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Abstract
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) 
and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition 
of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. 
The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS 
in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, 
immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its acti-
vators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
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Introduction

The whole world confronted a disaster situation that first 
emerged in late December 2019 as purely a few cases 
of pneumonia in Wuhan, China (Batiha et  al. 2021a). 
A scrupulous investigation employing next-generation Rabab S. Hamad and Hayder M. Al-kuraishy contributed equally to 
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sequencing and phylogenetic analysis led to the recog-
nition of the causative agent of this respiratory disease, 
a novel coronavirus (2019-nCoV) (Al-Kuraishy et  al. 
2021a). The World Health Organization (WHO) allocated 
a name,Coronavirus disease 2019, or COVID-19, to the 
disease and declared it a pandemic on March 11, 2020 
(McFee 2020). Later on, the 2019-nCoV was renamed to 
SARS-CoV-2 by the International Committee on Taxon-
omy of Viruses based on its genetic match to a previously 
known coronavirus, severe acute respiratory syndrome 
coronavirus (SARS-CoV) (McFee 2020). Transmission 
of SARS-CoV-2 occurs when a healthy individual inhales 
or comes into contact with respiratory droplets from an 
infected person (Al-Kuraishy et al. 2022n). The average 
incubation period before a patient exhibits disease symp-
toms ranges from 2 to 14 days (El-Saber Batiha et  al. 
2022). SARS-CoV-2 has shown that it is genetically simi-
lar to previously known coronavirus SARS-CoV and hence 
is placed under the family Coronaviridae (Al-Kuraishy 
et al. 2021k). Coronavirus contains positive-sense single-
stranded RNA as its genetic material which also helps the 
virus to evade host immune response and assists its entry 
inside the host cell (Al-Kuraishy et al. 2021l). Interest-
ingly, SARS-CoV-2, similar to SARS-CoV, exploits the 
angiotensin-converting enzyme 2 (ACE2) receptor to 

gain access inside human cells (Babalghith et al. 2022). 
Besides, the trimeric S protein of SARS-CoV-2 is sliced 
by transmembrane protease serine 2 (TMPRSS2), similar 
to SARS-CoV (Al-Kuraishy et al. 2021c).

The peptidase ACE2 metabolizes vasoconstrictor angio-
tensin II (Ang II) to the vasodilator Ang1-7 and Ang1-9 
(Al-Kuraishy and Al-Gareeb 2020). ACE2 receptor is highly 
expressed in various cellular systems, including enterocytes, 
cardiomyocytes, pulmonary alveolar cells, neurons, and tes-
tes (Moubarak et al. 2021). Consequently, the downregula-
tion of ACE2 during SARS-CoV-2 infection provokes vaso-
constriction and the development of endothelial dysfunction 
(ED), oxidative stress (OS), and inflammatory disorders (Al-
Kuraishy et al. 2022g). The binding of SARS-CoV-2 with 
the ACE2 receptor leads to a series of inflammatory cellular 
events with cytopathic effects causing cell injury and hyper-
inflammation (Al-Thomali et al. 2022a) (Fig. 1).

The clinical presentation of COVID-19 is mainly asymp-
tomatic or presented with mild symptoms in 85% of cases 
(Al-Kuraishy et al. 2022y). Nonetheless, 15% presented 
with moderate-severe form due to the progress of acute lung 
injury (ALI) (Mostafa-Hedeab et al. 2022a). Also, 5% of 
COVID-19 patients may be critical and necessitate assessed 
ventilation due to the development of acute respiratory dis-
tress syndrome (ARDS) (Al-Kuraishy et al. 2022p).

Fig. 1  Pathophysiology of SARS-CoV-2 infection
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SARS-CoV-2-induced OS triggers activation of differ-
ent signaling pathways such as nuclear factor erythroid 
2-related factor 2 (Nrf2), which induces cellular interac-
tions to mitigate SARS-CoV-2-mediated viral toxicity and 
cellular injury (Zhu et al. 2021). The Nrf2 is a transcription 
factor that normalizes numerous essential genes that encode 
body antioxidant and anti-inflammatory signaling systems 
(Zhu et al. 2021). Downregulation of Nrf2 by SARS-CoV-2 
is associated with an unregulated expression of the ACE2 
receptor and the development of OS and inflammatory dis-
orders (Qu et al. 2023). Consequently, the objective of the 
present review was to elucidate the role of Nrf2 in SARS-
CoV-2 infection.

Overview of the Nrf2

Nrf2, a master regulator of antioxidative responses, is very 
crucial in maintaining cellular homeostasis (Vomund et al. 
2017). Nrf2 belongs to the NFE2 family of transcription 
factors and contains seven Neh domains that regulate Nrf2 
activity by binding to DNA or proteins (Vomund et al. 2017). 
Nrf2 is a transcription factor that regulates the expression of 
antioxidant enzymes and antioxidant response elements dur-
ing the development of OS and inflammatory reaction (Pall 
and Levine 2015). Nrf2 is activated in two ways; in canoni-
cal Nrf2 activation, specific cysteine residues on Keap1 are 
oxidized by oxidative stress or electrophiles, resulting in a 
conformational change in the adaptor protein and the inhibi-
tion of E3 ubiquitin ligase activity (Gan et al. 2010). Alter-
natively, non-conical mechanisms can disturb the interaction 
of keap1 and Nrf2 through Nrf2 phosphorylation (Gan et al. 
2010).

