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Abstract
Transactive memory system (TMS) is a team emergent state representing the knowledge of each member about “who knows
what” in a team performing a joint task.We present a study to show how the three TMS dimensions Credibility, Specialisation,
Coordination, can bemodelled as a linear combination of the nonverbal multimodal features displayed by the team performing
the joint task. Results indicate that, to some extent, the three dimensions of TMS can be expressed as a linear combination
of nonverbal multimodal features. Moreover, the higher the number of modalities (audio, movement, spatial), the better the
modelling. Results could be used in future work to design human-centered computing applications able to automatically
estimate TMS from teams’ behavioural patterns, to provide feedback and help teams’ interactions.

Keywords Transactive memory system · Small group interactions · Human-centered computing · Nonverbal behaviour

1 Introduction

Human-centered computing (HCC) studies the human in
relation with computing devices. It differentiates from
human–computer interaction (HCI) as it deals with how the
human (an individual, a team, or a society) relates to com-
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puters and other humans. Its focus is on the multi-faceted
nature of humans, including emotions, social skills, attitudes,
and so on. According to Clarkson et al. [21] and Canny [19],
HCC is about studying “computational artifacts in support of
human endeavours” and the “implications of computing in a
task-directed way”, by spanning several disciplines as Com-
puter Science and Social Sciences. One of the currently open
challenges in Computer Science, specifically those related to
Social Signal Processing and Affective Computing, is con-
ceiving and building computing systems to support humans
in team activities seamlessly. This process has to be informed
by Social Sciences, as they have a long tradition of studying
socio-affective phenomena occurring in teams.

When working together, the affective, behavioural and
cognitive interaction between people often contributes to
the emergence of dynamic processes called “team emer-
gent states” [46, 55]. One of them is the transactive memory
system (TMS), a cognitive team emergent state related to
the specific knowledge owned by each team member. The
term “transactive” highlights the relevance of exchanging
information about members’ knowledge and expertise. TMS
combines each member’s personal field of knowledge (e.g.,
Robert has a mathematical background, while Susan has
a history in arts) with the awareness of each other’s one
(e.g., Robert knows that Susan is specialised in arts, whereas
Susan knows that Robert is good at maths) [81]. In this work,
we share the conceptualisation of TMS given in [52]. That
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is, TMS differentiates from other forms of socially shared
cognition on different aspects. First, it depends not only on
understanding “who knows what” but also on the degree to
which a team’s knowledge is differentiated. In addition, it
includes the dynamic interplay between organised store of
knowledge (TMS structure) and a set of knowledge-relevant
transactive processes (encoding, storage, and retrieval pro-
cesses) that occur among team’s members.

It is well known that developing TMS within a team can
significantly improve performance, productivity and, there-
fore, efficiency [3, 46, 51, 61, 63], by enabling work sharing,
thus, reducing the individual cognitive load [35]. Recent
findings suggest that TMS is strongly linked to affective out-
comes, such as team trust, efficacy and satisfaction [84].

While there is no joint agreement on how TMS emerges
within a team, all the theories about it state the relevance of
interpersonal verbal and nonverbal communication.

Individuals communicating with each other are keener to
select the information they are willing to learn [33] (e.g., as
John is a mechanical specialist, he will be interested in car
engines only). Similarly, information retrieval is facilitated
if communication happens during learning [33]. This aligns
with Pavitt’s theory [68], which considers communication as
a context for learning. Moreover, communication enables a
better inter-members’ understanding [14] and prevents the
team from applying stereotypes about each other’s expertise
[36].

Although several previous studies show that nonverbal
communication can predict some emergent states (e.g., cohe-
sion) [47], to our knowledge no studies are exploring how
nonverbal behaviours and TMS are related. Consequently,
no work focuses on how computing systems can deal with
nonverbal behaviours characterising TMS within teams. The
development of such systems would envisage HCC appli-
cations to facilitate team problem-solving, and the definition
of computational models for effectively supporting team col-
laboration.

The work presented in this paper is a first step towards
this goal. Its main contribution is to investigate which non-
verbal features, already exploited in studying other emergent
states (e.g., leadership and cohesion, see Sect. 3), can pre-
dict TMS, both unimodally and multimodally (see Sect. 6).
An overview of our approach is shown in Fig. 1. From our
findings, we provide insights into the development of HCC
systems leveraging TMS.

2 Theoretical background

According toMoreland, a team includes at least 3 individuals
sharing knowledge, activities and so on [62]. Unlike dyads,
team interactions are more complex since they include one-
to-one and one-to-many interactions. As a consequence, this

Fig. 1 An overview of our approach. From the multimodal dataset
WoNoWa (see Sect. 4), we extract nonverbal multimodal features:
audio, movement and spatial arrangement of teams. The choice of these
features is mainly inspired by those previously found to be relevant for
estimating the team’s emergent states related to TMS. We compute
team features and team scores from the extracted team member’s fea-
tures and self-assessed TMS (see Sect. 5). Finally, we analyse the role
of team features in modelling and predicting TMS by running multiple
linear regression analyses (see Sect. 6)

complexity also applies to team “emergent states”. These
are defined as “cognitive, affective, and motivational states
of teams that are dynamic and vary as function of team
context inputs, processes, and outcomes” [55, 71]. Three
categories of emergent states have been identified [30, 46].
Cognitive emergent states are related to the management
of collective knowledge affecting team performance (e.g.,
Shared Mental Models [22] and Transactive Memory Sys-
tem).Behavioural emergent states are related to the activities
and interactions between team members (e.g., processes
related to planning, monitoring, coordination and decision-
making). Finally, Emotional or Affective emergent states
(e.g., cohesion and trust) includepsychological states relating
to feelings, attitudes, and emotions of the teammembers [71].
While behavioural emergent states can be directly measured
from the team’s behaviours, for example, by automatically
extracting behaviours through sensors, and some efforts are
being made towards measuring emotional emergent states
from team’s dynamics [73, 80], cognitive emergent states,
such as TMS, have only beenmeasured through indirectmea-
sures such as questionnaires and recall [52, 53, 64].

2.1 The transactive memory system

The transactive memory system (TMS) is an extension of
an individual’s memory to the team level. In other words,
transactive memory refers to the awareness of one’s knowl-
edge and skills. TMS develops when each team member is
also aware of the knowledge and skills of the others. So, they
build amental representation of howknowledge is distributed
between each other (i.e., “who knows what”), allowing them
to extend their individual knowledge [81].

