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Abstract
This review focuses on positron emission tomography (PET) imaging algorithms and traces the evolution of PET image 
reconstruction methods. First, we provide an overview of conventional PET image reconstruction methods from filtered 
backprojection through to recent iterative PET image reconstruction algorithms, and then review deep learning methods for 
PET data up to the latest innovations within three main categories. The first category involves post-processing methods for 
PET image denoising. The second category comprises direct image reconstruction methods that learn mappings from sino-
grams to the reconstructed images in an end-to-end manner. The third category comprises iterative reconstruction methods 
that combine conventional iterative image reconstruction with neural-network enhancement. We discuss future perspectives 
on PET imaging and deep learning technology.
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1  Introduction

Deep learning has been a popular topic in the scientific 
communities for a long time due to its significant impact in 
many fields [1–3]. A new wave of deep learning has been 
sweeping the medical imaging field [4–10], and some deep 
learning techniques, such as image reconstruction and com-
puter-aided diagnosis, have already been implemented in 
commercial systems [11–14]. In this review, we focus on 
positron emission tomography (PET) imaging using deep 
learning in the field of medical imaging [15–24].

PET is a molecular imaging method for visualizing and 
quantifying the distribution of radioactive tracers labeled 
with positron-emitting radioisotopes, such as fluorine-18 
(18F), oxygen-15 (15O), nitrogen-13 (13N), and carbon-11 

(11C), administered to living human participants [25]. Thus, 
PET can observe tracer kinetics; therefore, it is used not only 
for cancer diagnosis [26, 27] and diagnosis of neurodegen-
erative diseases, such as Alzheimer's disease [28, 29], but for 
fundamental research, such as brain function [30, 31]. PET 
is a unique imaging modality capable of tracking picomole-
order molecules; however, image noise is severe compared 
to other tomographic scanners, such as X-ray computed 
tomography (CT) because there are fewer counts in the 
measured data. Image noise degrades quantitative accuracy 
and lesion detectability, leading to the potential scenario of 
missed lesions. One straightforward strategy for improving 
PET image quality (or suppressing PET image noise) is to 
increase the amount of PET tracer administered to the indi-
vidual. This is sometimes difficult to actively adopt because 
of the problem of increased radiation exposure [32] and the 
limitations in count-rate capabilities of PET scanners. There-
fore, there is a demand for noise reduction techniques that 
do not increase injected dose. It is no exaggeration to state 
that the development history of PET imaging has been a 
battle against noise.

In this review, we highlight the algorithms used for PET 
imaging and systematically describe the history of PET 
image reconstruction and post-processing denoising algo-
rithms from early analytical methods to the latest advances 
in deep learning technology. Section 2 describes the basic 
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principles of PET imaging, including PET imaging models, 
conventional analytical and statistical PET image reconstruc-
tion algorithms, and an overview of deep learning-based 
PET imaging algorithms. Section 3 reviews deep learning 
for PET image denoising algorithms, and Sects. 4, 5, and 6 
review deep learning for direct, iterative, and dynamic PET 
image reconstruction algorithms, respectively. Finally, we 
conclude this review by providing future perspectives on 
PET imaging and deep learning technology.

2 � Basic principles of PET imaging

This section briefly reviews the history of PET image recon-
struction prior to the advent of deep learning techniques. 
Figure 1 summarizes the evolution of PET image reconstruc-
tion between the 1980s and 2000s.

Between the 1970s and 1980s, researchers developed ana-
lytical reconstruction methods, such as the filtered backpro-
jection (FBP) algorithm for tomographic imaging systems, 
such as X-ray CT and PET [33–35]. FBP is an analytical 
method that models the relationship between the image and 
the tomographic measurement data through an integral equa-
tion [36] as follows:

where X(u, v) is a two-dimensional (2D) image and Y(r,�) 
holds 1D projections for each view angles, known as a 
sinogram. The sinogram is an integral along the s-axis of a 
rotated image by an angle � . This integral transformation is 
known as the Radon transform [37] or X-ray transform. The 
principle behind FBP is the projection slice theorem that 
shows the relationship between the 2D Fourier transform of 
X(u, v) and the 1D Fourier transform of Y(r,�) , with respect 

(1)Y(r,�) = ∫ ∞

−∞
X(rcos� − ssin�, rsin� + scos�)ds,

to r as a one-to-one mapping. The most commonly used 
analytical method is FBP, which is calculated as follows:

where i is the imaginary unit, � is the frequency domain 
variable, and the high pass filter |�| is called a ramp filter. 
Although the ramp filter is an analytically derived necessity, 
enhancing the high-frequency components tends to produce 
severe noise. Therefore, frequency cutoff techniques and var-
ious filters have been developed to reduce high-frequency 
noise, although they sacrifice spatial resolution. In principle, 
the analytical method is known for its high speed, linear-
ity, and quantitative accuracy; however, it is susceptible to 
noise and leads to streak artifacts in low-count situations, as 
shown in Fig. 1.