Nrf2 triggers the expression of phase II enzymes and 
heme oxygenase 1 (HO-1), and inhibiting inflammatory 
signaling pathways (Gan et al. 2010). As well, Nrf2 has 
pleiotropic effects in controlling the immune response, and 
cellular metabolism (Jung and Kwak 2010). Noteworthy, 
Nrf2 is engaged with Kelch-like ECH-associated protein 1 
(Keap1), which regulates the anti-inflammatory and anti-
oxidant effects of Nrf2 (Zhong et al. 2019). Keap1 regu-
lates the expression of adaptor protein and ubiquitin ligase 
complex via binding Culin-3 and Rbx1 with an anchoring 
effect on the cytoplasmic Nrf2 (Hikichi et al. 2019). During 
the development of OS and generation of reactive oxygen 
species (ROS), Nrf2 is rapidly dissociated from KEAP1 and 
translocated to the nucleus and activation the expression of 
antioxidant proteins to maintain cellular homeostasis (Li 
et al. 2014). Following the ending of OS, Nrf2 is inactivated 
by cytoplasmic KEAP1 and nuclear beta-transducing repeat-
containing protein glycogen synthase kinase 3 (β-TrCP-
GSK3) (Iizuka et al. 2021) (Fig. 2).

Furthermore, Nrf2 supports different metabolic processes 
such as the production of nicotinamide adenine dinucleotide 
phosphate (NADPH) and the metabolism of amino acids, 
lipids, nucleotides, and iron/heme (DeBlasi and DeNicola 
2020). Nrf2 activates glutaminase, which converts glutamine 
into glutamate which enter the nucleus and involved in the 
production of GSH (Hamada et al. 2021). Nrf2 significantly 
influences the regulation of the enzymes involved in the pro-
duction pathway of serine which is a component of different 
macromolecules, such as nucleotides, ceramide, and sphin-
golipid (Ishii et al. 2022). As well, Nrf2 is a critical factor in 
cellular components, which helps in cellular repair and OS 
control (Yu and Xiao 2021).

Of interest, Nrf2 attenuates OS-induced ALI/ARDS 
by mitigating endothelial dysfunction. In an in vitro study 
conducted, Canella et al. (Canella et al. 2018) illustrated 
that Nrf2 pathway activators prevent OS-induced ALI via 
mitigation of outward rectifier chloride channels (ORCCs) in 
human lung epithelial cells (A549 line). On the other hand, 
Wu and colleagues revealed that the Nrf2 pathway attenu-
ates the development of diabetic cardiomyopathy through 
the mitigation of OS (Wu et al. 2022). Flavonoids have been 
shown to mitigate OS in cell lines via activation of the Nrf2 
pathway (Sindhu et al. 2021). Similarly, chrysin reduces 
sepsis-induced cardiac injury by ameliorating the Nrf2 
pathway (Xingyue et al. 2021). Furthermore, the underlying 
mechanism of the antioxidant effects of Nrf2 is through the 
induction expression of antioxidant protein genes like HO-1 
and quinone oxidoreductase (NQO1), which block the pro-
gression of OS and maintain redox balance (Sugimoto et al. 
2021). These findings suggest that Nrf2 reduces the propa-
gation of OS-induced tissue injury and organ dysfunction.

Nrf2 and SARS‑CoV‑2 infection

In SARS-CoV-2 infection, Nrf2 is highly dysregulated, 
causing abnormal expression of ACE2 with further increas-
ing viral entry (Nguyen et al. 2022). SARS-CoV-2 induces 
protein kinase receptor (PKR) activation, which acts as 
endoplasmic reticulum kinase to promote the degradation 
of Nrf2 (Mostafa-Hedeab et al. 2022b). The Nrf2 pathway is 
inhibited during SARS-CoV-2 infection leading to augmen-
tation of OS and related inflammatory disorders (Nguyen 
et al. 2022). Therefore, NF-κB and NADPH oxidases are 
activated in SARS-CoV-2 infection, causing hyperinflam-
mation and OS, respectively (Al-Kuraishy et al. 2022q). 
In addition, Nrf2 inhibits the activation of stimulator of 
interferon genes (STING) which regulate the expression of 
interferon (IFN) response (Ryan et al. 2022). In turn, IFN 
blocks the expression of Nrf2, leading to hyperinflammation 
and OS (Ryan et al. 2022). Concerning the clinical signifi-
cance of Nrf2 level in COVID-19 patients, a comparative 
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study including 40 children with COVID-19 compared with 
matched 35 healthy controls showed that Nrf2 level was 
lower in children with COVID-19 as compared with healthy 
controls due to tissue damage and OS (Gümüş et al. 2022). 
Furthermore, various studies suggested that Nrf2 level is 
highly dysregulated in COVID-19 patients (Cuadrado et al. 
2020; Singh et al. 2021).These findings proposed that exag-
gerated immune response in SARS-CoV-2 infection induces 
a substantial reduction in the activity of the Nrf2 pathway.

Moreover, Nrf2 improves antiviral response against dif-
ferent viral infections for example Nrf2 activators restrict the 
replication of herpes simplex virus-1 (HSV-1) in human pri-
mary fibroblasts (Wyler et al. 2019). Likewise, Nrf2 protects 
against infections with the respiratory syncytial virus (RSV) 
and metapneumovirus (MNV) by modifying the innate 
immune response and preventing viral replication. Infections 
with RSV and MNV are associated with OS formation and 
hyperinflammation, which promote Nrf2 gene expression 

(Ivanciuc et al. 2018). Additionally, it has been noted that 
Nrf2 is essential for preventing OS-induced neurocognitive 
problems in people with human immunodeficiency virus 
(HIV) (Reddy et al. 2012). Reddy et al. (Reddy et al. 2012) 
found that HIV glycoprotein 120 induces expression of the 
Nrf2/HO-1/NQO1 axis in parallel with the activation of 
pro-inflammatory cytokines, mainly TNF-α (Reddy et al. 
2012). Furthermore, Nrf2 is upregulated in response to the 
chronic effects of viral infections. In addition, Nrf2 prevents 
the spread of the influenza virus infection (Ramezani et al. 
2018). Nrf2 is a major regulator during viral infections; 
some infections activate Nrf2, though other viral infections 
may provoke Nrf2 independent of the antioxidant pathway 
(Cherupanakkal et al. 2017). Remarkably, Nrf2 is involved 
in the host immune response in patients with dengue infec-
tion (Cherupanakkal et al. 2017). According to comparison 
research involving 88 dengue patients and 31 patients with 
other febrile illnesses, dengue patients had higher levels of 

