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Abstract
This paper aims to present previous works in augmented sensory guidance for motor learning and psychophysiological factors
and contextualize how these approaches may facilitate greater optimization of motor rehabilitation after neurotraumas with
virtual reality. Through library resources at Stevens Institute of Technology, we searched for related works using multiple
electronic databases and search engines with a medical focus (detailed in the paper). Searches were for articles published
between 1980 and 2023 examining upper extremity rehabilitation, virtual reality, cognition, and modes and features of
sensory feedback (specific search terms detailed in the paper). Strategic activation of sensory modalities for augmented
guidance using virtual realitymay improvemotor training to develop further skill retention in persons suffering from impulsive
neurological damage. Featureswith uniquemotor learning characteristics to considerwith augmented feedback signals include
representation, timing, complexity, and intermittency. Furthermore, monitoring psychophysiological factors (e.g., sense of
agency, cognitive loading, attention) that represent mental and psychological processes may assist in critically evaluating
novel designs in computerized rehabilitation. Virtual reality approaches should better incorporate augmented sensory feedback
and leverage psychophysiological factors to advance motor rehabilitation after neurotraumas.
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1 Introduction

1.1 Problem and significance

Neurotraumas (e.g., stroke, spinal cord injury, and trau-
matic brain injury) affect millions of people annually and
are among the leading causes of death and disability [1–3].
Affected individuals are frequently limited in mobility and
must regain critical skills for independence and performing
activities of daily living [4]. It is estimated that 50 per-
cent of spinal cord injury cases involve upper extremity
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dysfunction [3], and about 65 percent of stroke survivors
cannot use their affected hand for up to six months after
the injury [5]. Thus, it is crucial to identify and deploy new
forms of physical therapy after neurotrauma that will reha-
bilitate functional abilities effectively and quickly. Several
classes of pathologies can benefit from novel therapies to
rehabilitatemotor function, including systemicdiseases (e.g.,
Parkinson’sDisease [6]) and developmental disabilities (e.g.,
AutismSpectrumDisorder [7]).However, rehabilitation after
neurotrauma is a special case to consider [8] as functional or
cognitive deficits generally improve with sufficient time and
proper management, yet negative sequelae from mild neuro-
traumas can persist as lifelong impairments [9]. This paper
aims to contextualize how novel therapies with computerized
interfaces, such as virtual reality, can specifically be opti-
mized with cognitively-centered approach elements (e.g.,
augmented sensory feedback for motor learning, adapting
training based on monitored psychophysiological measures)
for persons rehabilitating upper-extremity motor function
after neurotraumas. However, several of the proposed con-
siderations can be reasonably extended to other pathologies
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benefitting from physical therapies to improve motor func-
tion.

1.2 Virtual reality motor rehabilitation – why it
works, how to optimize

Computerized interfaces are increasingly prevalent for reha-
bilitation, given their features of programmability and flex-
ibility to customize approaches for each user to achieve
greater efficiency and engagement. Virtual reality is highly
viable in motor rehabilitation since it can facilitate task-
oriented movements while augmenting sensory activation.
Furthermore, virtual reality paradigms can be programmed to
accommodate various levels ofmovement ability and include
gamification elements for greater engagement [10]. Previous
studies have demonstrated benefits with virtual reality reha-
bilitation alone andwhen combinedwith traditional therapies
[4, 11]. The apparent advantages of virtual reality approaches
include greater motivation, engagement, and convenient rep-
etition for the high-fidelity practice of functional movements
[11]. However, empirical research has yet to demonstrate
precisely how virtual reality mechanistically generates posi-
tive outcomes.While improvedmotor function is the primary
metric of interest, psychophysiological factors such as moti-
vation and engagement are crucial in facilitating effective
motor rehabilitation. Thus, it is critical to consider how cog-
nitive elements may be explicitly incorporated to optimize
virtual reality motor rehabilitation. Although virtual real-
ity therapies have already demonstrated promising results,
more empirical research must be conducted to understand
and leverage their underlying mechanisms.

It is unclear how programmable virtual reality elements
(e.g., task type and complexity, environment, delivery of sen-
sory guidance) can generate better motor control. Recent
studies examiningvirtual reality formotor rehabilitation have
explored factors of convenience [12], adaptability [13, 14],
quality of motion control [15], and level of immersion[16,
17]. However, it is not evident how we can further optimize
the design and deployment of virtual reality protocols for
greater functional benefit beyond the motivation to undergo
more training repetitions. Ultimately, it would be invaluable
to understand how specific modifications to virtual reality
design and training elements produce cognitive connections
that directly support improved motor outcomes. Such find-
ings would elucidate the benefits of virtual reality beyond
motivation. Furthermore, these findings would incentivize
the development of intelligent virtual reality approaches that
may accelerate positive motor outcomes.

Despite the plethora of options to customize comput-
erized interfaces, virtual reality rehabilitation approaches
mainly rely on colorful, gamified displays to incentivize
more practice repetitions. Advanced principles for motor

learning and motor control are still not standardly consid-
ered in designing and deploying virtual reality protocols
[18]. However, virtual reality environments allow for cre-
ating various complex functional tasks, providing sensory
guidance cues, and real-time monitoring of user variables
to adapt training. Furthermore, virtual reality platforms can
provide highly stimulating visual, auditory, and haptic inter-
faces to guide users to perform complex motor functions
more effectively. Thus, virtual reality environments can read-
ily facilitate the greater cognitive engagement necessary to
accelerate improvements in motor function further.