Early PET systems had septa inserted between detec-
tor rings to shield gamma rays from oblique directions, 
and measured data to be processed were limited to a 2D 
plane. In the 1980s, researchers developed 3D PET image 
reconstruction methods [38–40], and since the 1990s, 3D 
acquisition has been performed by removing the septa 
or making them retractable and switchable for 2D and 
3D modes [41, 42]. While projections in a range of 0 to 
180° for the directions perpendicular to the axial direc-
tion form a complete set for reconstruction of a 3D image, 
the 3D acquisition significantly improved the sensitiv-
ity by measuring oblique projections. To fully utilize 
3D projection data, image reconstruction methods that 
consider data redundancy are required. We should note 
that, in addition, scatter correction is essential for quan-
tification due to the increased scatter components in 3D 
projection data, contrary to the 2D acquisition where the 

(2)
X(u, v) = ∫ �

0
Yfiltered(r,�)

|||r=ucos�+vsin�d�,
Yfiltered(r,�) = ∫ +∞

−∞
G(�,�)|�|exp(2�i�r)d�

G(�,�) = ∫ +∞

−∞
Y(r,�)exp(−2�i�r)dr,

,

Fig. 1   Demonstration of various PET image reconstruction algorithms from the FBP to recent iterative PET image reconstruction algorithms, 
which were applied to the same simulation data generated from the BrainWeb (https://​brain​web.​bic.​mni.​mcgill.​ca/​brain​web/)

https://brainweb.bic.mni.mcgill.ca/brainweb/
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septa shield most components scattered inside a patient's 
body. Scatter components are estimated and subtracted 
from projection data before analytical image reconstruc-
tion. There are many studies regarding the estimation 
and the impact of the scatter [43–49], but they are out 
of the scope of this article. One of the most used analyti-
cal image reconstruction methods for the 3D PET is the 
3D reprojection (3DRP) algorithm [39], which includes 
estimating the missing truncated data in 2D projections 
in order to apply 3D FBP. The 3D FBP is an extension of 
2D FBP to three dimensions, where the Colsher filter [38] 
is applied to 2D parallel projections for each projection 
direction parameterized by azimuthal (phi) and co-polar 
(theta) angles. Note that the set of 2D parallel projections 
for the co-polar (oblique) angle of 0 is equivalent to the 
stack of sinograms for 2D FBP (direct sinograms). Then, 
the filtered 2D parallel projections are back-projected to 
the image domain. Although the 3D FBP requires projec-
tion data without truncation, projections in oblique angles 
have unmeasured regions against objects inside cylindri-
cal PET scanners. The truncated data are estimated from 
a 3D image reconstructed as a stack of 2D images by 2D 
FBP for direct sinograms. The 3DRP method of directly 
treating 3D projection data was a computational burden 
for computers in the early 1990s. Therefore, the Fourier 
rebinning (FORE) method [50, 51] was developed for 
rebinning 3D projection data to a stack of 2D sinograms, 
allowing decomposition of the 3D image reconstruction 
problem into a set of 2D image reconstructions. Not only 
2D FBP but iterative 2D image reconstruction methods 
can be applied following the FORE [52–54]. As a result 
of the maturation of 3D image reconstruction, modern 
PET scanners no longer use septa. In recent computers, 
3D reconstruction methods have become tractable, and 
even iterative methods are used in practice.

Between the 1980s and 1990s, iterative reconstruction 
methods, such as the maximum likelihood expectation maxi-
mization (MLEM) algorithm [55–57], were developed to 
incorporate statistical and physical models into image recon-
struction. In the EM iterative method, the relationship between 
a tomographic image and measured data is modeled through 
a system of linear equations and Poisson distribution [58] as 
follows:

or

(3)y = Poisson
(
Ax + b

)
,

(4)yi = Poisson

�
J∑
j=1

aijxj + bi

�
,

where x =
(
x1, x2,⋯ , xJ

)T is a vector of voxel values of the 
image, y =

(
y1, y2,⋯ , yI

)T is a vector of sampled values of 

the projection data, b =

(
b1, b2,⋯ , bI

)T

 is a vector of 
expected values of background components, such as scatter 
and random coincidence events, which can be estimated 
using scatter and randoms modeling methods, and A ∈ ℝ

I×J 
is a system matrix where each element, and aij, is the prob-
ability that two gamma rays emitted from j-th voxel are 
detected by i-th line-of-response (LOR). The negative log-
likelihood function of data y under image x is defined as 
follows:

where P(y|x) is the probability of sampling y under x, and C 
is a constant. The MLEM algorithm estimates an image by 
minimizing (5) using iterative updates as follows:

where k denotes the iteration number. The MLEM algorithm 
achieves better image quality than the FBP algorithm by lev-
eraging a statistical noise model for PET, as shown in Fig. 1. 
After introducing the MLEM algorithm, the ordered subset 
expectation maximization (OSEM) algorithm [59], a block 
iterative reconstruction method that divides the projection 
data into subsets and updates the image for each subset, was 
developed as a speed-up method. Furthermore, Tanaka and 
Kudo proposed a dynamic row action maximum likelihood 
(DRAMA) algorithm [60, 61]. The DRAMA algorithm con-
tributes to improved convergence speed in the reconstruction 
process by controlling an optimal relaxation factor deduced 
by balancing the noise propagation from each subset to the 
final reconstructed image [61, 62]. We should note that these 
algorithms can be also applied for 3D PET data and even 
time-of-flight (TOF) PET data by properly modeling the 
system matrix.