Fig. 2  Molecular mechanism of nuclear factor erythroid 2-related fac-
tor 2 (Nrf2): (1): Under balanced conditions, Nrf2 is anchored with 
Kelch-like ECH-associated protein 1 (KEAP1). Nrf2 binds keap, gets 
ubiquinat3d, and degraded by β-TrCP in the cytoplasm. (2): Under 
oxidative stress, Nrf2 is dissociated and enters and binds small maf 
protein (sMaf) to bind antioxidant response element (ARE), which 
increases the expression of the antioxidant gene. Nrf2 is degraded by 

beta-transducin repeat-containing protein glycogen synthase kinase 3 
(β-TrCP-GSK3). Dissociation of Nrf2 from Kelch-like E.C.H. asso-
ciated protein 1 (KEAP1) with activation of antioxidant response 
element (ARE), which increases the expression of antioxidant genes 
heme oxygenase 1 (HO-1) and quinone oxidoreductase (NQO1), 
which blocks the progression of oxidative stress (OS) and maintains 
redox balance and cytoprotective effect
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Nrf2 expression in their human peripheral mononuclear 
cells than those with other febrile illnesses (Cherupanakkal 
et al. 2017). Therefore, Nrf2 may be implicated in the viru-
lence and pathogenesis of viral infections. These findings 
proposed that Nrf2 plays a crucial role in viral infections 
to counteract the associated OS and exaggerated inflamma-
tory reactions. Nevertheless, Nrf2 could be implicated in the 
propagation of viral infections.

Nrf2 has an integral role in the regulation of immune 
response and propagation of inflammation (Vomund et al. 
2017). It reduces the expression of pro-inflammatory 
cytokines, including MCP-1, TNF-α, IL-6, and IL-1β, by 
inhibiting the recruitment of RNA polymerase II and mac-
rophage activation (Battino et al. 2018). Interestingly, Nrf2 
blocks the expression of NF-κB, which plays an essential 
role in primary immune response and induction of inflam-
mation (Lee et al. 2015). Therefore, depletion of Nrf2 sign-
aling enhances lipopolysaccharide (LPS)-induced lung 
inflammation by exaggerating NF-κB/TNF-α (Rushworth 
et al. 2011). Yan and coworkers revealed that Nrf2 signaling 

attenuates ALI and lung inflammation development in mice 
by inhibiting the expression of TLR4 (Yan et al. 2018). The 
net effect of Nrf2 on the inflammatory reaction is through 
the activation of HO-1, which produces an anti-inflamma-
tory effect. As well, Nrf2 has a direct anti-inflammatory by 
inhibiting the NF-κB-dependent release of pro-inflammatory 
cytokines (Fig. 3).

Mechanistic role of Nrf2 in SARS‑CoV‑2 
infection

Nrf2 and inflammatory signaling pathways

NLRP3 inflammasome

Nod-like receptor family, pyrin domain-containing 3 
(NLRP3) inflammasome are multiprotein complexes formed 
in the cytosol driving caspase-1 cleavage and the secre-
tion of the pro-inflammatory cytokines IL-1β and IL-18 

Fig. 3  Nuclear factor erythroid 2-related factor 2 (Nrf2) and SARS-
CoV-2: SARS-CoV-2 induces protein kinase receptor (PKR) activa-
tion that promote the degradation of NRF2. Toll-like receptor (TLR) 
signaling promotes the expression of nuclear factor kappa B (NF-κB), 
which plays an essential role in primary immune response and induc-

tion of inflammation. Nrf2 has direct anti-inflammatory by inhibiting 
the NF-κB-dependent release of pro-inflammatory cytokines. Nrf2 
produces an anti-inflammatory effect through the activation of heme 
oxygenase 1 (HO-1)
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and other damage-associated molecular patterns (DAMPs) 
(Batiha et al. 2022a; Alrouji et al. 2023a). NLRP3 inflamma-
some promotes antigen presentation and the induction of an 
adaptive immune response (Batiha et al. 2023a).

It has been shown that SARS-CoV-2 infection and abnor-
mal immune response are associated with the activation of 
different inflammatory signaling pathways leading to hyper-
inflammation (Al-Kuraishy et al. 2022f). In COVID-19, an 
excessive immunological response results in a high level of 
NLRP3 inflammasome activation (Al-Kuraishy et al. 2021j). 
In the SARS-CoV-2 infection, the endogenous adjuvant 
activity is caused by the direct activation of NLRP3 by a 
viral protein, named viroporin protein 3a, suggesting that 
SARS-CoV-2 can directly activate NLRP3 inflammasome 
(Al-Kuraishy et al. 2022t). Targeting of NLRP3 inflamma-
some pathway by selective inhibitors may reduce COVID-
19-induced complications (Batiha et al. 2021b). Liu et al. 
(Liu et al. 2017a) showed that Nrf2 negatively regulates the 
expression of NLRP3 inflammasome via inhibition of ROS 
generation (Liu et al. 2017b). An experimental study demon-
strated that rotenone-induced NLRP3 inflammasome expres-
sion by ROS was inhibited by Nrf2 mediated activation of 
NQO1 in mice (Liu et al. 2017b). Therefore, by inhibiting 
the NLRP3 inflammasome in COVID-19, Nrf2 activators 
may significantly decrease SARS-CoV-2 infection-induced 
inflammation (Mendonca and Soliman 2020). Besides, 
activation of NLRP3 inflammasome is associated with 
more expression of NF-κB, which increases inflammatory 
disorders via the release of pro-inflammatory cytokines in 
COVID-19 (Batiha et al. 2022b). Importantly, Nrf2 attenu-
ates the expression of NF-κB, leading to potent anti-inflam-
matory effects (Mendonca and Soliman 2020). It has been 
observed that the expression of NLRP3 was upregulated, 
and the expression of IL-1β and IL-18 was downregulated 
after Nrf2 silencing (Chen et al. 2019). It has been reported 
that bardoxolone methyl offers an effective pharmacological 
approach to increasing Nrf2 activity and mitigating cholesta-
sis in hepatic ischemia–reperfusion injury (Ruiz et al. 2013). 
Nrf2 activator isoliquiritigenin prevents the development of 
ALI in mice by suppressing the NF-κB pathway through 
induction expression of Nrf2 and adenosine monophosphate 
protein kinase (AMPK) (Liu et al. 2017a).