Recent literature reviews have specifically suggested how
various VR-supported exercise therapies can effectively
improve motor rehabilitation outcomes for upper extrem-
ity function [19–21] after stroke. Recent studies have also
suggested how VR therapies produce measurable changes
in neural activity, as measured by fMRI [22], and can be
coupled with emerging approaches, e.g., action observation
therapy [23], whereby patients observe purposeful action to
be subsequently imitated while engaging multiple sensory
modalities.

1.3 Objective of review paper

The primary objective of this paper is to review the litera-
ture relevant to identifying and exploiting cognitive-based
approaches to motor rehabilitation with computerized inter-
faces for persons with neurotraumas. Furthermore, this
review paper focuses on rehabilitating upper-extremity func-
tions, given their broad use in daily activities, less stereo-
typical nature than common lower-extremity functions (e.g.,
gait), and common focus in rehabilitation after severe neuro-
traumas. Through relevant literature, this paper will suggest
ways to maximize the potential of upper-extremity rehabili-
tation after neurotraumas through cognitive-levelmodulation
via computerized feedback.

1.4 Literature review searchmethods

Through library resources available at Stevens Institute of
Technology, we searched for articles and book chapters
describing relevant studies associated with virtual reality
rehabilitation in the following databases and related search
engines: PubMed (MEDLINE),WebofScience, Scopus, Sci-
enceDirect, SpringerLink, Wiley Online Library (Cochrane
Library), and Google Scholar. Our search was restricted
to articles between 1980 and 2023. Our primary search
terms, pursued independently and in combinations included:
“virtual reality,” “motor rehabilitation,” “stroke,” “spinal
cord injury,” “traumatic brain injury,” “neurotraumas,” “aug-
mented sensory feedback,” “multimodal feedback,” “inter-
mittent feedback,” “terminal feedback,” “sense of agency,”
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“cognition,” “cognitive load,” “motivation,” “attention,” “re-
action time,” “memory,” “upper extremity function.” Addi-
tionally, we reference our own recently published or sub-
mitted works. Given this is an “opinion/perspective” review
paper attempting to contextualize new, in some ways non-
traditional, approaches to virtual reality rehabilitation, no
statistical meta-analyses were applied to the review results.
Rather we summarize works emanating from the above liter-
ature searches and make recommendations of how elements
of these studies may be innovatively applied to motor reha-
bilitation paradigms using computerized interfaces such as
virtual reality.

1.5 Organization of review paper

This paper will first review training approaches for upper-
extremity motor rehabilitation in Sect. 2, especially those
employing virtual reality, as established by previous stud-
ies. Next, and more critically, in Sects. 3 through 5, we will
review and relate literature from motor control learning and
psychology to suggest cognitive bases to optimize virtual
reality motor rehabilitation. The primary areas of discus-
sion include: 1) how activating sensory modalities through
computerized interfaces for feedback can be leveraged to
accelerate motor rehabilitation outcomes, 2) how features in
augmented sensory guidance can optimize motor outcomes,
and 3) how certain psychophysiological factors should be
further considered in the development of new virtual reality
rehabilitation protocols.

2 Upper-extremity motor rehabilitation

2.1 Traditional rehabilitation of upper-extremity
function after neurotraumas and the role
of motor learning

Conventional rehabilitation strategies use exercises to
improve the motor skills needed to perform daily activ-
ities. A physical or occupational therapist will supervise
and guide rehabilitative practices for people with motor
impairments [4, 24]. These professionals implement repet-
itive task training to reformulate neuromotor connections
and to increase strength, range of motion, and coordination
[3]. Cervical-level spinal cord injury and stroke can result
in upper-extremity paresis that compromises the ability to
reach and grasp [7]. Conventional therapies for rehabilitat-
ingupper-extremity function after spinal cord injury typically
include joint exercises that facilitate greater strength, dex-
terity, and range of motion [24, 25]. Stroke rehabilitation
typically centers on functional task practice [26], adjusting
difficulty levels for each person. This training entails rigorous
practices that improvemotor skills transferrable to functional

tasks. Persons can also receive task-specific training [27,
28]. For eligible persons with hemiparesis, therapists may
incorporate constraint-induced movement therapy to compel
more engagement of the affected side [29]. Unfortunately,
less than one-third of stroke or spinal cord injury survivors
receive outpatient rehabilitation [30]. Participation in regular
rehabilitation is challenged by the effort and time involved
in physical therapy. Conventional rehabilitation can frustrate
patients due to its tedious and repetitive nature [4]. Ancillary
factors that reduce outpatient treatment are lack of access
to rehabilitation centers, family/caregiver support, and the
financial resources to pursue regular physical therapy. Thus,
rehabilitation methods must be designed to be highly effi-
cient, whereby participants can achieve functional gainswith
fewer repetitions or exposures to therapy.