Between the 1990s and 2000s, iterative reconstruction 
methods integrating the point-spread function (PSF) were 
developed for dedicated PET [63–66], as well as whole-
body PET/CT [67]. The PSF can be modeled in either pro-
jection and/or image space. An example of incorporating 
an image-space PSF is as follows [64]:

where H ∈ ℝ
J×J is a matrix comprising the PSF kernel in 

the image space. In Eq. (7), the division and multiplica-
tion between vectors are element-wise. Note that Eq. (7) is 

(5)

L(y|x) = − logP(y|x)

= C −

I∑

i=1

{
yi log

(
J∑

j=1

aijxj + bi

)
−

(
J∑

j=1

aijxj + bi

)}
,

(6)x
(k+1)

j
=

x
(k)

j
∑I

i=1
aij

I∑
i=1

aijyi
∑J

j�=1
aij� x

(k)

j�
+bi

,

(7)x(k+1) =
x(k)

HTAT1
HTAT y

AHx(k)+b
,
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equivalent to Eq. (6) when H is identity matrix. The PSF 
image reconstruction primarily reduces image noise and 
enhances contrast as well as improves spatial resolution, as 
shown in Fig. 1. The PSF kernel increases the correlation 
between voxels and reduces their variance. From this point 
of view, the image-space PSF can be considered a variant of 
the basis function approach [68, 69].

Parallel to the development of statistical and physical 
model-based iterative reconstructions, maximum a posteriori 
(MAP) reconstruction methods that incorporate image priors, 
such as smoothness to maximum likelihood estimation, have 
been developed [63, 70–75]. The MLEM algorithm exhibits 
an unfavorable property whereby noise and edge artifacts tend 
to increase as the iterations progress [76, 77]. Thus, practi-
cal solutions involve early stopping of iterations and/or post-
smoothing using a Gaussian filter [78]. The MAP reconstruc-
tion presents an alternative solution that often achieves a more 
favorable balance between noise and contrast than the above-
mentioned techniques [79]. The posterior probability of image 
x given data y is expressed through Bayes’ theorem as follows:

where P(x) is the prior probability of image x . The prior 
probability is assumed to be the following exponential func-
tion called the Gibbs distribution:

where Z is a partition function that makes the sum of the 
probabilities 1, and U(x) is an energy function designed to be 
small when the image is correct. The negative log-posterior 
likelihood is defined as follows:

where � is a hyperparameter that adjusts the influence of the 
prior distribution. Various MAP estimations are customized 
based on the selection of the prior distribution in the form of 
the Gibbs distribution. A commonly used energy function 
for the Gibbs distribution is as follows:

(8)P(x|y) = P(y|x)P(x)
P(y)

,

(9)P(x) =
1

Z
exp(−�U(x)),

(10)− logP(y|x) − logP(x) = L(y|x) + �U(x),

where V(⋅) is a potential function, Nj is a set of neighboring 
voxels for the j-th voxel, and �jj′ is a weight between neigh-
boring voxels. The weight is typically defined as the inverse 
of the distance between neighboring voxels. Examples of 
potential functions include quadratic and relative difference 
[74], as follows:

where � is a hyperparameter controlling the shape of relative 
difference. To minimize negative log-posterior likelihood 
function, Green’s one-step-late method [72] is commonly 
used as follows:

In the PET image reconstruction, the use of MAPEM with 
a quadratic prior provides a smoother image than the MLEM 
algorithm in low-count situations, as shown in Fig. 1.

With the emergence of PET/CT and PET/magnetic reso-
nance imaging (MRI) scanners, the MAPEM algorithms 
that incorporate additional anatomical information from CT 
and MR images [80–84] were also developed. For exam-
ple, we can incorporate MRI information into MAPEM by 
setting the weight �jj′ based on the difference between j - 
and j′-th voxel values of MRI (as detailed in Sect. 5). As 
shown in Fig. 1, MR-guided MAPEM can provide images 
with enhanced smoothness while preserving the organ 
boundaries.

Currently, the trajectory of PET image reconstruction is 
undergoing a deeper evolution, propelled by the integration 
of state-of-the-art deep learning technology in conjunction 
with computer vision techniques [85–89]. Figure 2 shows a 
classification of the deep learning methods for PET data in 
this review, which are strategically categorized into three 

(11)U(x) =
∑
j

∑
j�∈Nj

�jj�V
�
xj − xj�

�
,

(12)
Quadratic

(
xj − xj�

)2

Relativedifference
(xj−xj� )

2

(xj+xj� )+�|xj−xj� |
,

(13)x
(k+1)

j
=

x
(k)

j

∑I

i=1
aij+�

�U(x)

�xj

����x=x(k)

I∑
i=1

aijyi
∑J

j�=1
aij� x

(k)

j�
+bi

.

Fig. 2   Overview of the deep learning methods for PET data: They are divided into three categories; post-processing (denoising), direct recon-
struction, and iterative reconstruction methods using neural networks (NNs)
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distinct classes. First, the earliest deep learning methods for 
PET imaging primarily focused on post-processing for PET 
image denoising. Notably, these methods do not strictly per-
form image reconstruction processes. Second, a direct image 
reconstruction is a data-driven approach to learn a direct 
mapping from sinogram to PET image using training data-
sets of sinograms and reconstructed images. Third, an itera-
tive reconstruction is a hybrid approach that utilizes existing 
image reconstruction combined with neural-network image 
enhancement. We proceed with more details of deep learn-
ing-based PET imaging methods in the following sections.