TLR4 and high mobility box protein 1 (HMBP1) Interest-
ingly, immune response during acute cell injury promotes 
the expression of TLR4 and HMBP1 (Alkhayyat et al. 2022). 
Nrf2 reduces the expression of pro-inflammatory cytokines, 
including MCP-1, TNF-α, IL-6 and IL-1β by inhibiting the 
recruitment of RNA polymerase II and macrophage activa-
tion (Yu et al. 2019).Therefore, Nrf2 attenuates the develop-
ment of inflammatory changes straight by its anti-inflamma-
tory effects or indirectly via modulation the expression of 
HO-1 and reduction of OS (Saha et al. 2020). In COVID-19, 

the exaggerated expression of TLR4 and HMBP1 induce the 
release of pro-inflammatory cytokine and immune thrombo-
sis, respectively (Al-kuraishy et al. 2022a). HMBP1 induc-
tion in COVID-19 aggravates the recruitment of neutrophils 
with the formation of neutrophil extracellular traps (NETs), 
which causes more inflammation and thrombosis termed 
immune thrombosis (Al-Kuraishy et al. 2022c, 2022m). 
Interestingly, Nrf2 agonist resveratrol suppresses inflam-
matory reactions and inhibits the expression of MCP-1, 
TNF-α, IL-6, and IL-1β, as well as the expression of adhe-
sion molecules through activating the Nrf2/HO-1 pathway 
(Al-Kuraishy et al. 2022a; Giordo et al. 2021). Resveratrol 
may have potential therapeutic efficacy in mitigating SARS-
CoV-2 infection-associated hemostatic complications and 
disorders (Giordo et al. 2021; Liao et al. 2021). Giordo et al. 
(Giordo et al. 2021) proposed that in virtue of its anti-throm-
botic, antioxidant, and anti-inflammatory effects, resvera-
trol can reduce OS, inflammatory disorders, and thrombotic 
events in COVID-19 through activation of the Nrf2/HO-1 
pathway (Giordo et al. 2021).

PI3K/Akt signaling Certainly, activated PI3K/Akt signal-
ing is necessary for the anti-inflammatory effect of Nrf2 
(Al-Kuraishy et al. 2022w; Basile et al. 2022). However, 
PI3K/Akt pathway may enhance SARS-CoV-2 endocyto-
sis mediated by the clathrin pathway (Khezri et al. 2022). 
Deregulation of renin-angiotensin system (RAS) in SARS-
CoV-2 infection also provokes increasing of AngII, which 
is a potent activator of this pathway with the development 
of lung fibrosis (Al-Kuraishy et al. 2022r, 2022v, 2022x; 
Hussien et al. 2021). PI3K/Akt also activates the NF-κB 
pathway with further inflammatory and OS disorders in 
COVID-19 (Basile et al. 2022). Azithromycin suppresses 
PI3K/Akt pathway by inhibiting abnormal inflammatory 
reactions in COVID-19 (Al-Kuraishy et al. 2021e, 2020c, 
2020d). Based on this evidence, increased activation of 
PI3K/Akt signaling encourages the expression of anti-
inflammatory Nrf2 to neutralize hyperinflammation and OS 
in COVID-19.

Mechanistic target of rapamycin (mTOR) Of note, there is 
a potential interaction between Nrf2 and mTOR, which is 
concerned in the propagation of inflammatory disorders (Al-
Kuraishy et al. 2022e, 2022s). Sestrins which is triggered by 
environmental stressors promote the expression of Nrf2 and 
inhibit the mTOR pathway (Rhee and Bae 2015). In addi-
tion, Nrf2 blocks the activation of the mTOR pathway dur-
ing inflammatory reactions (Rhee and Bae 2015). Besides, 
Nrf2 agonist sulforaphane reduces OS and normalizes 
autophagy in Parkinson’s disease through inhibition gen-
eration of ROS and mTOR pathways, respectively (Zhou 
et al. 2016). In COVID-19, the mTOR pathway promotes 
viral replication (Karam et al. 2021). Particularly, mTOR is a 
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serine/threonine kinase that controls cell growth by enhanc-
ing mTOR1 and mTOR2 (Battaglioni et al. 2022). It has 
been identified that mTOR inhibitor metformin effectively 
treats influenza virus infection (Al-Kuraishy et al. 2021b, 
2022i). It has been suggested that the mTOR pathway is 
essential for the replication of SARS-CoV-2, and mTOR 
inhibitors and modulators like sapanisertib and metformin, 
respectively, may reduce COVID-19 severity (Coleman et al. 
2021). In this state, Nrf2 signaling may decrease the sever-
ity of SARS-CoV-2 infection and associated complications 
through modulation of the mTOR pathway.