Since the primary goal of upper extremity rehabilitation
following a spinal cord injury or stroke is to regain motor
control, most rehabilitation paradigms implicitly incorpo-
ratemotor learning.Motor learning involves the development
of intrinsic mechanisms, such as neuromuscular control, to
repeat a movement independently [31]. This motor training
objective naturally relates to reformulating neural connec-
tions following neurotraumas for motor recovery [32, 33].
Practical training for motor tasks is often executed in two
phases. The first phase is guided training, where feedback
is provided in real-time or immediately after task comple-
tion. The second phase is retention, where guidance feedback
is removed, and participants must perform the task inde-
pendently and ecologically [34]. High performance during
training ensures the participant’s capability to do a given
motor task well; however, only with high performance dur-
ing retention is there demonstrable development of intrinsic
mechanisms. Transfer tests can further indicate long-term
learning whereby a task is presented during a retention test
different from training but still leveraging the motor skills
practiced during training [34]. Traditional physical therapy
approaches aim for the successful transfer of skills through
the development of motor skills during training to facilitate
improved performance of activities of daily living.However,
guidance during conventional rehabilitative training does
not typically consider the presentation of augmented feed-
back intended to maximize retention outcomes.

There are inherent theoretical trade-offs between train-
ing and retention repetitions of movement. For example, the
guidance hypothesis suggests that higher reliance on feed-
back during training can negatively affect motor learning
retention [35, 36]. This phenomenon has been evaluated by
altering the frequency of feedback trials as motor learning
improves. Physical therapy methods could better cognitively
engage participants during rehabilitation if programmable
and customizable tools are enacted that leveragemotor learn-
ing processes and make motor rehabilitation more efficient.
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Many traditional rehabilitation exercises do not precisely
simulate daily activities but focus on developing capabilities
(e.g., strength, dexterity) that transfer to functional tasks. On
the other hand, virtual reality paradigms can provide envi-
ronments and tasks that have high fidelity, on physical and
cognitive levels, to the user in simulating activities of daily
living [11]. Consequently, patients may achieve more direct
gains in relevant functions more quickly. Furthermore, vir-
tual reality rehabilitation tasks can be more motivating to
perform, easier to adjust on the fly, and convenient to repeat
[37]. Through programmability, virtual reality tasks can be
readily gamified or uniquely immersive to incentivize partic-
ipation, and they can be customized on more granular levels
in terms of adapting difficulty or modifying the task at hand
[38, 39]. Such approaches can reduce the onus on clinicians
being another human-in-the-loop to customize the training
regime and focus more on supporting, guiding, and directing
the patients at a high level. Furthermore, virtual reality can be
used effectively in isolationor in combinationwith traditional
therapy to maximize outcomes [11, 40, 41]. Thus, although
conventional rehabilitation alone is effective, it is limited in
its scope compared to virtual reality to customize training
for greatermotivation, efficiency, and convenience [42]. Ulti-
mately, participation in motor rehabilitation therapies relies
on users feeling cognitively engaged and experiencing more
reliable gains in motor outcomes. Computerized interfaces,
such as virtual reality, can further customize treatments to
accommodate current levels of function and conduct training
regimes that accelerate functional gains.

2.2 Virtual reality for motor rehabilitation

Advanced rehabilitative methods increasingly utilize com-
puterized interfaces such as robotics and virtual reality to
provide enhanced sensory feedback and gamification [43,
44]. Virtual reality rehabilitation is an attractive alternative
to conventional therapy due to customizability and contex-
tual incentives (e.g., in-game rewards) that foster greater
motivation and engagement [45]. Programmability features
allow finer adjustments of difficulty levels for each user and
better simulation of activities of daily living for functional
fidelity [11]. Virtual reality rehabilitation is also increasingly
prevalent due to its commercially available and affordable
technologies for home practice that can supplement the work
done with a physical therapist [12]. Various virtual reality
approaches have been utilized for persons with either spinal
cord injury [4, 33, 41, 46] or stroke [47–57]. These stud-
ies demonstrate the effectiveness of virtual reality paradigms
in improving motor function through methods that motivate
greater participation in therapy. The primary objective of vir-
tual reality therapies is to show improvement in functional
capabilities. Brosnan et al. (2009) demonstrated how virtual
reality therapy addressed motor deficits after stroke patients

by encouraging the use of the hemiplegic side of the body
while also increasing satisfaction, motivation, and interest in
physical therapy [52].

Although virtual reality therapy has positively affected
motor rehabilitation, it is unclear whether it is more effective
than conventional therapy when controlling for dosage. A
fair comparison can only be made when the therapy dose is
similar in duration and intensity. Supplementing traditional
rehabilitation methods with virtual reality therapy conclu-
sively improved functional outcomes [4, 53]; however, the
mechanism of improvement is likely attributable to increased
dosage. Indeed, patients report greater enjoyment of ther-
apy with virtual reality as it encourages greater participation
in rehabilitative practices [54]. However, we assert there is
still a missed opportunity in that virtual reality therapies
could be better designed to incorporate sensory feedback
and psychophysiological factors to outperform conventional
approaches further. Therefore, it is necessary to consider fur-
ther and investigate the incorporation of augmented guidance
to facilitate motor learning and psychophysiological factors
to verify neural engagement in virtual reality rehabilitation
(Fig. 1).

3 Activation of sensorymodalities for motor
rehabilitation

3.1 Visual feedback in virtual reality

Visual feedback is the most valuable and exploitable sensory
modality in virtual reality. Visual feedback provides cues
about task performance, such as body position or muscle
activity, either in real-time or immediately following task
completion. Visual feedback guides spatial positioning dur-
ing movement tasks more effectively than audio or haptic
feedback [55, 56]. Supplementary visual cues in virtual real-
ity can improve the performance of isometric and dynamic
exercises [57], and explicit visual cues about one’s spatial
position can immediately reduce errors in a movement tra-
jectory [58], including with virtual mirrors [59]. However,
when virtual reality paradigms enhance visual presentations
for immersion and gamification, the user’s capacity to receive
additional visual guidance to improve performance should
be carefully considered. Task-irrelevant immersive elements,
such as extra objects within view or visual rewards for amore
gamified context, can detract from the task-relevant intention
(e.g., memory) of a visual stimulus used for guidance [60].
How visual feedback is best presented can also depend on
participant experience and task complexity [61].