3 � Deep learning for PET image denoising

Reconstructed PET images typically exhibit a low signal-
to-noise ratio, owing to physical degradation factors and 
limited statistical counts. Low-dose radiotracers or short-
time scans that reduce patient burden accelerate the deg-
radation of PET images, potentially affecting diagnostic 
accuracy. This remains a major challenge and an effective 
restoration approach for low-quality PET images is essential. 
The restoration of PET images is sometimes included as a 
“reconstruction” process; however, this section focuses on 
restoration methods by post-processing after reconstruction, 
distinguishing it from reconstruction that generates images 
from measurement data.

Noise occurs as the image reconstruction is ill condi-
tioned, such that a small perturbation of the measurement 
data greatly affects the image with much larger perturba-
tions, as follows:

where x̂ , x , and n are the degraded PET image, true PET 
image, and degraded component, respectively. The PET 
image denoising (or restoration) task is an inverse problem, 
whereby restoring the original image from a degraded image 
additively mixed with statistical noise complicated by the 
image reconstruction process. In recent years, deep learn-
ing approaches have been proposed to train the relationship 
between x̂ and x using the following minimization problem:

where f  represents a neural-network model with trainable 
parameters � , E is a loss function such as a mean-squared 
error (MSE) or mean absolute error. In general, deep learn-
ing-based PET image denoising aims to acquire data-driven 
nonlinear mapping from low-quality to high-quality PET 
images. It provides better denoising performance while 
retaining the spatial resolution and quantitative accuracy 
compared with classical denoising methods. In this section, 
we introduce deep learning-based PET image denoising 

(14)x̂ = x + n,

(15)𝜃∗ = argmin
𝜃

E(f (𝜃|x̂);x),

methods based on the power of convolutional neural net-
works (CNNs) that specialize in image mappings in three 
ways to be covered below: supervised learning, self-super-
vised and unsupervised learning, and emerging approaches.

3.1 � Supervised learning approach

Supervised learning is an approach used in machine learning 
to train models based on labeled data. PET image denoising 
tasks require huge datasets, comprising pairs of high- and 
low-quality PET images, as shown in Eq. (14). The evolution 
of deep learning has led to the transformation of shallow 
CNNs, initially implemented with only a few convolutional 
layers into architectures with deeper layers. This progress 
has enabled more potent PET image denoising capabilities, 
as evidenced by their superior performance [90]. Starting 
with these successes, CNN architectures have more complex 
features and have developed into structures specialized for 
image denoising and medical image processing, as shown 
in Fig. 3. Among them, the U-Net proposed by Ronneberger 
et al. [91] and 3D U-Net proposed by Çiçek [92] for seman-
tic segmentation are widely used for PET image denoising 
[93–95]. A typical U-Net architecture consists of a contract-
ing path to capture the context from the input image and a 
symmetric expanding path that up-samples the extracted fea-
ture map. In addition, the U-Net architecture introduces skip 
connections that pass the feature maps at each resolution of 
the contracting path to the expanding path. Residual learn-
ing [96] has also been proposed, in which the noise com-
ponent contained in the image is output based on the idea 
that it is easier to leave only latent noise rather than retain 
the complex visual features of the PET image in the hidden 
layer [97–100]. Perceptual loss, which is based on high-level 
feature representations extracted from a pre-trained VGG16 
on ImageNet, has been shown to improve the visual qual-
ity of PET images compared to general loss functions, such 
as the MSE [101]. Recently, the widespread use of PET/
CT or PET/MR scanners has facilitated the simultaneous 
acquisition of functional and anatomical images. Therefore, 
PET image denoising is also performed by combining mul-
timodal anatomical information, such as CT [102, 103] or 
MR images [104–112], thereby achieving superior denoising 
performance compared with PET alone.

The advent of generative adversarial networks (GAN) has 
led to breakthroughs in the field of image generation [113]. 
The GAN consists of two competing neural networks: a gen-
erator and a discriminator. In addition to adopting a network, 
such as a U-Net, which is capable of image-to-image transla-
tion as a generator, it can be regarded as a training method 
that considers the adversarial loss based on the output from 
the discriminator. GAN training proceeds such that the label 
data are no longer distinguishable from the output images of 
the CNN, thereby synthesizing denoised PET images with 
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less spatial blur and better visual quality [114–116]. Com-
mon models for denoising by GANs include Conditional 
GAN [117] and Pix2Pix [118], while incorporating various 
network structures [119, 120] and additional loss functions, 
such as least squares [121, 122], task-specific perceptual loss 
[123], pixelwise loss [124], and Wasserstein distance with 
a gradient penalty [125], have all been reported to improve 
denoising performance. CycleGAN is a method that consists 
of two generator and discriminator pairs with cycle consist-
ency loss [126], which can train denoising tasks without 
a corresponding direct pairing between the degraded and 
original PET images, which is conventionally essential 
(Fig. 4) [127–131].