Advanced glycation endproducts Advanced glycation end-
products (AGEs) provoke the release of pro-inflammatory 
cytokines and induce the propagation of OS and inflamma-
tory disorders with subsequent activation of the Nrf2 path-
way to counterbalance OS and/or inflammatory reactions 
(Al-Kuraishy et al. 2023d, 2021i, 2020e; Alomair et al. 
2022a). Remarkably, Nrf2/HO-1/NQO1 axis is exceedingly 
activated in the endothelial cells subjected to AGEs activa-
tors to give an adaptive response against OS and/or inflam-
matory reactions in diabetes (He et al. 2011). An experi-
mental study established that some herbal medicine like 
Eucommia ulmoides attenuates glucotoxicity by inhibiting 
AGEs through enhancement of the Nrf2 pathway in diabetic 
mice (Do et al. 2018). These findings suggest that Nrf2 is 
considered as a potent inhibitor of AGEs in different meta-
bolic and inflammatory disorders. AGEs are generated due 
to the glycation of DNA, proteins, and lipids, which play a 
critical role in the pathogenesis of metabolic and inflamma-
tory disorders (Alomair et al. 2022a). The receptor of AGEs 
(RAGE) expressed in pulmonary epithelial alveolar cells is 
involved in the pathogenesis of SARS-CoV-2 infection and 
associated lung inflammation, ALI and ARDS (Al-Kuraishy 
et al. 2022b, 2021h; Alkazmi et al. 2022). Both diabetes and 
the aging process accelerate the production of AGEs which, 
via the interaction with RAGE on the macrophages, trig-
ger lung inflammation in COVID-19 (Alomair et al. 2022b; 
Al-Kuraishy et al. 2022j). Furthermore, Nrf2 is reduced in 
different metabolic disorders, including diabetes mellitus 
(Costa et al. 2019). This may explain the susceptibility of 
patients with metabolic disorders to the risk of SARS-CoV-2 
infection and COVID-19 severity (Batiha et al. 2023b; Al-
Kuraishy et al. 2021g, Al-Kuraishy et al. 2023f). Likewise, 
soluble RAGE (sRAGE) plasma level is associated with 
COVID-19 severity. A prospective cohort study included 
164 COVID-19 patients compared to 23 non-COVID-19 
pneumonia demonstrated that high sRAGE plasma level was 
associated with the need for oxygen therapy and 30-day mor-
tality (Lim et al. 2021). Consequently, sRAGE is a potential 
biomarker for predicting COVID-19 severity and mortality.

Signal transducer and activator of transcription 3 Signal 
transducer and activator of transcription factors (STATs) are 
a family of transcription factors that regulate cell growth, 
survival, differentiation, and motility (Diallo and Herrera 
2022). STAT3 protein exists in a latent or inactive form in 
the cytoplasm (Diallo and Herrera 2022). STAT3 can be 
activated by receptor-associated kinases and phosphorylated 
at various phosphorylation sites, particularly at Tyr-705 and 
Ser-727 (Dai et al. 2022; Al-Kuraishy et al. 2023h). STAT3 
protein is expressed at a basal level in cells but rapidly 
increases once activated by specific cytokines (Al-Kuraishy 
et al. 2022d). STAT3 is a critical factor in interleukin-6 
(IL-6) induced gene regulation. STAT3 can be phosphoryl-
ated by IL-6 signal pathway, whereas IL-6 can also acti-
vate STAT3 at the transcriptional level (Al-Thomali et al. 
2022b). STAT3 signaling pathway is exaggerated in SARS-
CoV-2 infection leading to hyperinflammation, thrombo-
sis, and lung fibrosis (Al-Kuraishy et al. 2022l). STAT3 
impairs antiviral immune response and the development of 
lymphopenia (Al-Kuraishy et al. 2022d). Herein, targeting 
STAT3 in COVID-19 may mitigate hyperinflammation and 
related fatal complications (Batiha et al. 2022c). It has been 
revealed that the Nrf2 pathway negatively regulates STAT3 
expression in rats with benign prostatic hypertrophy (Fishel 
et al. 2015). Downregulation of Nrf2 increases ferroptosis-
induced ALI by activating STAT3 expression in mice (Wang 
et al. 2022). Therefore, the Nrf2 pathway plays a crucial role 
in attenuating inflammatory disorders in COVID-19 through 
inhibition of STAT3.

ADAM‑metalloproteinase domain 17 ADAM-metallopro-
teinase domain 17 (ADAM17) is a ubiquitously expressed 
membrane-bound enzyme that mediates shedding of a wide 
variety of important regulators in inflammation includ-
ing cytokines and adhesion molecules (Nadwa et al. 2023; 
Aleksova et al. 2021; Almishri et al. 2022; Al-Kuraishy and 
Al-Gareeb 2021a). ADAMs, similarly to MMPs, possess 
various physiological functions and the ability to regulate 
many processes such as cell migration, proliferation, angio-
genesis, apoptosis, wound healing, and tissue repair and sur-
vival. ADAM17 activates TNF-α and sheds ACE2, facilitat-
ing SARS-CoV-2 entry (Nadwa et al. 2023; Aleksova et al. 
2021; Almishri et al. 2022; Al-Kuraishy and Al-Gareeb 
2021a). In spite of a lower ACE2 expression on cells surface, 
patients with cardiovascular disorders have a higher COVID-
19 mortality rate, which is likely driven by the imbalance 
between ADAM17 protein which is required for cleavage of 
ACE2 ectodomain resulting in increased ACE2 shedding and 
TMPRSS2 which is required for spike glycoprotein priming 
(Aleksova et al. 2021; Almishri et al. 2022; Al-Kuraishy and 
Al-Gareeb 2021a). Although the membrane-bound form of 
ACE2 regulates the ACE2/Ang1-7 axis, the role of soluble 
ACE2 remains largely unclear (Al-Buhadily et al. 2021). 
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It has been recognized that activating the Nrf2 pathway by 
butyrate releasers reduces COVID-19 severity by inhibit-
ing the ADAM17 pathway (Paparo et al. 2022). Notably, 
the expression of ADAM17 was significantly increased in 
Nrf2-deficient macrophages in vivo and in vitro (Reddy et al. 
2022). Therefore, promoting expression of Nrf2 reduces car-
diovascular injury and inflammatory injury in COVID-19 
patients.

These verdicts pointed out that the Nrf2 pathway is intri-
cate with different signaling pathways to reduce the risk of 
OS and inflammatory disorders in COVID-19.