For persons recovering from neurotraumas, learning con-
trol schemes for brain-computer interfaces can be highly
predicated on visual feedback, contingent on high attention
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Fig. 1 Intelligent incorporation of augmented sensory feedback and
psychophysiological factors to a motor rehabilitation regimen poten-
tially addresses shortcomings of conventional therapies relating to
motor learning efficiency and neural engagement. A flow chart with
boxes and arrows. Box #1 is labeled “Reality Motor Rehabilitation”
and has an arrow pointing down to Box #2 that is labeled “Designing,
Incorporating, andEvaluating theCognitiveBasis ofVRprotocol”.Box

#2 points down to box #3 which is labeled “Improved Motor Function
for Activities of Daily Living”. Coming off of the left and right sides
of box #2 are dashed arrows labeled “Augmented Sensory Feedback”
and “psychophysiological factors” respectively that point down to two
boxes that outline methods to use those tools in virtual reality rehabili-
tation. These boxes have dashed arrows that point down to box #3

[62]. Although this example is for an assistive device sys-
tem, the ability to improve control, even if independent and
voluntary, over a computerized interface such as virtual real-
ity is highly prevalent for demonstrating functional gains for
rehabilitation paradigms. Furthermore, there is growing evi-
dence to suggest that if key neurocircuits are therapeutically
reactivated with appropriate sensory feedback, neurological
functions (e.g., limbmovement, locomotion, etc.) can be bet-
ter reanimated after neurotrauma [63, 64].

3.2 Multimodal sensory feedback for guidingmotor
tasks

Multimodal feedback entails the provision of augmented
guidance cues through multiple sensory modalities (e.g.,
visual, auditory, and haptic) concurrently to enhance motor
task performance and rehabilitative benefits [57] (Fig. 2).
During physical rehabilitation, multimodal feedback, when
adding audio or haptic cues to visual feedback, enhances
complexmotor learning compared to unimodal sensory feed-
back [65]. Furthermore, visual-audio and visual-haptic forms
of multimodal feedback are especially beneficial for increas-
ing perceptional accuracy and spatiotemporal learning [57],
leading considerations to optimize motor practices within
virtual reality environments. We consider visual-audio and

visual-haptic pairings in greater detail in the following sub-
sections.

In general, multimodal sensory feedback has only been
employed anecdotally for neuromotor rehabilitation [57].
While sensory-driven platforms have been developed to
recover function, like post-stroke goal-directed reaching
[66], there is a clear opportunity for deeper investigation
when employing highly customizable and programmable
platforms like virtual reality. The notion of multimodal
approaches to neuromotor intervention is identifying multi-
ple pathways in which to elicit more neural activation during
training. Multimodal neural activation with augmented sen-
sory feedback [67] through virtual reality [68] is a potentially
promising pathway that has not been well tapped for reha-
bilitation after neurotraumas.

3.2.1 Adding haptic cues to visual feedback

Haptic feedback broadly encompasses any sensation related
to touch. Examples include changes in applied forces, pres-
sure, vibration, or temperature to relay signal information
(e.g., amplitude and frequency [69].) related to task per-
formance or the surrounding environment. Haptic feedback
can be repulsive or attractive in cueing error magnitudes
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Fig. 2 Flow diagram depicting rehabilitation approaches with comput-
erized interfaces (e.g., virtual reality) and utilizing augmented sensory
feedback to guide improvedmotor performance.Aflowchartwith boxes
and arrows.A person participating in virtual reality rehabilitation under-
goesComputerizedPractice ofMotorControlTasks (primarymeasures)

that are Motion-based (kinematics) and Force-based (loads, EMG) and
use sensory feedback to provide guidance for improved motor func-
tion. Examples of motor control tasks with computerized interfaces are
depicted. Sensory feedback includes either visual feedback or multi-
modal feedback

[70]. Haptic feedback is also effective in encoding supple-
mentary information (e.g., force interactions) that facilitates
user integration with movement-restoration devices, such as
motor-actuated prostheses [71, 72]. In these cases, visual
feedback is fundamental to informing the user about func-
tional performance, and haptic feedback concurrently pro-
vides accompanying task information (e.g., errors, forces).
Receiving augmented cues about task-related performance
(e.g., encoding errors in performance) in real-time entails
explicit feedback fromwhich users constantlymodulate their
actions according to this feedback to guide performance [73].

The effectiveness of adding explicit haptic (e.g., vibra-
tion, forces, imposed motions felt proprioceptively, etc.)
feedback to visual cues for virtual reality motor rehabili-
tation tasks will depend on factors ancillary to the training.
These factors include task type, task complexity, user func-
tional abilities, and user experiences with exercise activities.
The challenge with adding explicit haptic feedback stems
from possible cognitive overloading, especially if tasks are
sufficiently simple to be mastered with visual feedback
alone. For example,Hasson andManczurowsky (2015) deter-
mined that vibration did not improve skill acquisition with
a simple upper-extremity task if presented independently
or with visual feedback [74]. Their results concluded that
vibrotactile feedback was detrimental when participants had
difficulty integrating the haptic cues with the viewed vir-
tual avatar. Thus, tomaximizepotential rehabilitative benefits

with explicit haptic feedback, the specific characteristics of
the task and user must be carefully considered.

