Skip to main content

Advertisement

Log in

Engineering Extracellular Vesicles to Modulate Their Innate Mitochondrial Load

  • S.I. : 2022 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Extracellular vesicles (EVs) are promising carriers for the delivery of biotherapeutic cargo such as RNA and proteins. We have previously demonstrated that the innate EV mitochondria in microvesicles (MVs), but not exosomes (EXOs) can be transferred to recipient BECs and mouse brain slice neurons. Here, we sought to determine if the innate EV mitochondrial load can be further increased via increasing mitochondrial biogenesis in the donor cells. We hypothesized that mitochondria-enriched EVs (“mito-EVs”) may increase the recipient BEC ATP levels to a greater extent than naïve MVs.

Methods

We treated NIH/3T3, a fibroblast cell line and hCMEC/D3, a human brain endothelial cell (BEC) line using resveratrol to activate peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), the central mediator of mitochondrial biogenesis. Naïve EVs and mito-EVs isolated from the non-activated and activated donor cells were characterized using transmission electron microscopy, dynamic light scattering and nanoparticle tracking analysis. The effect of mito-EVs on resulting ATP levels in the recipient BECs were determined using Cell Titer Glo ATP assay. The uptake of Mitotracker Red-stained EVs into recipient BECs and their colocalization with recipient BEC mitochondria were studied using flow cytometry and fluorescence microscopy.

Results

Resveratrol treatment increased PGC-1α expression in the donor cells. Mito-MVs but not mito-EXOs showed increased expression of mitochondrial markers ATP5A and TOMM20 compared to naïve MVs. TEM images showed that a greater number of mito-MVs contained mitochondria compared to naïve MVs. Mito-MVs but not mito-EXOs showed a larger particle diameter compared to their naïve EV counterparts from the non-activated cells suggesting increased mitochondria incorporation. Mito-EVs were generated at higher particle concentrations compared to naïve EVs from non-activated cells. Mito-EVs increased the cellular ATP levels and transferred their mitochondrial load into the recipient BECs. Mito-MV mitochondria also colocalized with recipient BEC mitochondria.

Conclusions

Our results suggest that the pharmacological modulation of mitochondrial biogenesis in the donor cells can change the mitochondrial load in the secreted MVs. Outcomes of physicochemical characterization studies and biological assays confirmed the superior effects of mito-MVs compared to naïve MVs—suggesting their potential to improve mitochondrial function in neurovascular and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1

Similar content being viewed by others

References

  1. Ahluwalia, M., M. Kumar, P. Ahluwalia, S. Rahimi, J. R. Vender, R. P. Raju, et al. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages—a potential therapeutic approach. Neurochem. Int.150:105192, 2021.

    Article  Google Scholar 

  2. Andreux, P. A., R. H. Houtkooper, and J. Auwerx. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 12(6):465–483, 2013.

    Article  Google Scholar 

  3. Bernardo-Castro, S., J. A. Sousa, A. Brás, C. Cecília, B. Rodrigues, L. Almendra, et al. Pathophysiology of blood–brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front. Neurol. 11:1605, 2020.

    Article  Google Scholar 

  4. Busatto, S., A. Pham, A. Suh, S. Shapiro, and J. Wolfram. Organotropic drug delivery: synthetic nanoparticles and extracellular vesicles. Biomed. Microdevices. 21(2):46, 2019.

    Article  Google Scholar 

  5. Chazotte, B. Labeling mitochondria with MitoTracker dyes. Cold Spring Harb. Protoc. 2011(8):990–992, 2011.

    Article  Google Scholar 

  6. Chen, S., Q. Fan, A. Li, D. Liao, J. Ge, A. M. Laties, et al. Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis. 18(7):786–799, 2013.

    Article  Google Scholar 

  7. Csiszar, A., N. Labinskyy, J. T. Pinto, P. Ballabh, H. Zhang, G. Losonczy, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 297(1):H13–H20, 2009.

    Article  Google Scholar 

  8. Currais, A. Ageing and inflammation—a central role for mitochondria in brain health and disease. Ageing Res. Rev. 21:30–42, 2015.

    Article  Google Scholar 

  9. D’Souza, A., K. M. Dave, R. A. Stetler, and D. S. Manickam. Targeting the blood–brain barrier for the delivery of stroke therapies. Adv. Drug Deliv. Rev. 171:332–351, 2021.

    Article  Google Scholar 

  10. Dai, X., J. Chen, F. Xu, J. Zhao, W. Cai, Z. Sun, et al. TGFalpha preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J. Cereb. Blood Flow Metab. 40(3):639–655, 2020.