Nrf2 and renin angiotensin system

SARS-CoV-2 infection induces downregulation of ACE2, 
which involves the metabolism of AngII to angiotensin 1–7 
(Ang1-7) (Al-Kuraishy et al. 2022o, 2023j, 2023k). This 
interaction leads to the overexpression of pro-inflammatory 
AngII and the reduction of anti-inflammatory Ang1-7 with 
subsequent development of ALI/ARDS (Al-Kuraishy et al. 
2023l, 2022k, 2022u, 2023g). Deregulation of the RAS is 
associated with the development of OS and inflammation by 
inducing the expression of NADPH and pro-inflammatory 
cytokines, respectively (Al-Kuraishy et al. 2021m). A higher 
circulating AngII level inhibits endogenous antioxidant 
capacity and may inhibit the expression of the Nrf2 pathway 
(Al-Kuraishy et al. 2021n; Alkazmi et al. 2023a). Exagger-
ated AngII in rats with experimental kidney injury leads 
to OS by inhibiting the Nrf2 pathway (Uddin et al. 2021). 
Pepe et al. (Pepe et al. 2019) observed that induction of the 
Nrf2 pathway attenuates AngII-induced intestinal epithelial 
injury in mice. In addition, activators of the Nrf2 pathway 
can reduce exaggerated intra-renal AngII in diabetic patients 
and the development of diabetic nephropathy (Abdo et al. 
2015). The SARS-CoV-2 viral spike protein binds to ACE2, 
which aids viral entrance into the host cell (Al-Kuraishy 
et al. 2023c, 2023e, 2022b; Alsaidan et al. 2023). In light 
of the probable elevation the expression of ACE2 by these 
drugs, there has been growing suspicion that ACE inhibi-
tors and Ang II receptor blockers may raise the risk of the 
onset and severity of COVID-19 (Al-Kuraishy et al. 2022h). 
SARS-CoV-2, on the other hand, stimulates ACE2 shedding 
from the cell surface, downregulates ACE2 expression, and 
enhances ACE2 endocytosis, which raises Ang II concen-
tration and lowering Ang-(1–7) (Al-Maiahy et al. 2021). 
Due to Ang II’s pro-inflammatory effects and the lack of 
Ang-(1–7)-mediated counter-regulation is probably signifi-
cant in the pathophysiology of COVID-19 (Al-Kuraishy and 
Al-Gareeb 2021c). COVID-19 hypercoagulability may be 
caused by the prothrombotic effects of increased Ang II (Al-
Kuraishy et al. 2023b). The COVID-19-associated vascu-
lopathy may be facilitated by the upregulation of ACE/Ang 

II and downregulation of ACE2/Ang-(1–7) in the vascular 
endothelium (Al-kuraishy et al. 2023b). An updated study 
revealed that local RAS contribute to the pathogenesis and 
progression of diabetic nephropathy by exacerbating oxida-
tive stress and inflammation (Razliqi et al. 2023). Activa-
tion of Nrf2 pathway by gentisic acid attenuates diabetic 
nephropathy in animal model study (Razliqi et al. 2023). 
Therefore, dysregulation of RAS in COVID-19 could be 
the possible reason behind the reduction of Nrf2 activity. 
Thus, AT1R blockers may be beneficial in preventing OS 
and inflammatory reactions via upregulation of the Nrf2 
pathway (Karan et al. 2020).

Nrf2 and endothelial dysfunction

SARS-CoV-2 infection primarily affects the vascular 
endothelium leading to endothelial dysfunction and the 
development of coagulopathy (Alrouji et al. 2023b; Alkazmi 
et al. 2023b; Alomair et al. 2023). SARS-CoV-2 infects the 
endothelial cells directly due to the abundance expression 
of ACE2, causing cellular injury and apoptosis with subse-
quent reduction of endothelial cells’ capacity to release anti-
thrombotic factors (Alomair et al. 2023). In addition, injury 
of pulmonary vascular endothelial cells by direct cytopathic 
effects of SARS-CoV-2 or due to OS and hyperinflammation 
lead to pulmonary micro-thrombosis, a prominent feature 
of COVID-19 (Moubarak et al. 2021; Batiha et al. 2023b; 
Al-Kuraishy and Al-Gareeb 2021b). Particularly, circulat-
ing endothelial cells and soluble intercellular adhesion mol-
ecule-1 levels are augmented in severely affected COVID-19 
patients (Bonaventura et al. 2021). ED is a risk factor for 
developing micro-vascular dysfunction and immune throm-
bosis due to NETs formation and platelet activation (Bon-
aventura et al. 2021). It has been reported that activation of 
the Nrf2 pathway by ellagic acid prevents OS-induced ED in 
mice (Ding et al. 2014). Chen et al. (Chen et al. 2015) illus-
trated that Nrf2 activators decrease the propagation of ED 
in animal model studies. It has been demonstrated that res-
veratrol has an essential role in preventing the development 
of ED through the activation of the Nrf2 pathway (Parsa-
manesh et al. 2021). In addition, Nrf2 improves endothelial 
function by activating nitric oxide (NO) synthase and the 
release of NO (Luo et al. 2015). Furthermore, Nrf2 tempers 
the development of immune thrombosis and coagulopathy 
through the mitigation of hyperinflammation and OS, which 
are intricate in the propagation of ED and linked coagu-
lopathy (Takahashi et al. 2020). In vitro study conducted by 
Takahashi et al. (Takahashi et al. 2020) demonstrated that 
Nrf2 plays an essential role in the prevention of coagulopa-
thy by negative regulation of tissue plasminogen activator 
and fibrinolytic activity. As well, activation of Nrf2 reduces 
the risk of venous thrombosis by alleviating inflammatory 
changes and OS (Li et al. 2021). These verdicts suggested 
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that the Nrf2 pathway may mitigate ED and associated coag-
ulopathy in COVID-19.