3.2 � Self‑supervised and unsupervised learning 
approaches

Collecting a large number of high-quality PET images for 
supervised learning is particularly difficult in clinical prac-
tice. Furthermore, the generalization performance for vari-
ous PET tracers can be poor, and denoised images may have 
inherent biases affecting use with unknown data, such as 
disease, scanner, and noise levels, which are not included 
in the training data. To overcome these challenges, self-
supervised and unsupervised learning approaches have 
attracted a steadily growing interest. Self-supervised learn-
ing generally refers to training algorithms that use self-labels 

automatically generated from unannotated data. Noise2No-
ise is a representative self-supervised denoising approach 
that restores clean images from multiple independent cor-
rupt images [132] and is also reported to be effective for 
PET image denoising [133, 134]. To avoid the constraints 
of Noise2Noise, which requires more than one noise realiza-
tion, Noise2Void, an unsupervised approach using a blind-
spot network design [135], has also been used for PET image 
denoising [136].

Among the unsupervised learning approaches, the deep 
image prior (DIP), which uses a CNN structure as an intrin-
sic regularizer and does not require the preparation of a prior 
training dataset [137], has achieved better performance in 
PET image denoising [138–140]. DIP training is formulated 
as follows:

where ‖ ∙ ‖ is the L2 loss, f  represents the CNN model with 
trainable parameters � , the training label x0 is the noisy PET 
image, and z is the network input. After reaching an opti-
mal stopping criterion, the CNN outputs the final denoised 
PET image, x∗ . Conditional DIP (CDIP) [141, 142], which 
uses anatomical information instead of the original random 
noise as the network input, promotes denoising performance, 
and an attention mechanism to weight the multi-scale fea-
tures extracted from the anatomical image guides the spatial 

(16)�∗ = argmin
�

‖x0 − f (��z)‖, x∗ = f (�∗�z),

Fig. 3   Overview of the various deep learning architectures for PET 
image denoising. (a) U-Net model. (b) Multi-modal network using 
anatomical information. (c) GAN model. (d) Vision Transformer 

(ViT) model. (e) Swin Transformer image restoration network 
(SwinIR). © 2023 SNCSC. Reprinted with permission from Wang 
et al. [159]
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details and semantic features of the image more effectively 
(Fig. 5) [143]. A four-dimensional DIP can perform end-to-
end dynamic PET image denoising by introducing a feature 
extractor and several dozen reconstruction branches [144]. 
Recently, a pre-trained model using population information 
from a large number of existing datasets has been shown 

to improve DIP-based PET image denoising [145]. Fur-
thermore, the self-supervised pre-training model acquired 
transferable and generalizable visual representations from 
only low-quality PET images; it achieves robust denoising 
performance for various PET tracers and scanner data [146].

Fig. 4   Examples of the 
denoised whole body.18F-FDG 
PET images by supervised 
learning approaches. Sample 
images showing (a) CT, (b) 
full-count PET, (c) low-count 
PET, and denoised PET images 
corresponding to the (d) U-Net, 
(e) GAN, and (f) CycleGAN. 
(g) Line profiles in sagittal sec-
tion. © 2019 IOP Publishing. 
Reprinted with permission from 
Lei et al. [127]
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3.3 � Emerging approaches

Currently, deep learning-based PET image restoration tech-
nology has already been implemented in commercial PET 
scanners [13, 14, 147] with Food and Drug Administration-
cleared commercially available software [148–152], mak-
ing significant contributions in clinical practice. Moreover, 
deep learning continues to develop rapidly, with emerg-
ing approaches and novel applications being frequently 
proposed.

The transformer architecture revolutionizes sequence 
tasks with self-attention and efficiently captures distant 
dependencies [153]. In particular, the Vision Transformer 
(ViT) [154] and Swin Transformer [155] effectively handle 
both local and global features, more so than CNNs. These 
transformer models have been adapted for PET image 
denoising and in some cases have reported to outperform 
CNN-based denoising performance (Fig. 6) [156–161]. The 
emergence of diffusion models resulted in a breakthrough in 
the field of image generation, following variational autoen-
coders and GANs. The effectiveness of denoising diffusion 
probabilistic models [162] for PET image denoising has also 
been investigated [163, 164]. From the viewpoint of personal 
information protection, federated learning, which enables 
decentralized learning without the need to export clinical 
data, is beginning to be applied to PET image denoising 
[165, 166]. In addition, uncertainty estimation [167, 168] 
and noise-aware networks [169–171] can provide additional 
value to conventional denoising methods. The advancement 
of PET state-of-the-art scanners, represented currently by 
total-body PET scanners [172], will pave the way for further 
applications of deep learning.

4 � Deep learning for direct PET image 
reconstruction

Deep learning-based direct PET image reconstruction is a 
data-driven approach in which the reconstructed PET image, 
x, can be directly transformed from the measurement data, y, 
through a neural-network model, f, with trainable weights, � . 
This is expressed as a problem of minimizing the following 
objective function:

where E is a loss function, such as the MSE. The direct 
reconstruction approach is completely different from 
previous approaches in that it attempts to find an image 
reconstruction mechanism entirely from the training data-
set without involving physical models, such as forward or 
backprojection.

The earliest direct image reconstruction algorithm in the 
field of nuclear medicine was probably a single-photon emis-
sion CT (SPECT) image reconstruction algorithm using a 
perceptron with two hidden layers, as proposed by Floyd 
in 1991 [173], before the advent of deep learning. In this 
method, a four-layer perceptron was used, consisting of an 
input layer that considers the measurement sinogram as 
1D data, one trainable hidden layer, another hidden layer 
with fixed weights for the backprojection calculation, and 
an output layer, as shown in Fig. 7. This pioneering work 
demonstrated that it was possible to realize a data-driven 
FBP method in which the first hidden layer works as a train-
able kernel in the projection data space, and the second hid-
den layer works as a backprojection. The trained kernel in 
the projection data space delivers a kernel similar to that 

(17)�∗ = argmin
�

E(f (�|y);x),

Activity (a.u.)