    Article  Google Scholar 

  11. Dave, K., M. J. Reynolds, D. Stolz, R. Babidhan, D. Dobbins, H. Yankello, et al. Extracellular vesicles deliver mitochondria and HSP27 protein to protect the blood–brain barrier. bioRxiv. 2022. https://doi.org/10.1101/2021.10.29.466491.

    Article  Google Scholar 

  12. Dave, K. M., W. Zhao, C. Hoover, A. D’Souza, and D. S. Manickam. Extracellular vesicles derived from a human brain endothelial cell line increase cellular ATP levels. AAPS PharmSciTech. 22(1):18, 2021.

    Article  Google Scholar 

  13. Davinelli, S., N. Sapere, M. Visentin, D. Zella, and G. Scapagnini. Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells. Immunity Ageing. 10(1):28, 2013.

    Article  Google Scholar 

  14. de Jong, O. G., S. A. A. Kooijmans, D. E. Murphy, L. Jiang, M. J. W. Evers, J. P. G. Sluijter, et al. Drug delivery with extracellular vesicles: from imagination to innovation. Acc. Chem. Res. 52(7):1761–1770, 2019.

    Article  Google Scholar 

  15. Delmas, D., V. Aires, D. J. Colin, E. Limagne, A. Scagliarini, A. K. Cotte, et al. Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol. Ann. N. Y. Acad. Sci. 1290(1):90–97, 2013.

    Article  Google Scholar 

  16. Doll, D. N., H. Hu, J. Sun, S. E. Lewis, J. W. Simpkins, and X. Ren. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood–brain barrier. Stroke. 46(6):1681–1689, 2015.

    Article  Google Scholar 

  17. D’Souza, A., A. Burch, K. M. Dave, A. Sreeram, M. J. Reynolds, D. X. Dobbins, et al. Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. J. Control. Release. 338:505–526, 2021.

    Article  Google Scholar 

  18. Duchen, M. R. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 25(4):365–451, 2004.

    Article  Google Scholar 

  19. Elsharkasy, O. M., J. Z. Nordin, D. W. Hagey, O. G. de Jong, R. M. Schiffelers, S. E. L. Andaloussi, et al. Extracellular vesicles as drug delivery systems: why and how? Adv. Drug Deliv. Rev. 159:332–343, 2020.

    Article  Google Scholar 

  20. Evers, M. J. W., S. I. van de Wakker, E. M. de Groot, O. G. de Jong, J. J. J. Gitz-François, C. S. Seinen, et al. Functional siRNA delivery by extracellular vesicle-liposome hybrid nanoparticles. Adv. Healthc. Mater. 11(5):e2101202, 2022.

    Article  Google Scholar 

  21. Fernandez-Marcos, P. J., and J. Auwerx. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93(4):884S-S890, 2011.

    Article  Google Scholar 

  22. Fiskum, G., A. N. Murphy, and M. F. Beal. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab. 19(4):351–369, 1999.

    Article  Google Scholar 

  23. Friedman, J. R., and J. Nunnari. Mitochondrial form and function. Nature. 505(7483):335–343, 2014.

    Article  Google Scholar 

  24. Gray, W. D., A. J. Mitchell, and C. D. Searles. An accurate, precise method for general labeling of extracellular vesicles. MethodsX. 2:360–367, 2015.

    Article  Google Scholar 

  25. Hayakawa, K., S. J. Chan, E. T. Mandeville, J. H. Park, M. Bruzzese, J. Montaner, et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells. 36(9):1404–1410, 2018.

    Article  Google Scholar 

  26. Hayakawa, K., E. Esposito, X. Wang, Y. Terasaki, Y. Liu, C. Xing, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 535(7613):551–555, 2016.

    Article  Google Scholar 

  27. Herrmann, I. K., M. J. A. Wood, and G. Fuhrmann. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16(7):748–759, 2021.

    Article  Google Scholar 

  28. Ikeda, G., M. R. Santoso, Y. Tada, A. M. Li, E. Vaskova, J. H. Jung, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J. Am. Coll. Cardiol. 77(8):1073–1088, 2021.

    Article  Google Scholar 

  29. Islam, M. N., S. R. Das, M. T. Emin, M. Wei, L. Sun, K. Westphalen, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18:759, 2012.

    Article  Google Scholar 

  30. Kaushik, P., M. Ali, M. Salman, H. Tabassum, and S. Parvez. Harnessing the mitochondrial integrity for neuroprotection: therapeutic role of piperine against experimental ischemic stroke. Neurochem. Int.149:105138, 2021.