TMS is a multidimensional construct consisting of: (i)
Credibility, that is, the trust that the knowledge possessed by
any of the other members is correct and accurate; (ii) Knowl-
edge Specialisation, that is, the differentiation of knowledge
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between the team members; (iii) Coordination, that is, the
ability of the members to work together smoothly [51, 63].
Credibility and Coordination are key factors to affective out-
comes of TMS [59, 83].

The development of TMS follows the 3 phases character-
ising any memory system: Encoding, Storage, and Retrieval.
During the Encoding phase, the team members infer “who
knows what” by having multiple information exchanges. For
example, a student group has to complete a project assign-
ment. They have known each other since the 1st year and
know that Robert is good at planning, Susan is very creative
and Alice is good at programming. In the Storage phase, the
team members distribute the incoming information accord-
ing to each other’s expertise [54]. For example, when the
professor communicates the deadlines for the deliverables
of the project, Robert will be particularly attentive to this
information since he is the one in charge of the planning.
Acceptance and shared awareness of expertise are needed in
this phase. Finally, in the Retrieval phase, the team members
know from whom they can obtain the knowledge they need
[54]. For example, Alice is programming the software and
asks Susan for hints for designing the user interface. Here,
knowledge distribution in the team is necessary.

2.2 Interpersonal communication and TMS

Interpersonal communication in a team can be both volun-
tary and involuntary [27], and does not always imply verbal
exchanges [60]. Previous work highlighted the role of non-
verbal behaviours in team communication, including cues
such as spatial arrangement, management of inter-member
distances, speaking turn patterns, interruptions, etc. [23,
32, 37]. Interpersonal communication is crucial for TMS
[69], being among the factors that precede [72] and sup-
port its development through all the 3 phases. In particular,
some studies have shown that the use of nonverbal and
para-linguistic cues in face-to-face communication allows
members to signal and combine their knowledge more effec-
tively compared to during non-face-to-face communication
(e.g., computer-mediated) [34]. Communication during team
training also facilitates the collective recall of information
[64].

Other authors focused on the role of communication in
the 3 dimensions of TMS (i.e., Credibility, Specialisation,
Coordination). Kleanthous et al. [44] investigated how each
dimension varies over time in a team navigating a 3D virtual
environment collaboratively. They showed the important role
of communication on Coordination and of gesticulation on
Credibility.

Yoo and Kanawattanachai [82] and Rahimpour [70] noted
that the amount of communication plays a crucial role in
establishing TMS and, after that, its role gradually becomes
less relevant. For example, to build a TMS, Yoo & Kanawat-

tanachai asked teams to communicate remotely to manage a
company’s finances and thus to share different areas of exper-
tise (marketing, finance, production, operations and human
resources). They found a positive influence of communica-
tion on the development of the TMS which stopped once it
was built. Argote et al. [2] highlighted that the influence of
communication on TMS changes according to the presence
of a team leader. They showed that teams without a leader
have more robust TMS over time which leads to a better per-
formance of the team. This result can be explained as due to
the increased communication taking place in teams without
a leader.

3 Related work

Asmentioned above, previouswork on nonverbal behaviours
and emergent states that could be exploited inHCC is neglect-
ing TMS, preferring behavioural and emotional emergent
states, e.g., emergent leadership, cohesion and trust in a
team. This could be explained by the fact that TMS, being
a cognitive emergent state, deals with abstract knowledge
(meta-memory), so it is more difficult to investigate by look-
ing at more concrete cues (nonverbal behaviours). In this
paper, we ground on the features that have already been
shown to perform well in predicting other emergent states
(e.g., leadership and cohesion). We hypothesise that some
of them could also be related to TMS, since psychological
models in the literature show the relationship between TMS
and leadership [4, 48], as well as a predictive effect of task
cohesion on TMS in the context of football teams [49].

Most of the works on automatic assessment of group
dynamics focused on multimodal analysis of team meetings
corpora, such as the ICSI [38], AMI [41], ATR [17], NTT
[67] and ELEA corpus [75]. While some works focused on
the prediction of individual-related dimensions such as per-
sonality [57] or individual performance [50], in the following
we focus on work on the extraction of nonverbal features and
their relevance in inferring behavioural and emotional emer-
gent states. Sanchez et al. analysed the correlation between
the emergence of individual leadership in team interactions
(measured through questionnaires about teammembers’ per-
ception of each other) and acoustic [73], body/head [74]
and attention [76] features. Results suggest that emergent
leaders are those who talk the most, have more speaking
turns and interrupt the most. They also show that body activ-
ity and motion are important in the perception of emergent
leadership and that the combination of acoustic and visual
information performs better than single modalities. Finally,
they show that visual attention features are not better estima-
tors of leadership than speaking activity.

More recent approaches for emergent leadership detection
investigate other features and apply more complex machine
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learning models. Beyan et al. propose several approaches.
First, they model emergent leadership by using features
related to visual attention only (from head and body activ-
ity) [6]. They extract the same features used in [76] and
a set of different ones, by leveraging a different and more
accurate method based on head pose estimation. Then, the
authors describe an approach for extracting features based
on 2D pose estimation [8]. These features perform better
in emerging leadership detection compared to the existing
visual features. In a more recent work [9], they propose a
sequential approach based on unsupervised deep learning
generative models. Other works investigate the expression
of different leadership styles [7, 24–26, 39].

Another emergent state is team cohesion,whose investiga-
tion in HCC is initiated by Gatica-Perez & Hung [37]. They
automatically extract multimodal features (audio, visual and
audio-visual) to infer low/high cohesion in task-based team
meetings through machine learning techniques (e.g., SVM).
Results indicate a particular relevance of turn-taking patterns.
Nanninga et al. extend this work, by adding para-linguistic
mimicry features and separately observing the social and task
dimensions of cohesion [66]. A more recent study considers
features of 3 categories: nonverbal (e.g., gaze, laughter, and
so on), dialogue acts and interruptions [42]. These features
are studied separately and then combined together. Results
show a positive correlation with the cohesion of, among oth-
ers, mutual gaze and laughter, as well as the number of
speaking turns, overlaps and interruptions. More interest-
ingly, certain behaviours that are not associatedwith cohesion
when analysed separately, do have an impact when combined
with other cues of different modalities (e.g., dialog acts with
head nods). Walocha et al. explore the dynamics of task and
social dimensions of cohesion, grounding on motion-capture
features only [80]. They predict the decrease of cohesion over
time, by using self-reported annotations of team cohesion as
labels. Their results highlight a (positive or negative) impact
of the maximum distance between team members, the over-
all posture expansion and the amount of facing between each
person. In addition, some features are found to be correlated
to both task and social cohesion.

