generally observed during year 2000. The restructuring
resulted in overall improvement of the system’s tolerance to targeted attacks, since the
curves corresponding to 2004 display the most robust characteristics.

Evidently, the removal of small fraction of selected nodes can cause severe damage
to the functioning and operations of the U.S. ATN, as expected by its scale-free
properties (Chi and Cai (2004), Wuellner et al. (2010), and Lordan et al. (2014b)).
Due to the multi-community structure of the U.S. ATN, the removal of specific hubs
can result in the disconnection of whole geographical regions (e.g. the Alaska region,
which connects to the rest of the U.S. mainly through Anchorage and Fairbanks
airports) (Lordan et al. 2014b). The discussed results suggest that the system’s robust-
ness does not show improvement over time. Moreover, the system in 2016 shows to be
the most vulnerable to a targeted attack on removal of the first few most connected
nodes since the 2001 restructuring (Figs. 9 (c) and (d)).

Fig. 9 The evolution of the network’s largest connected component S and efficiency E as a function of nodes
removed. Parameters S and E are normalized by their respective maximum value observed for each specific
year
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Discussion and recommendations

The obtained results are discussed along with organizational implications and mana-
gerial recommendations for future secure and sustainable growth of the U.S. ATN.

Discussion of the results

Based on the results of the performed network analysis, clear observations can be
initially made on the state of the U.S. ATN immediately after the 9/11 attacks, as well
as during the short-term restructuring that took place. The long-term evolution of the
system’s topological properties and robustness provides important information for the
current state of the U.S. ATN and allows defining guidelines for future action.

The immediate impact of the attacks in 2001 was rather limited (see Figs. 4, 7, and
8), since data from this year only captured the system’s reaction to increase security and
recover operations. Some routes were eliminated and this resulted in suboptimal
operation of the network and lower traffic overall.

The most severe shocks are observed in 2002. The restructuring resulted in the
introduction of new airports, which were connected to the already well-connected
airports of the system, aiming to construct a more connected network (Lin and Ban

Fig. 10 The evolution of the network’s largest connected component S and efficiency E as a function of nodes
removed, during the restructuring period. Parameters S and E are normalized by their respective maximum
value observed for each specific year
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2014). This is reflected in the drastic increase of average node betweenness and the
steep decline of average flight distance in 2002 (Fig. 2). A sharp expansion of flights,
nodes, and edges, during that same year, also points to this direction (Fig. 1). The
airlines had already replaced several large aircraft with smaller ones. This rendered
them more flexible and allowed them to address the eventual growth of passenger
demand, reaching in the meantime smaller markets. The major airlines could thus
maintain the scope and scale of their operations, while preserving their market share
against low cost carriers. Passenger traffic began its recovery with some delay, mainly
due to passengers being wary of air travel and discouraged by security inspections. The
severity of the 9/11 events is captured by the steep decline of efficiency and resilience
in Fig. 8. Although the efficiency decline should not be considered as a degradation of
the system when growth of nodes and edges is significant (Lin and Ban 2014), the drop
of resilience is an alarming indicator in regard to the system’s security. The
restructuring additionally improved the system’s tolerance to targeted attacks (Fig. 10).

Since 2002, much smoother and generally monotonic trends are observed. However,
the general volatile state of the market and particularly the 2008 recession had a toll on
the network’s expansion. Despite passenger and flight traffic being affected, the impact
on all other network statistics was of a much lower magnitude than the 2001 events.

The most recent observations, provide a view of the current state of the U.S. ATN.
The network displays continuous growth in passenger and flight traffic, airports, and
routes (Figs. 1). Average flight distance increases, whereas average betweenness
decreases (Fig. 2). The increase of available intermediate airports, enables airlines to
exploit HS structures (Fig. 7) in order to introduce non-direct routes and increase route
efficiency. Furthermore, the network is retaining its small-world properties, despite
reduction of clustering. The average path length also displays a declining trend, (as
expected by the increasing average flight distance) which is indicative of an efficient
system (Fig. 4). On the other hand, the robustness of the U.S. ATN does not show
improvement, since it maintains its scale-free properties (Figs. 5 and 6) and thus its
vulnerability to targeted attacks. An alarming characteristic is that its tolerance to a
targeted attack scenario has deteriorated, based on the most recent data (Fig. 8). Some
positive conclusions on the network’s robustness comprise of its increasing resilience
over time (Fig. 8) and the decreasing betweenness (Fig. 2), which are desirable in
robust and secure networks.

Overall, the 9/11 terrorist attacks triggered an unprecedented restructuring of the
U.S. ATN. The airlines reconsidered their strategy and optimized their operations to
survive, thus allowing the network to recover rapidly and become even more efficient.
The devastating effects of the 9/11 events called for the establishment of severe security
measures. As such, in the short-term period after 2001, the network’s tolerance showed
undoubtable improvement. Since then, the U.S. ATN has continued its evolution in a
dynamic manner, being generally volatile and susceptible to global economic fluctua-
tions. One may conclude that in recent years, the network’s global statistics and
topological properties display continuous growth, as the network continues to expand.
Τhe robustness of the system, on the other hand, has not shown any significantly
improving trend, despite the increase of its resilience. The system’s tolerance to
targeted attacks has displayed deteriorating tendencies during recent years.

A concise outline of the examined time-dependent network parameters is provided
in Table 1.
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Organizational implications and recommendations

The deteriorating trends of robustness observed for the U.S. ATN, call for future
improvements and further restructuring of the network. Based on our findings, a
general methodology is proposed to tackle the aforementioned challenges. Organi-
zational considerations for the U.S. ATN are discussed, from the perspective of
airline and airport strategy, as well as public policy. The discussion is based on the
commonly accepted assumption that the U.S. ATN will continue to grow and
expand in years to come, due to the increasing demand for air transportation. This
growth can be sustainable if a well-connected, efficient, and robust network is
ensured.