Fig. 5   Examples of the denoised brain 18F-florbetapir PET images 
by unsupervised learning approaches. From left to right, the sam-
ple images showing the MR, standard-count PET, noisy PET, and 
denoised PET images corresponding to the Gaussian filter (GF), 

image-guided filter (IGF), DIP, MR-DIP (CDIP), and MR-guided 
deep decoder (GDD). © 2021 Elsevier. Reprinted with permission 
from Onishi et al. [143]
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corresponding to a ramp filter in the frequency domain, as 
would be expected.

After 27 years, the advent of automated transform by 
manifold approximation (AUTOMAP) proposed by Zhou 
et al. in 2018 [174] led to the development of more mod-
ern direct image reconstruction algorithms using both fully 
connected (FC) layer as well as CNNs. The AUTOMAP 
architecture introduces dense (FC) connections in the first 
and second layers of the neural-network structure, as shown 
in Fig. 8. An interesting aspect of the dense connections 
in the AUTOMAP architecture is that they can work as an 
inverse transformation from measurement data to recon-
structed MR and PET images in global operations using 
dense connections.

Inspired by the success of AUTOMAP, Häggström 
et  al. proposed the DeepPET method for direct PET 
image reconstruction using an FCN architecture [175], as 
shown in Fig. 9. The DeepPET architecture consists of 

an encoder–decoder network that mimics some modifi-
cations of the VGG16 network [176], which has several 
improvements to address the challenges of using FCNs 
for direct image reconstruction. First, the encoder part 
initially utilizes larger convolution filter kernel sizes to 
perform a wider operation in the sinogram space, simi-
lar to the global operation with dense connections in the 
AUTOMAP architecture. Second, a deeper layered net-
work structure allows the bottleneck features to obtain 
better latent representations. The size of the bottleneck 
feature is 18 × 17 × 1024, indicating that almost no spatial 
information of the input sinogram remains. The DeepPET 
has much fewer trainable parameters than the AUTOMAP, 
which uses dense connection layers (approximately 800 
million trainable parameters for AUTOMAP compared 
to approximately 60 million for DeepPET [18]) and can 
train with a smaller dataset. DPIR-Net, a network struc-
ture similar to DeepPET, improves PET image quality 

Fig. 6   Examples of denoised 18F-FDG PET images by emerging 
approaches. Each column (a) to (d) indicates different patients or 
organs. From left to right, the sample images show the standard-count 
PET, low-count PET, and denoised PET images, corresponding to the 

enhanced deep super-resolution network (EDSR), EDSR-ViT, GAN, 
U-Net, and Swin Transformer image restoration network (SwinIR). © 
2023 SNCSC. Reprinted with permission from Wang et al. [159]
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Fig. 7   Schematic illustration of the earliest direct image reconstruc-
tion algorithm for SPECT by Floyd in 1991 [173]. The network real-
izes a data-driven FBP method in which the first hidden layer works 
as a trainable kernel in the projection data space, and the second hid-

den layer works as a backprojection. Note that the first hidden layer 
performed 1D filtering in the actual implementation using the com-
mon trainable weights at each angle

Fig. 8   Schematic illustration of the AUTOMAP architecture by 
Zhou et al. in 2018 [174]. The network introduces dense connections 
in the first and second layers of the neural-network structure, which 

can work as an inverse transformation from measurement data to the 
reconstructed images in global operation

Fig. 9   Schematic illustration of the DeepPET architecture by 
Häggström et al. in 2019 [175]. The arrows collectively represent the 
two convolution layers. The encoder part initially utilizes larger con-
volution filter kernel sizes of 7 × 7 in the red arrow and 5 × 5 in the 

blue arrows to work wider operation in the sinogram space, similar to 
the global operation with dense connections in the AUTOMAP archi-
tecture
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by adding perceptual and adversarial losses to the loss 
function [177]. In addition, direct image reconstruction 
for long-axial field-of-view PET scanners has been devel-
oped [178]. DirectPET, which incorporates a Radon inver-
sion layer that connects a masked region of the sinogram 
to a local patch of the image in the neural network as a 
PET physical model, has also been proposed [179, 180]. 
Furthermore, direct image reconstruction using modern 
network structures, such as a transformer network, and 
physics-informed networks have been developed [181, 
182].

These direct PET image reconstruction algorithms 
are expected to represent the next generation of fast and 
accurate image reconstruction methods; however, they 
have some limitations. We consider the DeepPET recon-
struction results shown in Fig. 10 as an example. At a 
first glance, the direct reconstruction algorithms produce 
good PET images from sinograms. However, the detailed 
structures may differ from those obtained using the OSEM 

algorithm. This discrepancy may arise because obtain-
ing an accurate inverse transformation from sinograms 
to reconstructed images using a data-driven approach is 
challenging. Consequently, these algorithms may gener-
ate artifacts or false structures in the reconstructed PET 
images. Another critical challenge is that the algorithms 
are limited to 2D image reconstruction, owing to graphics 
processing unit memory capacity. Therefore, these algo-
rithms require a large number of training datasets to learn 
the backprojection task in a data-driven manner.