To summarise, the works described above show the effec-
tiveness of using nonverbal behaviour in addressing emergent
states. In particular, multimodal approaches seem to gener-
ally perform better than unimodal ones.

4 TheWoNoWa dataset

WoNoWa (Who kNows What) is a multimodal (audio and
video) dataset of interactions within 15 teams, performing
several activities [11]. The dataset includes automatically
extracted features andmanual annotations of teammembers’

nonverbal behaviours, as well as self-assessmentmeasures of
TMS.

WoNoWa was designed to address the 3 phases of TMS,
i.e., Encoding, Storage and Retrieval (see Sect. 2). In the
Encoding phase, the team was given a list with 3 fields
of expertise and each member could choose the preferred
one. These fieldswere: Logistical,Mathematical andManual
expertise. In the Storage phase, each team member watched
a brief tutorial about the chosen field of expertise.

We focus, here, on the interactions related to the Retrieval
phase. During this phase, the team members were together
in the Interaction Area shown in Fig. 2. The Retrieval phase
consisted of three steps, after which each participant filled
out a TMS questionnaire (see Sect. 4.2). At the beginning of
this phase, each teammemberwas asked to accomplish a task
related to the chosen field of expertise: setting up the table
by following the rules described in the tutorial (Logistical
expertise); computing conversions between the Imperial and
the International System (Mathematical expertise); making
origami (Manual expertise). Then, as a team, theywere asked
to modify the setup of the table and to do new origami, this
time following a list of dimensions (given in the Imperial
system). The participantswere only providedwithmeasuring
tools in the International System (meters), thus mathematical
expertise was needed to accomplish the task.

Finally, the last step of the Retrieval phase, the step on
which we focus in this work, they were free to self-assign
the same 3 tasks in any way they wanted (but they could not
choose the one they just performed). So, themembers needed
each other’s expertise, resulting in collaboration and inter-
action between them. We focus on this step of the Retrieval
phase, hereinafter called “interaction”, for twomain reasons:
(1) it is the last one, so the team had the time to develop TMS
through the previous ones (as confirmed by the high score of
Specialisation and Coordination, as well as higher scores of
Credibility compared to the previous steps of the Retrieval
phase [11]); (2) the team members are engaged in a collabo-
rative task requiring a high level of interaction.

4.1 Technical setup

WoNoWa was collected in an experimental room depicted
in Fig. 2. A table was placed in the center of the Interaction
Area, while two more tables were placed in the corners of
the room. Team members performed the tasks related to the
different fields of expertise as indicated in Fig. 2. The team
interaction was recorded via 3 video cameras at 1920×1080,
progressive scan, 50 fps. Two of them were installed at a
height of 3ms in the opposite corners of the room, so each
member could be viewed by at least one camera at all times.
However, each video camera could capture only a part of
the room, so camera view fusion had to be performed, as
described in Sect. 5.2.1. An additional frontal video camera
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Fig. 2 On the left: plan of the Interaction Area, measuring 3.90 by
3.87ms. On the top right: view from the video camera placed in the
North-East corner of the area (V1). On the bottom right: view from the
video camera placed in the South-West corner of the area (V2). In each
view, the ArUco Markers [29] (M1, M2, M3) can be viewed by the
corresponding camera. Each table corresponds to one of the 3 fields of
expertise: Logistical (E1), Mathematical (E2) and Manual (E3)

was positioned at a lower height to provide an additional
global view of the area, to facilitate the manual annotations
(see Sect. 5.3). The video cameras were calibrated to correct
the white balance and compensate for the lens distortion.

For tracking the team members’ positions in the room,
we used ArUco markers, fiducial markers based on a seven-
by-seven binary grid [29]. Three reference markers were
positioned on the floor in a way that they were visible by
both cameras and remained constant throughout the exper-
iment (see M1, M2 and M3 in Fig. 2). One unique ArUco
marker was placed on each of the baseball hats worn by each
teammember (see Sect. 5.2.1). Each participant wore a wire-
less microphone headset recording at 44.1kHz, in separate
channels. They also wore t-shirts of different colours to facil-
itate the extraction of upper body silouhette used to compute
movement features (see Sect. 5.2.2).

4.2 Self-assessment scores of TMS

The team members were asked to fill out a questionnaire
about their perception of TMS in the team, after each step
of the Retrieval phase. The questionnaire contained Lewis’
items [51]measuring the 3dimensions ofTMS (i.e.,Credibil-
ity, Specialisation, Coordination). For French participants,
the French translation of Lewis’ questionnaire, validated by
Michinov [58], was used. All the scores were given on a 5-
point Likert scale, where 1 stands for “I totally disagree” and
5 stands for “I totally agree”.

For each TMS dimension, Cronbach α was computed to
measure the reliability of the items. Two items from theCoor-
dination sub-scale were discarded since they were negatively
correlated with the others belonging to the same sub-scale,

indicating that the team members did not rightly interpret
them. The α computed on the remaining items indicated
acceptable to very good reliability (0.83 for Credibility, 0.78
for Specialisation and 0.67 for Coordination). The scores of
each item of the same sub-scale were then averaged to obtain
one score per member.

To obtain one score per team and per TMS dimension
(i.e., one score for Credibility, one for Specialisation, and
one for Coordination), we checked whether the team mem-
bers agreed about the score of TMS dimension they assigned
to their team. ICCs (two-way, average) with consistency def-
inition [45] were computed for each team, revealing a fair to
excellent agreement (fair for 2 teams, good for 2 teams and
excellent for 10 teams, all p < 0.001) [20] except for one
team (ICC = −0.66, p = 0.97), that was excluded from the
analyses. Finally, for each TMS dimension and each team,
we computed the mean of the team member scores.

5 Nonverbal features extraction

As mentioned in Sect. 4, we focus on nonverbal features
extracted from data collected in the last step of the Retrieval
phase.

In the remainder of this Section, we describe the nonver-
bal features organised according to the modality they belong
to: Audio, Movement and Spatial. Table 1 summarises their
descriptive statistics.