Alternatively, implicit haptic feedback, which is not
directly guiding task performance, is intended to impact
user engagement and actions in motor rehabilitation. Within
virtual reality environments, implicit haptic feedback is typi-
cally employed for greater immersion or better simulation of
physical interactions. Occasionally, haptic feedback is pro-
vided without real-world fidelity but simply for greater user
engagement through sensory substitution. In this approach,
one sensory modality (e.g., pressure) is translated into stim-
uli for another sensory modality (e.g., vibration magnitude).
While not as ecologically valid, such approaches can foster
greater immersion toward improved training outcomes [58].

3.2.2 Adding audio cues to visual feedback

Auditory feedback involves converting data produced by user
activity [75] into additional sound cues (sonification) readily
provided through virtual reality interfaces or wearable sys-
tems. As with haptic feedback, audio feedback can be readily
coupled with augmented visual inputs used as an implicit
or explicit learning tool [76]. With implicit learning, real-
time sonification is provided independently of any reference.
Explicit learning would entail the sonification of perfor-
mance errors between the user’s movement and a target.
Ultimately, audio feedback is only helpful for motor learning
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if the sound cues are consistent and timely [77]. Thus, any
technical limitations that delay processing time can signifi-
cantly limit the effectiveness of audio-based approaches for
motor rehabilitation.

Augmented auditory feedback receives less attention
than visual and haptic feedback with motor rehabilitation
approaches, given its potential as a unique cognitive dis-
tractor [78]. However, the influence of auditory feedback
on motor learning should not be discounted when design-
ing virtual reality rehabilitation platforms. For example, in
clinical stroke populations, it has been shown that audio
feedback can make rehabilitation exercises more engag-
ing for the participants, resulting in improved mobility and
reduced reports of pain [79]. In addition, melodic sonifi-
cation is proven to increase retention rates [80]. Positive
emotional responses can emanate from sounds, especially
music. Still, if the sound is not employed naturally for the
motor task or the specific user, it may generate adverse motor
responses [81]. These results motivate the inclusion of audio
feedback in motor rehabilitation programs; however, careful
considerations should be made in how auditory feedback is
incorporated.

Virtual reality rehabilitation often includes auditory and
visual components, and studies have directly compared the
two modalities. Using functional magnetic resonance imag-
ing, auditory and visual learning are shown to activate
different brain areas when subjects perform the learned task
without the stimulus present [82]. This result suggests that the
design of a sensory-basedmotor learningmethod should con-
sider the location of neurological damage. Concurrent audio
and visual feedback can also improve the subject’s engage-
ment and result in greatermargins of improvement than either
feedback modality individually [83]. While audio can be a
helpful tool to enhance virtual reality rehabilitation methods,
the feedback protocol should carefully consider customizing
sound cues based on individual-level responses to accelerate
motor learning trajectories [84–86].

4 Features of augmented sensory feedback
used for training guidance

When utilizing programmable computerized interfaces for
rehabilitation, there are several options for presenting aug-
mented sensory feedback to those with neurotraumas. Per-
sons with neurotraumas may have limitations in carrying a
particular cognitive load [87, 88], which would dictate what
levels of augmented sensory guidance would be optimal.
On the other hand, additional sensory cues may be helpful
to elicit greater arousal and attentiveness during training in
the presence of neurotraumas [89]. While virtual reality can
generate intricate and highly interactive environments with

various sensory cues, it is unclear what additional informa-
tion should be provided to enhance the learning of motor
tasks. Since virtual reality readily allows personification ele-
ments with virtual avatars, the natural question is: what
additional, sensory-based guidance can and should be pro-
videdto accelerate functional motor outcomes?

4.1 Simple versus complex feedback

Another feature to consider in augmented guidance is the
presented feedback signals’ complexity. Typically, feedback
complexity will follow the complexity of the motor task
[61]. For example, Wulf and Shea (2002) defined simple
tasks as those capably learned in a single session or involv-
ing only a single degree of freedom. Conversely, complex
tasks have multiple degrees of freedom, requiring numer-
ous training sessions to master, and are more ecologically
valid [61]. In prescribing visual feedback complexity, simple
feedback provides a single DOF or performance variable. In
contrast, complex feedback provides two or more streams of
information [58]. Sanford et al. (2020) identified a trend in
which concurrent complex feedback can be more valuable
than simple feedback when provided in body-representative
displaymodes [58]. Virtual reality may amplify these results,
whereby elaborate virtual avatars can enhance embodiment
[90] and sense of presence [91]. Complex feedback may
be used even for relatively simple tasks if the body seg-
ments are constrained, e.g., squatmaneuverwith feet creating
kinematic closed-chain to the ground [58, 92]. In this way,
even a multi-segmental motion will effectively follow a
single degree-of-freedom (e.g., squat depth). However, track-
ing multiple segments concurrently with complex feedback
would still be highly feasible if not beneficial to performing
the movement [58]. Given the complex nature of upper-
extremity tasks (e.g., reach-to-grasp), complex feedback is
expected to be most effective. Virtual reality training of
complex tasks often displays a target image of a total body
linkage or hand, with multiple segments and joint DOFs
indicated against an entire user-generated body position. In
this way, complex and representative feedback modes are
again naturally coupled. Importantly, providing inappropri-
ately complex feedback can cause cognitive overload and
likely involves information irrelevant to the task or desired
skill [93].