Nrf2 and cytokine storm in COVID‑19

SARS-CoV-2 can rapidly activate pathogenic Th1 cells 
to secrete pro-inflammatory cytokines, such as granulo-
cyte–macrophage colony-stimulating factor (GM-CSF) and 
IL-6 (Al-Kuraishy et al. 2021d, 2021f, 2020b; Onohuean 
et al. 2021). GM-CSF further activates inflammatory mono-
cytes to produce large quantities of IL-6, TNF-α, and other 
cytokines (Al-Kuraishy et al. 2020a). Membrane-bound 
immune receptors such as TLR4 may contribute to an 
imbalanced inflammatory response, and weak IFN-γ induc-
tion may be an important amplifier of cytokine produc-
tion (Hussien et al. 2018). Together, the impaired acquired 
immune responses and unrestrained inflammatory innate 
responses to SARS-CoV-2 may cause cytokine storms 
(Rasheed et al. 2019; Song et al. 2020). It has been shown 
that the Nrf2 pathway inhibits the expression of pro-inflam-
matory cytokines and the progression of cytokine storm in 
COVID-19 (Zinovkin and Grebenchikov 2020). Particularly, 
Nrf2 has a role in regulating immune response and inflam-
mation. It decreases the expression of pro-inflammatory 
cytokines, including MCP-1, TNF-α, IL-6, and IL-1β, by 
inhibiting the recruitment of RNA polymerase II and mac-
rophage activation (Zhang et al. 2022). In critically affected 
COVID-19, Nrf2 activators decrease systemic inflamma-
tion and OS (McCord et al. 2020). Different experimental 
studies confirmed that Nrf2 activators inhibit the expression 
and release of pro-inflammatory cytokines (Motterlini et al. 
2019; Thimmulappa et al. 2006). Similarly, Nrf2 activators 

attenuate the airway inflammatory process and ED develop-
ment (Al-Kuraishy et al. 2019a, 2019b, 2022k). A clinical 
trial also revealed the protective effect of Nrf2 activators in 
preventing lung inflammation (Kobayashi et al. 2016). Fur-
thermore, Nrf2 inhibits the activation of different inflamma-
tory signaling pathways, including NLRP3 inflammasome, 
TLR4, HMBP1, NF-κB, and STAT3 that are involved in the 
development of cytokine storm (Ren et al. 2019). As well, 
Nrf2 blocks the OS pathway, which activates inflammatory 
signaling pathways like NF-κB and NLRP3 inflammasome 
(Ren et al. 2019). Similarly, Nrf2 inhibits abnormal and 
exaggerated immune response through inhibition of INF 
activation, thereby preventing the excessive release of pro-
inflammatory cytokines (Bhaskar et al. 2020). Therefore, 
the Nrf2 activator could be effective in the attenuation of the 
SARS-CoV-2 infection-induced cytokine storm.

Nrf2 activators and KEAP1 inhibitors

Sources and mechanism of actions of Nrf2 activators are 
listed (Table 1). It has been reported that Nrf2 activators 
reduces airway inflammation as documented by many clin-
ical trials (Al-Kuraishy et al. 2022o; Carlson et al. 2020; 
Müller et al. 2016). For example, a flavonoid sulforaphane 
inhibits SARS-CoV-2 infection-induced expression of 
IL-6 and IL-8 in bronchial epithelial cells (Gasparello 
et al. 2021). Sulforaphane hinders the interaction between 
SARS-CoV-2 spike protein and ACE2 with inhibition of 
the release of pro-inflammatory cytokines and develop-
ment of cytokine storm (Gasparello et al. 2021). Kiser 
et al. (Kiser et al. 2021) revealed that sulforaphane inhib-
its the expression of NLRP3 inflammasome and NF-κB 

Table 1  Sources and mechanism of actions of Nrf2 activators

Ref Nrf2 activator Source Mechanisms

Yagishita, Fahey (Yagishita et al. 2019) Sulforaphane Broccoli Increases NQO1, inhibits OS, reduces misfolded 
proteins

Alam, Ali (Alam et al. 2022) Epigallocatechin Green tea Increases antioxidant capacity
Wang, Wang (Wang et al. 2018) Resveratrol Grapes Increases antioxidant capacity. A negative regu-

lator of KEAP1 increases NQO1 expression
Jia, Zhang (Jia et al. 2021) Quercetin Apples, citrus fruits Augmentation translocation of nuclear Nrf2
Cao, Zhao (Cao et al. 2021) Lycopene Watermelon, grapefruits Improves HO-1 signaling, reduces ROS, inhibits 

apoptosis
Khalil, Eliwa (Khalil et al. 2021) Triterpene lactones Ashwagandha Augmentation translocation of nuclear Nrf2 

inhibits apoptosis
Korenori, Tanigawa (Korenori et al. 2013) Isothiocyanate Wasabi Inhibits degradation of Nrf2
He, Li (He et al. 2020) Thymol Thyme Upregulates Nrf2expression and inhibits KEAP1
Mimura, Inose-Maruyama (Mimura et al. 

2019)
Carnosic acid Rosemary Inhibits KEAP1

Han, Xiao (Han et al. 2016) Dimethyl fumarate ………… Inhibits ROS generation activates ARE
Macabrey, Longchamp (Macabrey et al. 2022) Sodium thiosulfate …………. Inhibits degradation of Nrf2 and ROS genera-

tion
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with a suppression effect on the development of cytokine 
storms. Therefore, sulforaphane could be a candidate 
for treating COVID-19 through modulation of OS and 
hyperinflammation.