5.1 Audio features

Audio features were extracted from the audio recordings and
are related to vocal turn-taking,which plays an important role
in developing social dimensions like competition and collab-
oration [32, 40]. Vocal turn-taking includes silence, silence
overlaps, and interruptions. In particular, interruptions are a
relevant cue in face-to-face conversations: they can be con-
sidered as turn-taking violations [5], reflecting interpersonal
attitudes (e.g., dominance or cooperation) as well as engage-
ment in the interaction [65].

5.1.1 Pre-processing

To compute the audio features relative to team members’
turn-taking activity, we applied a series of transformations
to the raw audio files. The audio recordings of each team
member were manually synchronised with the videos by
referring to a clap that the experimenter performed at the
beginning and at the end of each recording. The raw files
were normalised/compressed and a noise reduction filter was
applied in Audacity.1 Additionally, about 10% of the files

1 https://www.audacityteam.org.
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Table 1 Descriptive statistics of
the features, organised in 3
categories: Audio (A),
Movement (M), Spatial (S)

Name Feature Mean SD Min Max

Audio

Total speaking turns [turn/min] TST 6.65 0.84 5.04 7.76

Total speaking length [s/min] TSL 18.99 3.36 0.12 25.31

Average speaking turn [s/turn] AST 2.96 0.57 1.90 3.92

Total attempted interruptions TAI 3.54 0.99 2.07 5.62

Total successful interruptions TSI 1.69 0.56 0.88 3.21

Successful interruptions percentage SIP 49.99 6.75 3.60 61.67

Movement

Head velocity mean [px/f] HV 0.17 0.06 0.11 0.32

Head velocity standard deviation [px/f] HVSD 0.13 0.05 0.09 0.27

Head directness mean HDir 0.18 0.06 0.09 0.35

Head directness standard deviation HDirSD 0.13 0.07 0.07 0.35

Quantity of motion mean [px2/f] QoM 0.03 0.01 0.02 0.05

Quantity of motion standard deviation [px2/ f ] QoMSD 0.02 0.00 0.01 0.02

Head velocity entropy mean HVE 0.01 0.00 0.00 0.01

Head velocity entropy standard deviation HVESD 0.00 0.01 0.00 0.01

Quantity of motion entropy mean QoME 0.00 0.00 0.00 0.01

Quantity of motion entropy standard deviation QoMESD 0.00 0.00 0.00 0.00

Head distance mean [px/f] HDist 1.24 0.29 0.60 1.71

Head distance standard deviation [px/f] HDistSD 1.83 0.22 1.32 2.06

Spatial

Semi-circular f-formations frequency [evt/min] SCffF 2.55 1.00 1.00 5.00

Semi-circular f-formations mean time [s/evt] SCffT 23.58 15.81 1.38 67.33

Semi-circular f-formations percentage SCffP 12.48 9.08 0.52 34.22

Triangular f-formations frequency [evt/min] TrffF 2.76 1.19 1.00 5.00

Triangular f-formations mean time [s/evt] TrffT 24.50 23.20 6.00 78.00

Triangular f-formations percentage TrffP 14.54 14.76 1.12 50.79

Other f-formations frequency [evt/min] OthffF 0.21 0.43 0.00 1.00

Other f-formations mean time [s/evt] OthffT 0.78 1.76 0.00 6.00

Other f-formations percentage OthffP 0.13 0.29 0.00 0.97

Personal area occupation frequency [evt/min] PAF 2.71 1.31 1.00 5.00

Personal area occupation mean time [s/evt] PAT 37.74 27.95 2.92 107.31

Personal area occupation percentage PAP 24.25 16.78 0.57 58.34

Others’ area occupation frequency [evt/min] OAF 2.50 1.16 0.33 4.67

Others’ area occupation mean time [s/evt] OAT 17.50 12.08 0.34 41.93

Others’ area occupation Percentage OAP 19.64 18.21 0.66 71.89

Common area occupation frequency [evt/min] CAF 3.73 1.20 1.67 5.67

Common area occupation mean time [s/evt] CAT 39.66 18.49 8.33 72.83

Common area occupation percentage CAP 33.53 12.43 11.51 58.44

The non-SI (International System of Units) units are: turn number of speaking turns, px pixels, f frame, evt
occurrences. The features are computed over the whole video

were processed to reduce specific noises like, e.g., breathing,
electromagnetic interference, and so on. To detect speak-
ing activity, the Silence Finder function of Audacity was
applied to automatically detect and mark segments exceed-
ing a defined sound threshold. The segments were manually
checked and tuned to ignore irrelevant sounds, e.g., impacts

with the microphone, objects falling on the ground and non-
verbal vocal behaviour (sighing, laughing, self-talking, etc).
The resulting segments were binarised, with 1 representing
speech and 0 non-speech.
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5.1.2 Output

From the binary segmentation, we computed the following
features per teammember over the whole video, taking inspi-
ration from previous work on team’s analysis [37, 74]:

• Total Speaking Turns (number of turns per minute, per
member m) - TSTm : the number of speaking turns, nor-
malised by the interaction length in minutes;

• Total Speaking Length (number of seconds per minute,
per member m) - TSLm : the total speaking time, in sec-
onds, divided by the interaction length in minutes;

• Average Speaking Turn (permemberm) -ASTm : the aver-
age speaking turn duration, in seconds, with ASTm =
TSLm/TSTm ;

• Total Attempted Interruptions (per minute, per mem-
ber m) - TAIm : the number of attempted interruptions,
normalised by the interaction length. An attempted inter-
ruption occurred if a teammember started speakingwhile
another onewas already speaking, resulting in an overlap;

• Total Successful Interruptions (per minute, per mem-
ber m) - TSIm : the number of successful interruptions,
normalised by the interaction length. A successful inter-
ruption occurred if (1) a team member started speaking
while another one was already speaking, resulting in
overlap, and, consequently, (2) that teammember stopped
speaking before ending their turn;

• Successful Interruptions Percentage (per member m) -
SIPm : the percentage of successful over attempted inter-
ruptions, with SIPm = TSIm/TAIm ∗ 100.

The above features, computed on each team member, were
then averaged to obtain the following team audio features:
TST, TSL, AST, TAI, TSI, SIP.