    Article  Google Scholar 

  31. Kim, A., W. B. Ng, W. Bernt, and N.-J. Cho. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci. Rep. 9(1):2639, 2019.

    Article  Google Scholar 

  32. Komen, J. C., and D. R. Thorburn. Turn up the power—pharmacological activation of mitochondrial biogenesis in mouse models. Br. J. Pharmacol. 171(8):1818–1836, 2014.

    Article  Google Scholar 

  33. Lamichhane, T. N., A. Jeyaram, D. B. Patel, B. Parajuli, N. K. Livingston, N. Arumugasaamy, et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell. Mol. Bioeng. 9(3):315–324, 2016.

    Article  Google Scholar 

  34. Lee, M. J., Y. Jang, J. Han, S. J. Kim, X. Ju, Y. L. Lee, et al. Endothelial-specific Crif1 deletion induces BBB maturation and disruption via the alteration of actin dynamics by impaired mitochondrial respiration. J. Cereb. Blood Flow Metab. 40(7):1546–1561, 2020.

    Article  Google Scholar 

  35. Lin, J., C. Handschin, and B. M. Spiegelman. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1(6):361–370, 2005.

    Article  Google Scholar 

  36. López-Lluch, G., P. M. Irusta, P. Navas, and R. de Cabo. Mitochondrial biogenesis and healthy aging. Exp. Gerontol. 43(9):813–819, 2008.

    Article  Google Scholar 

  37. Madineni, A., Q. Alhadidi, and Z. A. Shah. Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia. Mol. Neurobiol. 53(2):867–878, 2016.

    Article  Google Scholar 

  38. Manickam, D. S. Delivery of mitochondria via extracellular vesicles—a new horizon in drug delivery. J. Control. Release. 343:400–407, 2022.

    Article  Google Scholar 

  39. Moreira, P. I., C. Carvalho, X. Zhu, M. A. Smith, and G. Perry. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta. 1802(1):2–10, 2010.

    Article  Google Scholar 

  40. Morrison, T. J., M. V. Jackson, E. K. Cunningham, A. Kissenpfennig, D. F. McAuley, C. M. O’Kane, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am. J. Respir. Crit. Care Med. 196(10):1275–1286, 2017.

    Article  Google Scholar 

  41. Murphy, D. E., O. G. de Jong, M. Brouwer, M. J. Wood, G. Lavieu, R. M. Schiffelers, et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp. Mol. Med. 51(3):1–12, 2019.

    Article  Google Scholar 

  42. Murphy, D. E., O. G. de Jong, M. J. W. Evers, M. Nurazizah, R. M. Schiffelers, and P. Vader. Natural or synthetic RNA delivery: a stoichiometric comparison of extracellular vesicles and synthetic nanoparticles. Nano Lett. 21(4):1888–1895, 2021.

    Article  Google Scholar 

  43. Neves, A. R., C. Nunes, and S. Reis. Resveratrol induces ordered domains formation in biomembranes: Implication for its pleiotropic action. Biochim. Biophys. Acta. 1858(1):12–18, 2016.

    Article  Google Scholar 

  44. Nian, K., I. C. Harding, I. M. Herman, and E. E. Ebong. Blood–brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction. Front. Physiol. 11:1681, 2020.

    Article  Google Scholar 

  45. van Niel, G., D. R. F. Carter, A. Clayton, D. W. Lambert, G. Raposo, and P. Vader. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23:369–382, 2022.

    Article  Google Scholar 

  46. Oldendorf, W. H., M. E. Cornford, and W. J. Brown. The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1(5):409–417, 1977.

    Article  Google Scholar 

  47. Peng, K., Y. Tao, J. Zhang, J. Wang, F. Ye, G. Dan, et al. Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. Oxid. Med. Cell Longev. 2016:6705621, 2016.

    Article  Google Scholar 

  48. Phinney, D. G., M. Di Giuseppe, J. Njah, E. Sala, S. Shiva, C. M. St Croix, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 6(1):8472, 2015.

    Article  Google Scholar 

  49. Puhm, F., T. Afonyushkin, U. Resch, G. Obermayer, M. Rohde, T. Penz, et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ. Res. 125(1):43–52, 2019.

    Article  Google Scholar 

  50. Ragonese, F., L. Monarca, A. De Luca, L. Mancinelli, M. Mariani, C. Corbucci, et al. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil. Steril. 115(4):1063–1073, 2021.