Moreover, dimethyl fumarate, an approved drug for treat-
ing multiple sclerosis and psoriasis, inhibits inflammatory 
disorders in both Nrf2-dependent and independent path-
ways (Al-Kuraishy et al. 2023i). A case study of COVID-19 
patients treated with dimethyl fumarate demonstrated that 
this drug had immunomodulatory effects that can prevent 
the development of cytokine storm (Mantero et al. 2021). 
Furthermore, dimethyl fumarate had antioxidant and anti-
inflammatory effects with modulatory effects on the immune 
cells so that it can attenuate the development of cytokine 
storms (Timpani and Rybalka 2020). Dimethyl fumarate 
inhibits neutrophil migration, neutrophil-mediated ROS pro-
duction, and pro-inflammatory cytokine expression (Müller 
et al. 2016). Remarkably, dimethyl fumarate competes with 
SARS-CoV-2 to bind nicotinic acetylcholine receptor, which 
is involved in the pathogenesis of SARS-CoV-2 infection 
and the development of dysautonomia (Simões et al. 2021). 
Therefore, dimethyl fumarate could effectively reduce the 
development of COVID-19-induced dysautonomia. Like-
wise, a hydrogen sulfide donor sodium thiosulfate induces 
activation of Nrf2 and used in the management of cyanide 
intoxications, has antiviral and anti-inflammatory proper-
ties, and could be effective against SARS-CoV-2 infection 
(Dai et al. 2021). Importantly, sodium thiosulfate inhibits 
OS by reducing the production of ROS. Sodium thiosulfate 
has a cytoprotective effect by inhibiting pro-inflammatory 
cytokines (Marutani et al. 2015). Sodium thiosulfate pre-
vents pneumonia-induced ALI in children (Farese et al. 
2011). Therefore, inhalation of sodium thiosulfate could 
efficiently decrease SARS-CoV-2 infection-induced ALI 
(Evgen’ev and Frenkel 2020).

Indeed, resveratrol, a plant polyphenol, activates Nrf2 and 
inhibits the KEAP1 pathway, improving the anti-inflamma-
tory and antioxidant properties of the Nrf2 signaling path-
way (Liao et  al. 2021). Similarly, resveratrol augments 
endogenous antioxidant capacity independent of the Nrf2 
signaling pathway (Liao et al. 2021). Consequently, resvera-
trol can be used as adjuvant therapy in managing COVID-
19 patients through the alleviation of OS and inflammatory 
disorders (Russo et al. 2023). A study demonstrated that 
a diterpenoid lactone and rographolide inhibits the inter-
action between Nrf2 and KEAP1, leading to the upregu-
lation of Nrf2 expression (Schulte et al. 2022). Therefore, 
rographolide could be effective against SARS-CoV-2 infec-
tion-induced OS.

These findings proposed that activation of Nrf2 by 
direct activators or inhibition of the KEAP1 pathway aug-
ment the anti-inflammatory and antioxidant effect of the 
Nrf2 pathway. In this state, activation of the Nrf2 pathway 

can attenuate the development of OS, hyperinflammation, 
and cytokine storm.

On the other hand, KEAP1 inhibitors increase the activ-
ity of anti-inflammatory and antioxidant effects mediated 
by Nrf2. KEAP1 inhibitors attenuate inflammatory and 
OS-mediated ALI (Duran et al. 2016). KEAP1 inhibitors 
like pentoxifylline and pirfenidone improve the antioxidant 
capacity and reduce COVID-19 severity in patients with 
ALI/ARDS (Chavarría et al. 2021; Hamidi et al. 2021). 
In addition, KEAP1 inhibitors prevent the activation of 
NF-κB and the release of pro-inflammatory cytokines 
(Bhandari et al. 2021).

Quercetin, a well-known antioxidant was studied in 152 
outpatients suffering from COVID-19 (Singh et al. 2021). 
The randomized controlled and open-labeled study was 
carried out for 30 days to show that quercetin is help-
ful as an adjuvant to the standard treatment in COVID-19 
patients (Singh et al. 2021). It was reported that during the 
initial stage of COVID-19 infection, quertcetin reduced 
the duration of hospitalization, the need for oxygen sup-
plementation and deaths (Pierro et al. 2021). Quercetin 
activates Keap1-Nrf2 system and has been reported to 
mediate anti-inflammatory response (Qin and Hou 2016).

Therefore, Nrf2 activators and KEAP1 inhibitors 
may alleviate OS and inflammatory changes and pre-
vent cytokine storm development in COVID-19. Indeed, 
there are a lot of Nrf2 activators, but most of them are 
not approved by FDA. Nevertheless, because of their anti-
inflammatory and antioxidant properties, Nrf2 activators 
could be a possible adjuvant therapeutic strategy in man-
aging severely affected COVID-19 patients.

Limitation

The present critical review had several limitations, includ-
ing a shortage of clinical studies which intricate Nrf2 
activators in the management of COVID-19 patients. 
Likewise, most clinical trials still do not endorse Nrf2 acti-
vators in the management of COVID-19. Targeting Nrf2 
by modulators might be helpful in COVID-19. Though, 
before implementing this novel strategy in this current 
pandemic, we must address a number of important issues, 
including a clear concept of SARS-CoV-2–2 interactions, 
other impacts of downregulation of ACE2 in human lung, 
clear concepts on the metabolic reprogramming, and adap-
tation of immune cells such as macrophages and T cells, 
pharmacological activation of Nrf2and its impact on the 
viral entry into the host cell. Taken together, more research 
is necessary with adequate preclinical and clinical trials to 
establish this strategy.
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Conclusions

SARS-CoV-2-induced OS triggers the activation of differ-
ent signaling pathways, which counterbalances this com-
plication. One of these pathways is Nrf2 which induces 
a series of cellular interactions to mitigate SARS-CoV-
2-mediated viral toxicity and OS-induced cellular injury. 
The nrf2 pathway inhibits the expression of pro-inflam-
matory cytokines and the development of cytokine storm 
in COVID-19. Nrf2 activators could play an essential role 
in reducing SARS-CoV-2 infection-induced inflammation 
by suppressing NLRP3 inflammasome in COVID-19. Fur-
thermore, Nrf2 activators can attenuate ED, RAS dysregu-
lation, immune thrombosis, and coagulopathy. Therefore, 
this review suggests experimental, in vitro, preclinical, and 
clinical studies to confirm the possible therapeutic effects of 
Nrf2 activators alone or as adjuvant therapy in the manage-
ment of COVID-19.
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