5.2 Movement features

The following Movement features are computed: Head
Velocity (HV), Head Distance (HDist), Head Directness
(HDir), Entropy of HV (HVE), Quantity of Motion (QoM),
and Entropy of QoM (QoME). The selection of these features
is inspired from previous work on social interaction [16, 28,
79]

5.2.1 Head position features

Team members’ head position and rotation were tracked
through a marker-based approach. Each team member wore
a cap with an ArUco marker [29] attached on the top. Three
additional reference markers were positioned on the floor in
a way that they were visible by both cameras and remained
constant throughout the experiment (see M1, M2 and M3 in
Fig. 2). These markers were used as references to compute

the position of themembers’ headmarkers in the room. Since
each camera performed a separate head tracking, they had to
be merged before using them. The processing was carried
out via a Python script using the OpenCV library [15]. We
applied linear interpolation and average smoothing in case of
missing frames. For each video frame and team member, the
following data were extracted: the 3D head position (meters)
HP = (HPx , HPy, HPz) and the 3D head rotation (radians)
HR = (HRx , HRy, HRz).
Head velocity (HV) We computed Head Velocity HV as the
magnitude of the 1st derivative of the head position:

H V =
√(

dHPx

dt

)2

+
(

dHPy

dt

)2

+
(

dHPz

dt

)2

(1)

To reduce noise, we applied a Savitzky–Golay low-pass filter
(order 1, frame size 75).

Head distance (HDist) For each team member, we averaged
the Euclidean distance of their HP with each of the other 2
team members’ HP, obtaining HDisti , HDist j and HDistk

for each team member, respectively. We then averaged HPi ,
HP j and HPk for each team to obtain the team feature Hdist
for each frame.

Head directness (HDir) The Directness of movement is a
feature that estimates howmuch direct vs indirect a trajectory
is [1, 16]. We computed Head Directness on HP trajectory
over time 15s long moving windows, with 3 s overlap:

HDir = ||HPW−1 − HP0||∑W−1
f =0 ||HP f +1 − HP f ||

(2)

where W is the window length (in frames) and || || is the
Euclidean distance between the head position HP in two
generic frames of the window. So, HDir tends to 1 if the
length of the head trajectory in the time window tends to be
equal to the distance between the position of the head in the
first and the last frame of the window (i.e., the head trajectory
is direct); it tends to 0 if the length of the head trajectory is
greater than the distance between the position of the head
in the first and the last frame of the window (i.e., the head
trajectory is indirect).

5.2.2 Silhouette blob features

To exploit colour thresholding to detect upper body (head,
torso, and arm movement) movement features, the team
members wore coloured t-shirts and baseball hats. For each
video frame, the upper body Silhouette Blob (SB) was
extracted as the binary threshold of the HSV pixel data, and
a median filter was applied to remove noise [18].

Quantity of motion (QoM)Quantity ofMotion (QoM) is a 2D
measure of the amount of performed movement [18]. First,
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Fig. 3 The movement feature extraction framework. From top to bot-
tom, with time flowing from left to right: video frames are read, Head
Positions (HP) and Silhouette Blobs (SB) are extracted, movement fea-
tures (HV, QoM, HVE, QoME, HDir and HDist) are computed

we computed the area of the binary image resulting from the
XOR between 2 consecutive SBs (XOR image area). Then,
QoM is equal to the ratio between the XOR image area and
the area of the binary image resulting from the OR between
the same 2 consecutive SBs. So, QoM tends to 0 if team
members are still, it is greater than 0 if they are moving (the
upper limit being 1).

5.2.3 Head velocity and quantity of motion entropy

As detailed in [79], Sample Entropy (SampEn) is a non-linear
entropy extraction technique that was developed to quan-
tify behaviour regularity by taking into account the “recent”
movement history. Higher values of SampEn are associated
with the higher disorder, while smaller values indicate regu-
larity.

We used SampEn to estimate the degree of regularity of a
teammember’sHV andQoM, that we consider as an approxi-
mation of team coordination (one of the components of TMS,
see Sect. 2).We adopted the SampEnMatlab implementation
described in [56] with parameters: Embedding Dimension
m = 3, Tolerance r = 0.2.

SampEn was computed on moving time windows of 15s
with 3 s overlap.

Figure3 illustrates the movement feature extraction by
providing a high-level representation of the process, and by
highlighting the main data and features computed at each
step. From top to bottom, with time flowing from left to
right: video frames are read, and Head Positions (HP) and
Silhouette Blobs (SB) are extracted.

5.2.4 Output

The resulting movement features per team member m com-
puted over the whole video are:

• Head Velocity Mean (HVm) and Standard deviation
(HVSDm);

• Head Directness Mean (HDirm) and Standard Deviation
(HDirSDm);

• Quantity of Motion Mean (QoMm) and Standard devia-
tion (QoMSDm);

• Head Velocity Entropy Mean (HVEm) and Standard
Deviation (HVESDm);

• Quantity of Motion Entropy Mean (QoMEm) and Stan-
dard Deviation (QoMSDm).

Similarly to the audio ones, the above features computed on
each team member were averaged to obtain the following
team movement features: HV, HVSD, HDir, HDirSD, QoM,
QoMSD, HVE, HVESD, QoME, QoMSD.

Additionally, Head Distance Mean (HDist) and Standard
Deviation (HDistSD) were also computed over the whole
interaction.

5.3 Spatial features

People’s arrangement in the physical space (also called, F-
formation) can reflect their roles in the team and the ongoing
interaction [23, 43]. Studies also show that interpersonal dis-
tance changes according to the degree of closeness among
people [31]. For this reason, WoNoWa includes manually
annotated features (performed by 2 raters, more details in
[11]) related to the team arrangement in the experimental
room and to how the members occupy the different areas of
the room while performing the experiment tasks.

5.3.1 F-formations

Themost frequent F-formations emerging from a visual anal-
ysis were the Semi-circular and the Triangular ones. The
least frequent arrangements, that is, the L-shape or the Side-
by-side one, were merged into a category called Other. An
example of each F-formation is shown in Fig. 4. Two identi-
cal F-formations occurring in less than 5s were considered
uninterrupted.