Another strategy for direct PET image reconstruction 
involves the use of TOF information. In general, acquired 
PET data (list-mode format data) are first histogrammed into 
the sinogram space. However, a different strategy directly 
creates histograms of the acquired PET data in the image 
space, known as the histo-image [183]. Whiteley et  al. 
proposed the FastPET method, which obtains accurate 
PET images with a faster calculation time from the histo-
image blurred by the TOF resolution in the LOR direction 

Fig. 10   Input sinograms and the reconstructed results of DeepPET method [175]. Columns correspond to the input sinogram, FBP, OSEM, and 
DeepPET results, respectively (left to right). © 2019 Elsevier. Reprinted with permission from Häggström et al. [175]
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for each event (Fig. 11) [184]. The FastPET method differs 
from other direct image reconstruction methods, such as 
AUTOMAP and DeepPET, because the FastPET framework 
uses input images in the image space instead of the sino-
gram space. This implies that FastPET can employ CNNs, 
such as the U-Net structure. The advantage of this strategy 
is that it can be easily extended to 3D PET data because 
the sizes of the input data and network structure are quite 
small compared to those in other direct image reconstruction 
algorithms. Furthermore, some improved methods use the 
direction information of the acquired PET data by divid-
ing the histo-image into several projection angles (Fig. 12) 
[185–187].

5 � Deep learning for iterative PET image 
reconstruction

Deep learning-based iterative PET image reconstruction is a 
hybrid approach that combines existing iterative PET image 
reconstruction algorithms based on physical and statistical 
models with deep learning algorithms. There are two main 
approaches: one involves incorporating a neural network as 
an equality constraint, and the other involves integrating a 
neural network into the objective function as a penalty. The 
former approach to synthetic PET image reconstruction is 
represented by the following equation:

Fig. 11   Schematic illustration of the FastPET framework for TOF-PET image reconstruction by Whiteley et al. in 2021 [184]

Fig. 12   Results of FastPET reconstruction. Columns correspond to 
the phantom image, list-mode DRAMA, FastPET without and with 
direction information (from left to right). Reconstructed images were 
tagged using the mean and standard deviation of the contrast recov-

ery coefficients (CRCs) of three tumor regions. The use of directional 
information (Ote and Hashimoto [186]) improves reconstruction per-
formance (FastPET [184]). The figure is reprinted with a modification 
from the work of Ote and Hashimoto [186]
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where L is the negative Poisson log-likelihood function and 
z is the input to the neural network, f, with trainable weights, 
� . A simpler solution involves utilizing the pre-trained model 
f for the PET image denoising task and updating the recon-
structed PET image.1 This optimization problem is solved 
such that the measurement data align with the projection of 
the denoised PET image output from the neural network. In 
other words, the denoised PET images from the neural net-
work were as consistent with the measurement data as pos-
sible, although they were the output of the neural-network 
denoising.

Gong et al. proposed an iterative PET image reconstruc-
tion algorithm using a synthesis-based prior [188]. The 
algorithm transforms the constrained optimization problem 
in Eq.  (17) into an unconstrained optimization problem 
using the augmented Lagrangian format and is solved using 
the alternating direction method of multipliers (ADMM) 
algorithm [189]. The reconstructed results of the method 
by Gong et al. achieved superior performance in terms of 
lesion contrast and white matter noise tradeoff, as shown 

x̂ = argmin
x

L(y|x),

(18)s.t.x = f (�|z),

in Figs. 13 and 14, respectively. This framework can be 
reasonably extended by modifying the denoiser network. 
For example, Xie et al. replaced the network with a GAN 
generator incorporating a self-attention mechanism [190] 
to enhance the image quality without introducing blur-
ring [191]. This method produced a better lesion contrast 

Fig. 13   Reconstructed results of the iterative PET image reconstruc-
tion algorithm using CNN representation [188]. Columns represent 
high count ground truth, EM reconstruction with the Gaussian filter-
ing, fair penalty-based penalized reconstruction, dictionary learning-

based reconstruction [198], CNN denoising, and the proposed itera-
tive PET image reconstruction using CNN. © 2019 IEEE. Reprinted 
with permission from Gong et al. [188]

Fig. 14   Tradeoffs of the iterative PET image reconstruction algorithm 
using CNN representation [188] between the lesion contrast recov-
ery (CR) and standard deviation (STD) of the white matter region. 
Legends represent the same methods as in Fig.  13. © 2019 IEEE. 
Reprinted with permission from Gong et al. [188]

1  The updated image for each iteration can be used for neural-net-
work input z.
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recovery and background noise tradeoff than the other 
methods. Alternatively, high-quality PET images can be 
obtained without any prior training dataset by introducing 
a DIP as a constraint, which uses the intrinsic prior of the 
CNN structure [192]. Ote et al. implemented 3D list-mode 

PET image reconstruction using DIP [193] by replacing the 
negative log-likelihood function in Eq. (17) with a list-mode 
log-likelihood function [194]. Additionally, some iterative 
reconstruction methods have also been proposed using 

Fig. 15   Overview of the iterative PET image reconstruction using the 
DIP framework [195]. This is a simple image reconstruction method 
incorporating a forward projection model as a loss function by back-

propagation. © 2022 IEEE. Reprinted with permission from Hashi-
moto et al. [195]

Fig. 16   Reconstructed results of the iterative PET image reconstruc-
tion using the DIP framework [195]. Columns represent MR image, 
ground truth, FBP, MLEM with Gaussian filtering, DIP reconstruc-
tion by Gong et al. [192], proposed methods with random noise and 

MRI input [195].The proposed method with MRI input is visually 
close to the ground truth. © 2022 IEEE. Reprinted with permission 
from Hashimoto et al. [195]



38	 F. Hashimoto et al.

only backpropagation without any backprojection process 
(Figs. 15 and 16) [195–197].