4.2 Abstract versus representative feedback

Previous studies with computerized interfaces have shown
abstract feedback, displaying movements against targets as
line plots or bar graphs [94] with no body-discernable fea-
tures. Abstract feedback is often associated with simple
tasks [61]. Representative—also known as natural— feed-
back uses virtual avatars or mirrors of the participant’s body
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Fig. 3 Example depiction of abstract (LEFT) and representative
(RIGHT) visual feedback to guide participants performing a squat
task that adheres to target segmental (torso, thigh, shank) trajectories.
A figure with example panels whereby person performs squat with
two types of visual guidance (abstract, representative). Both types of

guidance provide the same segment angular trajectories to track, but
abstract feedback presents the target trajectories as sinusoids while rep-
resentative feedback presents the target trajectories with a side-view
(sagittal plane) of a dynamic stick-figure that approximately depicts a
body

position and is related to complex feedback [57, 58, 92].
Abstract feedback is typically used with simple tasks since it
requires only one performance variable to track, and a single
trace readily represents it. Representative feedback is more
associated with complex movement tasks [61], as displaying
multiple performance variables concurrently as disjointed
lines or graphs is neither sustainable nor informative. When
developing virtual reality rehabilitation paradigms, display-
ing performance errors representatively and across multiple
degrees of freedom (i.e., for complex function) can imme-
diately improve motor performance [58]. An example of
abstract versus representative feedback for visual guidance
of two-legged squat kinematics [58, 92] is shown in Fig. 3.
With abstract feedback, the participant is shown sinusoidal
trajectories to track using dynamic traces that change with
the angular motions of the participant’s body segments while
performing the squat. With representative feedback, those
same angular trajectories are displayed in real-time with a
sagittal-plane view of two overlaying dynamic stick-figures,
one that moves according to the participant’s squat motions
and the other adhering to the target trajectories the participant
should match.

Complex-representative visual feedback involves concur-
rently displaying multiple performance variables projected
onto a multi-segment avatar the user can embody, including
virtual reality interfaces driven by myoelectric commands
[95]. For example, Blana et al. (2016) developed a virtual
reality prosthesis training system, integrating motion cap-
ture and EMG control to display a transparent guide arm
against an opaque avatar actively controlled by participants
[96]. This approach facilitated relatively fast training for
users to complete 3D-reaching tasks without adverse effects.

Complex-representative feedback can exist in the first- or
third-person perspective. Perez-Marcos et al. (2017) con-
ducted a pilot study with stroke patients to demonstrate the
beneficial effects of virtual reality rehabilitation on upper
extremity function and range of movement with multiple
tasks projected in either first- or third-person displays [97].

Although abstract feedback is classically associated with
simple tasks, abstract motor tasking coupled with cross-
training elements can induce positive cognitive outcomes
[98]. Aoyagi et al. (2019) showed that adding weights dur-
ing a figure-8 tracing task with upper-extremity motions
increased the perception of agency. Few studies have eval-
uated abstract feedback within virtual reality immersive
environments due to the natural match between complex-
representative feedback and body avatars. However, if intel-
ligently designed to feel natural and complementary to the
virtual avatars being controlled, with or without a sense of
embodiment, simple and abstract feedback to depict target
motion paths may still be effective in training better motor
performance, evenwithin sophisticatedvirtual environments.

Integration of abstract and representative cues is readily
done in virtual reality. A previous study merged non-motor
abstract cues (e.g., words, color changes) with representa-
tive guidance of motor actions in the form of various hand
gestures (e.g., wrist deviations, hand pronation/supination,
different grip configurations, etc.) [99]. As another exam-
ple, color changes as abstract cues can highlight target areas
of interest during full-body movements primarily guided by
complex-representative feedback [100]. While participants
utilized complex-representative feedback to match target
body positions, the color changes successfully reinforced
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performance errors. Hybrid feedback approaches that cogni-
tively engage users without distraction during rehabilitative
training should be further investigated for their potential to
improve motor outcomes.

4.3 Concurrent versus terminal feedback

Another essential feature to consider with augmented guid-
ance in virtual reality motor rehabilitation is the timing of
the feedback. Concurrent feedback is provided in real-time
to guide the user toward target positions while perform-
ing the movement simultaneously [57]. Terminal feedback
is provided immediately after completing the movement to
summarily indicate performance errors about the previous
movement in preparation for the next training repetition [57].
Both concurrent and terminal feedback can present identi-
cally and be similarly identified along particular feedback
features (i.e., degree of complexity, rate of intermittency,
level of body representation). The key difference is receiving
real-time feedbackwhilemoving (concurrent) versus observ-
ing a replay of the feedback that would have been observed in
real-time but after movement completion (terminal). Motor
rehabilitation may incorporate concurrent and terminal feed-
back simultaneously [101] or transition from concurrent to
terminal over a long period as the participant’s motor learn-
ing improves [102]. Concurrent feedback is most beneficial
in the early stages of motor learning when the person is rela-
tively naïve to the task, making more significant adjustments
and more considerable gains in performance [102]. Termi-
nal feedback becomes beneficial in the latter stages of motor
learningwhen only finer adjustments aremadewhile improv-
ing long-term learning [102]. Thus, the optimal timing in
providing feedback will be dictated by where one is in the
motor rehabilitation learning cycle.