5.3.2 Task-related area occupation

We considered 3 main categories of Task-related Area Occu-
pation, for each team member: when the member worked on
their task (Personal Area) when the member was in the area
related to a different task (Others Area), and when the mem-
ber did common tasks not related to particular expertise, such
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Fig. 4 An example of the F-formations annotated in the WoNoWa
dataset: a Triangular, b Semi-circular, c L-shape, d Side-by-side. Since
their frequency was low, c, d were merged into a category called Other

as reading instructions, checking the table, thinking, and so
on (Common Area).

5.3.3 Output

For each F-formation and Task-related Area Occupation
category, we computed its frequency (i.e., the number of
occurrences per minute), the mean time duration of each
occurrence (computed as the sum of all the time spent in that
category divided by the total number of occurrences of that
category) and the percentage of the time in which the team
was engaged in that category during the task (computed as
the sum of all the time spent in that category divided by the
overall length of the interaction), over the whole video.

The resulting final features were:

• Semi-circular F-formations Frequency (SCffF), Mean
Time (SCffT) and Percentage (SCffP);

• Triangular F-formations Frequency (TrffF), Mean Time
(TrffT) and Percentage (TrffP);

• Other F-formations Frequency (OthffF), Mean Time
(OthffT) and Percentage (OthffP);

• Personal Area Occupation Frequency (PAF), Mean Time
(PAT) and Percentage (PAP);

• Others Area Occupation Frequency (OAF), Mean Time
(OAT) and Percentage (OAP);

• Common Area Occupation Frequency (CAF), Mean
Time (CAT) and Percentage (CAP).

6 Analyses and results

This work aims to model the three TMS dimensions as a lin-
ear combination of nonverbal multimodal features. We also
seek to obtain explainablemodelswithmeaningful variables’
interpretation (that is, that could also be meaningful for a
human observer). We adopt a multiple regression analysis
since this method enables identifying significant relation-
ships between a dependent variable (TMS dimensions) and
independent variables (nonverbal features). In addition, this
method enables computing the strength of the impact of mul-
tiple independent variables on the dependent variable.

First, we check whether the data meets the assumptions
for multiple linear regression. We remove the features caus-
ing multi-collinearity issues, that is, those that are highly
correlated with each other (r > 0.8). This features are: TAI;
OAP; OthffP; OAT; TrffP; SCffP; HVSD; HDirSD. Then, for
each dependent variable (i.e., TMS dimension), we remove
the features violating the linearity assumption, as follows:

• Dimension 1—Credibility: TSL, OthffF, SCffF, QoM,
QoME;

• Dimension 2—Specialisation: none;
• Dimension 3—Coordination:TSL,OthffF,OthffT, SCffF.

Finally, we perform regression diagnostics to check for
the normality and the homoscedasticity of the residuals, by
running a Shapiro–Wilk and a Breusch–Pagan test, respec-
tively. For all the results presented in this Section, the 2
latter assumptions are met (all p > 0.05 for Shapiro–Wilk
and Breusch–Pagan tests; all correlations between observed
residuals and expected residuals under normality ≥ 0.9).
Since the data fit the assumptions, we use multiple linear
regression.

As only a single TMS self-assessment score is given by
each member at the end of each task, an issue arises as we
do not have continuous assessment scores. Moreover, the
number of features is significantly higher than the number of
teams, and, consequently, the given assessment scores. Thus,
we follow a stepwise approach to select the best predictors
for each target variable.

We perform the regression models with 1, 2, or 3 modal-
ities (i.e., Audio, Movement, or Spatial only, 2 of them or
all the 3 modalities together) and, at most, 4 features (due to
the small number of teams compared to the number of fea-
tures). Then, from all the significant regression models (i.e.,
those having a p-value < 0.05 for every feature), we iden-
tify the best ones (i.e., those having the highest R2 score) for
each number of features.We then checked the predicting per-
formance of these models by running a 10-run 5-fold cross
validation. These values were chosen according to previous
work [10].

Table 2 reports the selected regression models for each
dimension: Credibility, lines 1–8; Specialisation, lines 9–17
and Coordination 18–22.

7 Discussion

For each modality and TMS dimension, we discuss here the
regression models with the highest R2. Since the feature val-
ues vary in different ranges, the β values cannot be directly
compared among them. So, the reported β values only pro-
vide the direction of the correlation with the corresponding
TMS score.
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Table 2 The significant regression models for each TMS dimension, according to the number of features and modality: Audio (A), Spatial (S),
Movement (M)

Model Modalities # Features Significant features R2 p-value RMSE

Dimension 1: Credibility

1 A 1 TST ∗ ∗ 0.44 0.005 0.29

2 A+S 2 TST ∗ ∗∗; OAF ∗ ∗ 0.70 <0.001 0.22

3 A+S 3 TST ∗ ∗∗; OAF ∗ ∗; PAF∗ 0.80 <0.001 0.17

4 S+M 2 HV∗; CAF ∗ ∗ 0.50 0.009 0.27

5 S+M 3 HV∗; QoMESD∗; SCffT ∗ ∗ 0.49 0.020 0.34

6 S+M 4 HV∗; HDist∗; QoMESD∗; SCffT ∗ ∗∗ 0.66 0.007 0.29

7 A+S+M 3 TST ∗ ∗∗; OAF ∗ ∗∗; HDistSD∗ 0.81 <0.001 0.19

8 A+S+M 4 TST ∗ ∗∗; OAF ∗ ∗∗; PAF ∗ ∗∗; HVE ∗ ∗ 0.93 <0.001 0.11

Dimension 2: Specialisation

9 S 2 PAP∗; TrffT† 0.47 0.029 0.67

10 S 3 CAF∗; OA∗; TrffT∗ 0.57 0.031 0.46

11 A+S 2 AST ∗ ∗; OAT ∗ ∗ 0.61 0.006 0.3

12 A+S 3 AST ∗ ∗; CAP∗; OAT ∗ ∗ 0.78 0.001 0.25

13 A+S 4 AST ∗ ∗∗; CAP ∗ ∗; OAT ∗ ∗∗; PAF∗ 0.88 <0.001 0.18

14 S+M 3 HDist∗; CAF∗; OthffT∗ 0.62 0.012 0.4

15 S+M 4 HVESD ∗ ∗; HDir∗; OAF∗; PAF∗ 0.67 0.028 0.36

16 A+S+M 3 AST ∗ ∗∗; OAT ∗ ∗; HDir∗ 0.76 0.002 0.3

17 A+S+M 4 AST ∗ ∗∗; OAT ∗ ∗∗; SCffT ∗ ∗; HDist ∗ ∗ 0.89 <0.001 0.22

Dimension 3: Coordination

18 A 1 AST∗ 0.40 0.015 0.5

19 A+M 2 TST ∗ ∗; HDist∗ 0.59 0.008 0.48

20 A+M 3 AST ∗ ∗; TSI∗; HDist∗ 0.69 0.007 0.47

21 S+M 2 HDist∗; CAF∗ 0.53 0.016 0.56

22 A+S+M 3 TST∗; CAF∗; HDist ∗ ∗ 0.73 0.004 0.42

The significant features, R-squared and p-value of each model are reported. † stands for p = 0.05; *stands for p < 0.05; **stands for p < 0.01;
***stands for p < 0.001. The last column reports the RMSE for the 10-run 5-fold cross-validation