Next, we considered the latter approach for iterative 
PET image reconstruction using an analysis-based prior as 
follows:

where R is an energy function, modulated the influence by 
the regularization parameter, β. For example, we consider a 
simpler case, where the energy function is as follows:

(19)x̂ = argmin
x

L(y|x) + 𝛽R(x),

where j denotes the voxel index. Intuitively, Eq. (19) is less 
constraining than the synthetic PET image reconstruction 
because optimization is performed to ensure that the recon-
structed PET image does not deviate far from the neural-
network output in the image space [18], while not requiring 
equality with the output of the neural network.

(20)R(x) =
J∑
j=1

�
f (��z)j − xj

�2
,

Fig. 17   Overview of the FBSEM-Net [199]. The method can control the regularization parameter in the fusion block as the trainable weight. © 
2021 IEEE. Reprinted with permission from Mehranian and Reader [199]

Fig. 18   Reconstructed results of the FBSEM-Net [199]. The -p and -pm in the methods represent the use of PET and MRI data for input, respec-
tively. © 2021 IEEE. Reprinted with permission from Mehranian and Reader [199]



39Deep learning‑based PET image denoising and reconstruction: a review﻿	

Mehranian and Reader proposed PET image reconstruc-
tion via FBSEM-Net [199], which uses a forward–backward 
splitting algorithm [200]. The FBSEM-Net architecture is 
illustrated in Fig. 17. Using PET-MR data, FBSEM-Net can 
enhance PET image quality compared to other conventional 
reconstruction algorithms, as shown in Fig. 18. Kim et al. 
proposed a deep learning-based iterative PET image recon-
struction [201] that introduced local linear fitting inspired by 
guided filtering [202] to the energy function for bias reduc-
tion in blind denoising, which is as follows:

where x is the PET image, f is the denoiser network with 
weights, � , ⊙ is the Hadamard product, and q and b denote 
the local linear fitting coefficients. The method was divided 
into substeps for the denoiser network and local linear fitting 
using the ADMM algorithm. Gong et al. proposed MAPEM-
Net, which can be easily implemented by incorporating a 
potential function into neural-network optimization [203]. 
In addition, various other iterative PET image reconstruc-
tion algorithms have been proposed for PET and SPECT 
[204–216].

6 � Deep learning for dynamic PET image 
reconstruction

PET can be used to analyze the temporal pharmacokinet-
ics of PET tracers through continuous measurements after 
the administration of radiopharmaceuticals. Usually, kinetic 
parameters, such as Ki, are estimated by fitting compart-
ment models to the dynamic PET images of each voxel 
reconstructed over short-time frames. Alternatively, direct 
parametric reconstruction algorithms for dynamic PET data 
have been developed to enable accurate noise modeling 
[217–219].

With the advancement of deep learning, several dynamic 
PET image reconstruction methods using CNN have been 
proposed [220–223]. Li et al. expanded the DeepPET algo-
rithm to direct the parametric image reconstruction from 
small-frame sinograms without using an input function 
[224]. Gong et al. introduced direct linear parametric PET 
image reconstruction using a nonlocal DIP architecture 
[225] with a linear kinetic model layer [226].

Dual-tracer PET imaging can measure two PET tracers in 
a single scan, which may be useful for diagnosing and track-
ing diseases as another application of dynamic PET [227, 
228]. Deep learning has been reported to be useful for these 
approaches [229–234].

(21)R(x) =
1

2
‖x − q⊙ f (𝜃�x) − b‖2

2
,

7 � Conclusion and future perspectives

We conducted a comprehensive review of deep learning-
based PET image denoising and reconstruction. Remarkable 
strides in deep learning-based PET image reconstruction are 
noteworthy. Recent advancements in PET scanner innova-
tions are equally impressive and have aligned seamlessly 
with progress made in the field of deep learning technology. 
One of the recent breakthroughs in PET hardware is total-
body PET geometry [235–237] that obtains high-sensitiv-
ity PET data and can provide extremely less noisy training 
datasets for deep learning-based PET image reconstruction 
[238]. Another noteworthy innovation is the TOF technol-
ogy discussed in Sect. 4. Along with advancements in PET 
detectors [239–242], ultrafast TOF detectors of 30 ps have 
been developed, enabling reconstruction-free positron emis-
sion imaging [243]. This synergy between state-of-the-art 
TOF and deep learning technologies has pushed the limits 
of TOF performance [244–246]. Undoubtedly, the integra-
tion of deep learning will play a pivotal role in enhancing 
the performance of not only PET imaging but also signal 
processing [247–250].
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