    Article  Google Scholar 

  51. Raposo, G., and W. Stoorvogel. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 200(4):373–383, 2013.

    Article  Google Scholar 

  52. Razmara, A., L. Sunday, C. Stirone, X. B. Wang, D. N. Krause, S. P. Duckles, et al. Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J. Pharmacol. Exp. Ther. 325(3):782–790, 2008.

    Article  Google Scholar 

  53. Sansone, P., C. Savini, I. Kurelac, Q. Chang, L. B. Amato, A. Strillacci, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl Acad. Sci. 114(43):E9066, 2017.

    Article  Google Scholar 

  54. Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta. 1813(7):1269–78, 2011.

    Article  Google Scholar 

  55. Scarpulla, R. C., R. B. Vega, and D. P. Kelly. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23(9):459–466, 2012.

    Article  Google Scholar 

  56. Silva, J. D., Y. Su, C. S. Calfee, K. L. Delucchi, D. Weiss, D. F. McAuley, et al. MSC extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur. Respir. J. 58(1):2002978, 2020.

    Article  Google Scholar 

  57. Spees, J. L., S. D. Olson, M. J. Whitney, and D. J. Prockop. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. U.S.A. 103(5):1283, 2006.

    Article  Google Scholar 

  58. Torralba, D., F. Baixauli, and F. Sánchez-Madrid. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4:107, 2016.

    Article  Google Scholar 

  59. Torralba, D., F. Baixauli, C. Villarroya-Beltri, I. Fernández-Delgado, A. Latorre-Pellicer, R. Acín-Pérez, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 9(1):2658, 2018.

    Article  Google Scholar 

  60. Vader, P., X. O. Breakefield, and M. J. A. Wood. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol. Med. 20(7):385–393, 2014.

    Article  Google Scholar 

  61. Vader, P., E. A. Mol, G. Pasterkamp, and R. M. Schiffelers. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 106:148–156, 2016.

    Article  Google Scholar 

  62. Ventura-Clapier, R., A. Garnier, and V. Veksler. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc. Res. 79(2):208–217, 2008.

    Article  Google Scholar 

  63. Walker, S., S. Busatto, A. Pham, M. Tian, A. Suh, K. Carson, et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 9(26):8001–8017, 2019.

    Article  Google Scholar 

  64. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39:359–407, 2005.

    Article  Google Scholar 

  65. Weissig, V. Drug Development for the therapy of mitochondrial diseases. Trends Mol. Med. 26(1):40–57, 2020.

    Article  Google Scholar 

  66. Weissig, V., S.-M. Cheng, and G. G. M. D’Souza. Mitochondrial pharmaceutics. Mitochondrion. 3(4):229–244, 2004.

    Article  Google Scholar 

  67. Wen, Y., W. Li, E. C. Poteet, L. Xie, C. Tan, L. J. Yan, et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem. 286(18):16504–16515, 2011.

    Article  Google Scholar 

  68. Wenz, T. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion. 13(2):134–142, 2013.

    Article  Google Scholar 

  69. Whitaker, R. M., D. Corum, C. C. Beeson, and R. G. Schnellmann. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol. 56:229–249, 2016.

    Article  Google Scholar 

  70. Witwer, K. W., and J. Wolfram. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat. Rev. Mater. 6(2):103–106, 2021.

    Article  Google Scholar 

  71. Zhang, Z., Z. Ma, C. Yan, K. Pu, M. Wu, J. Bai, et al. Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav. Brain Res. 356:322–331, 2019.

    Article  Google Scholar 

  72. Zhao, Q., Z. Tian, G. Zhou, Q. Niu, J. Chen, P. Li, et al. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics. 10(11):4822–4838, 2020.

    Article  Google Scholar 

  73. Zhou, J., Z. Yang, R. Shen, W. Zhong, H. Zheng, Z. Chen, et al. Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front. Mol. Biosci. 8:223, 2021.

    Article  Google Scholar 

Download references

Funding

Maura Farinelli and Abigail Sullivan’s NURE fellowship were supported through a grant from the National Institute of Neurological Disorders and Stroke (5R25NS100118-04) and this study was supported via start-up funds to Devika S. Manickam (Duquesne University).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devika S. Manickam.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the 2022 CMBE Young Innovators special issue.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 2604 KB)

Supplementary file1 (JPG 7040 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, K.M., Dobbins, D.X., Farinelli, M.N. et al. Engineering Extracellular Vesicles to Modulate Their Innate Mitochondrial Load. Cel. Mol. Bioeng. 15, 367–389 (2022). https://doi.org/10.1007/s12195-022-00738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00738-8

Keywords

Navigation