Let us consider a feature F1 that varies in [0, 1000] and has
a β = 0.001: so, F1 has a contribution of 0.001 on the depen-
dent variable (one of TMS dimensions), that is, on average,
it contributes for 500 ∗ 0.001 = 0.5. Let us now consider
another variable F2 that varies in [0, 1] and has a β = 1: so,
F2 has a contribution of 1 on the dependent variable, that is,
on average, it contributes for 0.5 ∗ 1 = 0.5. So, the two vari-
ables, despite having highly different β values (0.001 vs 1),
cause the same amount of change on the dependent variable
(0.5).

To quantify the impact of each feature on the TMS score
dimensions, and thus enable comparison, we also report a
coefficient I , representing the contribution of the features
on the dependent variable, computed by multiplying β by
the mean of the feature. β and I coefficients are reported in
Table 3.

7.1 Dimension 1: credibility

Credibility was defined as the trust that the knowledge pos-
sessed by any of the other members is correct and accurate
(see Sect. 2.1). Audio is the only modality that allows for
obtaining significant unimodal models of this dimension.
The feature that best models Credibility (model 1) is TST
(total speaking turns). The feature is negatively correlated
with Credibility (β = −0.31, I = −2.06), which could
indicate that high Credibility implies that participants need
less to ask and discuss the task among them, so they trust
each other.

When looking at 2 modalities together, the best models
include Spatial separately combined with Audio and Move-
ment.

Concerning Audio and Spatial, with 2 features (model 2),
TST is significant (β = −0.33, I = −2.19), as well as OAF
(other’s area occupation frequency), that is positively cor-
related with Credibility (β = 0.16, I = 0.40). This result
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Table 3 β and I values for the regression models with the highest R2

discussed in Sect. 7

Model Features Beta I

Dimension 1: Credibility

1 TST − 0.31 − 2.06

2 TST − 0.33 − 2.19

OAF 0.16 0.40

3 TST − 0.36 − 2.34

PAF − 0.09 − 0.24

6 HV − 4.37 − 0.74

HDist − 0.56 − 0.69

QoMESD 455.08 1.36

SCffT − 0.02 − 0.47

8 TST − 0.33 − 2.19

OAF 0.17 0.43

PAF − 0.13 − 0.35

HVE 157.28 0.08

Dimension 2: Specialisation

9 PAP 0.0004 0.003

TrffT 0.008 0.96

13 AST 0.32 0.94

CAP 0.015 0.5

OthffT 0.015 0.07

PAF − 0.13 − 0.35

15 HVESD 445.29 1.33

HDir − 6.76 − 1.21

OAF 0.26 0.65

PAF − 0.21 − 0.5

17 AST 0.57 1.68

OAT − 0.03 − 0.08

SCffT − 0.015 − 0.35

HDist − 0.67 − 0.83

Dimension 3: Coordination

18 AST 0.72 2.13

19 TST − 0.48 − 3.19

HDist − 1.19 − 1.48

20 AST 0.71 2.1

TSI − 0.52 − 0.88

HDist − 1.13 − 1.4

21 HDist − 1.34 − 1.66

CAF 0.32 1.19

22 TST − 0.37 − 2.46

CAF 0.22 0.82

HDist − 1.37 − 1.70

could be explained by the presence of helping behaviour and
the team members trusting each other’s expertise: one mem-
ber who needs help enters the area of the person with the
needed expertise.

Considering 3 features (model 3), TST and OAF are still
significant (β = −0.36, I = −2.34 and β = 0.17, I =
0.43, respectively) and Credibility is also negatively corre-
lated with PAF (personal area occupancy frequency), β =
−0.09, I = −0.24). In line with what we observed with the
2-feature model, it could mean that people working alone do
not seek the help of the other team members.

Moving to Spatial and Movement, the best model is the
one with 4 features (model 6): HV (β = −4.37, I = −0.74),
HDist (β = −0.56, I = −0.69), QoMESD (β = 455.08,
I = 1.36) and SCffT (β = −0.02, I = −0.47). All these
features are negatively correlated with Credibility. That is,
team members tend to interact in a calm and steady manner.

The best model for Credibility is obtained when com-
bining the 3 modalities together and considering 4 features
(model 8). In particular, the significant features are: TST
(β = −0.33, I = −2.19), OAF (β = 0.17, I = 0.43), PAF
(β = −0.13, I = −0.35) and HVE (head velocity entropy
mean, β = 157.28, I = 0.08). This result is similar to one
of the models involving the 2 modalities described above.

To summarise, results show that we can estimate Credibil-
ity by looking at how much the team members communicate
with each other in a confident way, which results in a low
number of speaking turns and movements.

7.2 Dimension 2: specialisation

Specialisation was defined as the differentiation of knowl-
edge between the team members (see Sect. 2.1). Spatial is
the only modality that allows for obtaining significant uni-
modal models of this dimension. The features that best
model Specialisation (model 9) are PAP (personal area occu-
pation percentage) and TrffT (triangular f-formation mean
time), which are both positively correlated with Specialisa-
tion (β = 0.0004, I = 0.003 and β = 0.008, I = 0.96,
respectively). So, the impact of PAP is very low, while a
higher impact of TrffT indicates that in a specialised team,
the members tend to arrange in the space by following trian-
gular configurations.

The best model using Audio and Spatial features (model
13) includes AST (average speaking turn, β = 0.32, I =
0.94), CAP (common area occupation percentage, β =
0.015, I = 0.5), OthffT (other f-formation mean time, β =
0.015, I = 0.07) and PAF (personal area occupation fre-
quency, β = −0.13, I = −0.35). This result could mean
that when Specialisation is high, the team members spend
more time together in the common area of the room, engag-
ing in longer speaking turns (e.g., for explaining tasks).