4.4 Continuous versus reduced frequency
(intermittent) feedback

This section will discuss feedback frequency, or inter-
mittency, as a fourth feature in designing optimal virtual
reality rehabilitation protocols with augmented guidance.
As referenced previously (Sect. 2.1), participants of motor
learning protocols can accelerate the development of inde-
pendent capabilities by reducing feedback frequency over
an extended course of training [35, 36]. This approach aims
to reduce the reliance on sensory feedback to support the
higher performance of movements. The three primary meth-
ods to employ reduced frequency training are bandwidth
[103–105], faded [106], and self-paced [107–109]. All three
methods have been evaluated positively with terminal feed-
back, but only bandwidth feedback has been proven effective
when coupled with concurrent feedback [92, 110]. For inter-
mittent feedback training based on bandwidth performance,

feedback is only provided when the participant’s perfor-
mance errors (e.g., in tracking a target trajectory) exceed a
pre-set error magnitude (i.e., error band) [92, 111]. Figure 4
presents example time-stamped trajectory tracking with con-
tinuous versus intermittent (bandwidth) feedback. Thus,
there is an implicit reward to perform well, i.e., maintaining
low error levels, by observing a removal (disappearance) of
feedback, which also promotes greater reliance on intrinsic
mechanisms. In a study not employing virtual reality, band-
width feedback demonstrated greater potential for learning
than continuous feedback for the two-legged squat exercise
[92]. Further research is necessary to determine the bound-
aries of feasibility and optimality in employing concurrent
bandwidth feedback with virtual reality applications, espe-
cially for ensuring better long-term outcomes.

5 Psychophysiological factors in motor
rehabilitation

Although any form of motor training inherently accesses
cognitive resources, most conventional methods for phys-
ical therapy do not strategically consider psychophysio-
logical factors in motor rehabilitation processes. Advanced
rehabilitative methodologies employ computerized inter-
faces, including robotics [112] and virtual reality [113], for
improved motivation and motor performance. However, as
previouslymentioned, if the dosage is similar, the added ben-
efits of computerized rehabilitation approaches compared to
traditional therapies become more negligible [114]. Thus, it
remains uncertain whether current methods with virtual real-
ity induce the neural engagement necessary to improvemotor
outcomes efficiently. As discussed, computerized rehabilita-
tion offers several design options to engage users, including
gamification [115], customization [116], and augmented
feedback [117]. However, how we can best assess whether
specific virtual reality rehabilitation designs will result in
desirable neural engagement is unclear. This section dis-
cusses potential psychophysiological factors that should be
monitored to gauge engagement in improving motor perfor-
mance (Fig. 5).

Psychophysiological measures must be monitored for
those with neurotraumas to assess bodily functions that
directly impact health and quality of life. For example, spinal
cord injury can result in various autonomic dysfunctions
that increase mortality from cardiovascular and respiratory
disease [118]. Thus, persons with neurotraumas may have
unique responses to variations in training guidance that are
readily measurable from skin-surface recordings, especially
at the brain (electroencephalography) in reflecting a host of
cognitive processes (e.g., load [119], attention [120]) affect-
ing motor performance. In addition to physiological signals,
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Fig. 4 Example of continuous versus intermittent visual feedback to
guide tracking of amovement trajectory. Continuous feedback is always
present while intermittent feedback will appear and disappear accord-
ing to some criterion (e.g., error < threshold (band), e.g., 5% of average

error). A figure showing continuous feedback versus intermittent feed-
back at select time-instances. Intermittent feedback disappears when
subject position error is less than bandwidth threshold of 5% of average
error for that subject as marked by the stars

Fig. 5 Psychophysiological factors should be monitored and assessed
during virtual reality therapies to ensure optimal levels of neural engage-
ment in training motor function. A flow chart with boxes and arrows.
The words “Virtual Reality Rehabilitation” point to a circle labeled

“psychophysiological factors to assess user engagement”. On the edge
of the circle are boxes labeled “motivation”, “sense of agency”, “atten-
tion”, “cognitive load”, and “memory”. The circle points to the words
“Improved Motor Function”

survey measures can indicate critical cognitive states for per-
sons with neurotraumas. Surveys have been extensively used
to assess perceptions of utility and motivation to partici-
pate in rehabilitative therapies, especially novel approaches
such as virtual reality [121]. Ultimately, generating positive
perceptions from user perspectives can determine clinical
acceptance of rehabilitation approaches [122]. Explicitly
and formally considering such measures with rehabilitation

paradigmsmay be crucial to ensure greater therapeutic effec-
tiveness.

5.1 Motivation

As mentioned, motivation is a (if not the) critical user-
perception measure to assess the potential success of vir-
tual reality rehabilitation programs [11]. More specifically,
motivational factors can influence the speed of movement
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initiation and execution [123]. Customization within vir-
tual reality to capability levels can also increase motivation
with motor learning [18]. Motivation can increase when the
exercises seem applicable to daily activities [124]. Mouatt
et al. (2020) demonstrated that immersive environments that
manipulate ‘real’ competition enhanced participant motiva-
tion [42]. Therefore, motivation should be systematically
considered in the development of virtual reality methods,
leading to the inclusion of more goal or task-oriented, com-
petitive, and transferable elements.