Due to the vital role of the U.S. ATN for U.S. economy, achieving a robust and
secure network is of primary importance for its sustainability. The network’s resilience
and tolerance should be evaluated by analyzing the network globally and regionally, in
order to understand its operability under disruptive events. Organizational complexities
must be accounted for during robustness evaluation, thus rendering a complex network
analysis necessary (Lordan et al. 2014a), which should be combined with an economic
analysis (Reggiani 2013).

The critical nodes must be detected, using the betweenness criterion as an indicator.
Subsequently, a tolerance evaluation must be realized based on a node removal
approach, to simulate airport closure, irrespective of the cause. The probability of such
an event is low, but should still be considered, in order to detect robustness shortcom-
ings. Furthermore, Chi and Cai (2004) argue that removal of a few smallest airports
would result in a better network of lower average path length and higher efficiency. It

Table 1 Summary of the computed time-dependent variables

Parameter Range Min. Mean Max. Description

Nodes, N ℤ+ 461.5 1000.1 1245.5 Number of airports

Edges, M ℤ+ 8934 20,582 27,617 Flight route connections

Avg. flight distance,〈D〉 ℝ+ 941.3 1020.7 1123.9 Average flight distance in km

Avg. node betweenness,〈B〉 ℝ+ 1.665 2.002 2.255 Increase indicates higher
bridge importance of nodes,
thus vulnerability to
intentional attacks

Avg. clustering coeff., 〈C〉 [0,1] 0.417 0.444 0.493 Increase indicates increasing
small-world properties, thus
higher network efficiency

Avg. shortest path
length, 〈L〉

ℝ+ 2.650 2.929 3.196 Decrease indicates increasing
small-world properties, thus
higher network efficiency

Gini coeff., G [0,1] 0.640 0.674 0.696 Increase indicates stronger HS
structures

Efficiency, E [0,1] 0.315 0.349 0.413 Inversely related to average
shortest path length

Resilience, R ℝ+ 1.35e+04 1.53e+04 1.82e+04 Indicates network ability to
sustain operational levels
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would be thus preferable to motivate the construction of large and middle scale airports,
without however neglecting the socioeconomic cost of such an approach. Moreover, as
Wuellner et al. (2010) highlight, point to point structures are much more resilient,
whereas hub and spoke networks are economically efficient and convenient for pas-
sengers. The compromise between such network architectures should be addressed
from an economic and security perspective. Finally, a reaction mechanism should be
established, to ensure that critical airports resume normal operations rapidly, after an
emergency occurs (Chi and Cai 2004).

Although network robustness is necessary for the network’s sustainability, it
does not guarantee sustainable growth. Air transportation networks must expand in
order to keep up with the constantly growing demand and airport capacity limita-
tions currently pose a bottleneck to this expansion. Major hubs already require
capacity expansions, which are however limited by political, socioeconomic and
environmental factors (Upham et al. 2003; Gelhausen et al. 2013). Evidently, any
analyses focusing on restructuring the U.S. ATN and improving its robustness must
also address the necessity for hub expansions, which will render future growth
viable and allow even smaller communities to be served (Borenstein and Rose
2014).

Conclusion

Due to the U.S. air transportation network’s criticality to the mobility and func-
tioning of local economies, it is imperative to assess its topological evolution and
ensure that it is well-connected, efficient, robust, and secure. In the present paper, a
study of the domestic U.S. ATN was realized between 1996 and 2016, to evaluate
the temporal evolution of its topological properties and robustness. Emphasis was
placed on the effects of restructuring that followed the 9/11 events and their short-
term implications. A methodology was proposed to identify long-term trends in the
evolution of the network’s topology and robustness over time, by using network
analytics. Centrality measures were computed and the system’s global resilience
was subsequently evaluated. A node deletion method was also applied to assess the
network’s tolerance by simulating the worst-case scenario of a targeted attack. The
network’s efficiency and largest connected component were monitored to assess the
impact of such an event.

The main findings of this study showed that the 9/11 terrorist attacks triggered
vast restructuring of the network. The commercial airlines improved their efficiency
and the U.S. government focused on improving security. The network thus recov-
ered rapidly and became even more efficient. The devastating effects of the attacks
exposed security weaknesses, hence resulting in the immediate establishment of
severe security measures. Therefore, in the short-term period after 2001, the net-
work’s tolerance showed significant improvement. Since then, the U.S. ATN has
continued evolving, displaying continuous growth and expansion. However, the
robustness of the system has generally not shown any significantly improving
tendency. Although the system’s ability to sustain its operational level under
extreme circumstances has improved, its tolerance to targeted attacks has recently
displayed signs of deterioration.
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The deteriorating characteristics of U.S. ATN robustness highlight the need for
future improvement and restructuring. Since demand for air travel is projected to grow
in years to come, a well-connected, efficient, and robust network is imperative to
maintain growth. In order to ensure sustainable growth of the U.S. ATN, a complex
network analysis, such as the one presented here, may provide useful insight in the
network’s robustness, by identifying the most vulnerable and critical nodes.

We have thus demonstrated the applicability of the proposed methodology on the
U.S. ATN. The methodology can in turn be extended to different transportation
networks, in order to provide a general perspective of a system’s vulnerabilities. The
developed code has been made publicly available to facilitate reproduction of the
results and application on alternative networks.
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