The best model using Movement and Spatial features
(model 15) includes HVESD (head velocity entropy standard
deviation, β = 445.29, I = 1.33), HDir (head directness
mean, β = −6.76, I = −1.21), OAF (β = 0.26, I = 0.65)
and PAF (β = −0.2I = −0.5). The positive correlation
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between Specialisation and HVESD, and the negative one
between the same dimension and HDir, might indicate that
team members’ movements constantly vary following non-
linear trajectories. These results could mean that members
with high expertise go and help other members in their area
of expertise.

Considering 3 modalities, the best model (model 17)
includes: AST (β = 0.57, I = 1.68), OAT (other’s area
occupation mean time, β = −0.03, I = −0.08), SCffT
(semi-circular f-formation mean time, β = −0.015, I =
−0.35) and HDist (head distance mean, β = −0.67, I =
−0.83). This result is complementary with the findings about
Credibility, indicating that people go to others’ areas to share
their expertise.

Results show that movement features of the team members
across the different areas can be used to estimate Special-
isation. In particular, for high values of Specialisation, the
team members’ movements continuously vary following non-
linear trajectories.

7.3 Dimension 3: coordination

Coordination was defined as the ability of the members to
work together smoothly (see Sect. 2.1). Audio is the only
modality that allows for obtaining significant unimodal mod-
els of Coordination. The Audio feature that best models
Coordination (model 18) is AST (β = 0.72, I = 2.13). So,
in a highly coordinated team, speaking turns last longer.

Moving to Audio and Movement, we obtain 2 signifi-
cant models having 2 or 3 features, respectively. The former
(model 19) includes TST (β = −0.48, I = −3.19) and
HDist (β = −1.19, I = −1.48); the latter (model 20)
includes AST (β = 0.71, I = 2.1), TSI (total successful
interruptions, β = −0.52, I = −0, 88) and, again, HDist
(β = −1.13, I = −1.4). Results show that high Coordina-
tion corresponds to a small number of speaking turns between
the team members and a decreased distance between them.

Another significant model with 2 modalities (model 21),
combines Movement with Spatial features. In particular, it
includesHDist (β = −1.34, I = −1.66) andCAF (common
area occupation frequency, β = 0.32, I = 1.19), similarly
to what we obtained by combining Audio and Movement.

The bestmodel forCoordination is obtained by combining
3 modalities (model 22). In line with the results obtained by
consideringmodelswith 2modalities, the significant features
are TST (β = −0.37, I = −2.46), CAF (β = 0.22, I =
0.82) and HDist (β = −1.37, I = −1.70).

On the whole, results show that, in a highly coordinated
team, members engage in fewer and longer speaking turns,
with few interruptions. Moreover, the members tend to stay
close to each other and perform activities related to the coor-
dination of the tasks (by working in the common area).

8 Conclusion and perspectives

This paper provides the first insights on how to automatically
model the three dimensions (Credibility, Specialisation and
Coordination) of TMSas a linear regression of nonverbal fea-
tures of small teams. More specifically, we focus on features
of 3 modalities: audio, movement and spatial arrangement.

Moreover, linear regression is chosen to obtain explain-
able models. Therefore, we focus on achieving high-perform
ance scores while maintaining the readability of the models
at the same time. We envision that such knowledge could be
applied to the development of Human-Centered applications
to monitor teams’ TMS and provide real-time feedback to
improve their performance and affective outcomes on collab-
orative tasks. For example, an intelligent agent couldmonitor
the interactions of a team performing a brainstorming task
and intervene if a decrease in Specialisation, Credibility or
Coordination between the members is detected. Previous
studies showed that the intervention from an agent playing
the role of team leader is perceived to potentially improve
the TMS of a team [12, 13]. In this case, if for example a
lack of Coordination is detected, the agent could mediate the
interaction and suggest ways to find a common agreement
between the members. The features we found to be the most
relevant in estimating TMS dimensions can be easily com-
puted in real-time and be used by the agent to decide when
and how to intervene.

Similarly to previous work on automatic analysis of team
emergent states, we found that features about turn-taking are
also good estimators of TMS. For example, a small num-
ber of speaking turns per minute may reflect trust between
team members (i.e., they do not need to reply to each other)
and so can be used to estimate Credibility. A small number
of interruptions, which in turn are related to longer aver-
age speaking length, may reflect fluid interaction and can
therefore be used to estimate Coordination. Features related
to the spatial arrangements are also good estimators of the
TMS dimensions, as they might reflect the tendency of team
members to seek (Credibility) and provide (Specialisation)
help according to their expertise, as well as the fluidity of the
interaction (Coordination). In addition, results show that, in
general, by combiningmultiplemodalities (i.e., audio,move-
ment and spatial), we obtain better performances compared
to the unimodal and bimodal models, keeping the same num-
ber of features.

The difficulty in automatically modelling Coordination
could be related to the low reliability of the self-reported
scores, indicating that this task is difficult also for humans.
This result could also be linked to the difficulty for the team
members to self-assess Coordination, which could be eas-
ier estimated by external observers. In the future, we will
consider collecting additional annotations of TMS given by
external observers.
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Our work faces the following limitations. First, the
WoNoWa dataset contains a relatively small number of
observations, compared to the set of features available. This
often occurs when dealing with human behaviour analysis.
We show, however, that the 3 dimensions of TMS can be
effectively detected as a linear combination of multimodal
features. Using simple models such as multiple linear regres-
sions also allowed for interpreting the role of each feature.
Second, the generalisability of our findings may be limited to
tasks similar to the ones realised in theWoNoWa dataset (i.e.,
knowledge-based tasks, or “process” tasks according to the
classification given in [52]). TMS dimensions could be bet-
ter modelled using different nonverbal cues in different tasks,
such as decision-making or problem-solving. Additionally,
the self-reported scores provided by participants show rela-
tively low variability, which is not desirable when running
regressionmodels. Finally, we analysed nonverbal behaviour
by averaging feature values over large time windows. As a
future perspective, our work could be improved bymodelling
temporal dynamics, for example by computing histograms of
co-occurrences [77, 78]. The previous steps of the Retrieval
phase, which were not considered in this work, could also
be included in the analyses to investigate the development of
TMS over time.
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