5.2 Sense of agency

The sense of agency is the neural perception of the true
authorship of voluntary action and its related consequences
[125]. In general, the higher agency one has, the better
movement control one perceives; it is therefore intuitive
to consider greater agency as a basis for improved func-
tional performance [126]. Previous virtual reality studies
have investigated the effect of modified visual feedback on
agency and indicate that enhanced feedback in virtual real-
ity can improve agency [127]. Other studies have shown that
variations in control, as perceived visually, can co-modulate
agency with motor performance at motion [128] and force
[129] levels. In gamified environments with instrumented
wearables, informing users about the successful accomplish-
ment of motor tasks can also facilitate positive correlations
in agency and performance [130, 131].

An implicitmeasure of agency that can be directly coupled
to motor actions is based on the phenomenon of intentional
binding [132]. Intentional binding refers to the percep-
tion of a compressed time interval between a voluntary
action and related sensory consequence [132]. Sensory cues,
including visual and audio feedback, are often provided to
subjects while performing functional movement tasks such
as reaching and grasping [133]. As such, these cues can be
readily integrated within virtual reality applications (as color
changes or sound) for action-outcome events to assess inten-
tional binding.

5.3 Attention and reaction time

Attention is a well-established measure of cognitive engage-
ment during activity [134]. Attention is often measured in
virtual reality headsets with eye-tracking capabilities that
analyze the focus of attention [135] or saccadic times in
response to visual stimuli [136]. Attention demonstrates the
ability to screen out irrelevant stimuli and focus on infor-
mation directly related to the given task [137]. Attentional
focus directly impactsmovement performance and efficiency
[34]. Rehabilitation methods can be designed to improve
attention in persons with neuromuscular pathologies [138].
Virtual reality can provide specific stimuli to add or remove

distractions intended to test attention [139]. Highly cus-
tomized virtual reality systems can significantly improve
attention compared to conventional methods [47]. However,
virtual reality designs centered on improving attention may
not similarly achieve gains in executive function for per-
sons with brain injury [140]. Thus, optimal protocols with
virtual reality may need to balance the evaluation of psy-
chophysiological factors like attention while pursuing gains
in motor function. Reaction time is a crucial indicator of
cognitive processing during motor performance [141] and
can be a surrogate measure for attention levels [142]. Pre-
viously, studies have assessed reaction time as an indicator
of sensorimotor coordination and performance [143]. Virtual
reality approachesmay be effectively pursued tomeasure and
improve motor reaction times.

5.4 Cognitive load and workingmemory

Cognitive load fundamentally infers the amount of infor-
mation that working memory can hold at a given instance
of activity [144]. Working memory is the cognitive system
that stores information in advance for utilization in com-
plex tasks. Since working memory relates to information
processing, learning, and problem-solving, it is a variable
well-posed to leverage motor control principles in virtual
reality rehabilitation [145]. Virtual reality interactions are
proven to improve real-world performance throughmemory-
level therapies [146]. Furthermore, virtual reality motor
rehabilitationwith proven neuroplasticity improvements will
enhance workingmemory [147]. Thus, cognitive loading can
be highly sensitive to variations in virtual reality protocols
for motor rehabilitation, including the level of immersion
[148]. Ultimately, a desirable range of cognitive loading
should be experienced by users undergoing motor rehabil-
itation with virtual reality. Cognitive overload occurs when
there is too much information or too many tasks to execute or
learn simultaneously, resulting in an inability to process this
information [144] productively. Cognitive loading is crucial
for optimizing the effects of augmented feedback methods
since cognitive overload can inhibit motor learning [115].
Thus, participants can risk cognitive overload with even sim-
ple tasks if augmented feedback is overwhelming. However,
cognitive underload must also be avoided, typically with
adjustments in task challenge, to mitigate possible user dis-
engagement during motor task practice [149].

Achieving target levels of cognitive load could be the
key to improving motor rehabilitation efficiency. For exam-
ple, one study demonstrated that virtual reality training with
specific cognitive load levels could significantly improve
walking function for chronic stroke participants [150]. Vir-
tual reality methods can vary task or feedback guidance
complexity to modulate cognitive loading levels for optimal
neural engagement. Ideally, virtual reality methods should
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also improve working memory to expand cognitive load
capacity for movement tasks further. After boundaries of
cognitive capabilities are established, virtual reality meth-
ods should maintain users within cognitive loading ranges
that maximize post-training motor outcomes.

6 Conclusions

We assert that leveraging augmented sensory feedback and
psychophysiological factors during virtual reality rehabil-
itation may be the key to unlocking the full potential of
virtual reality motor rehabilitation after neurotraumas. Aug-
mented sensory guidance accelerates motor learning with
visual, auditory, and haptic cues presented individually or
in combination. Feedback features such as timing, complex-
ity, intermittency, and level of body representation may be
specified to optimize virtual reality rehabilitation at subject-
and task-specific levels. Additionally, incorporating psy-
chophysiological factors into virtual reality motor paradigms
ensures consistent and desirable levels of neural engagement
of patients within their rehabilitation regimen. An array of
psychophysiological factors (e.g., motivation, agency, atten-
tion, cognitive loading)may bemonitored and assessed using
advanced technologies. Furthermore, these factors can be
subsequently manipulated to optimal levels within virtual
reality protocols that intelligently adjust guidance levels, task
type and difficulty, and immersion for each user.
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