Skip to main content
Log in

Extracellular Hsp70 modulates 16HBE cells' inflammatory responses to cigarette smoke and bacterial components lipopolysaccharide and lipoteichoic acid

  • Original Article
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), leading to chronic inflammation, while bacterial components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) are often present in airways of COPD patients, especially during exacerbations.

We hypothesised that extracellular heat shock protein 70 (eHsp70), a damage-associated molecular pattern elevated in serum of COPD patients, induces inflammation and alters cigarette smoke and LPS/LTA-induced inflammatory effects in the airway epithelium.

We used 16HBE cells exposed to recombinant human (rh)Hsp70 and its combinations with cigarette smoke extract (CSE), LPS or LTA to investigate those assumptions, and we determined pro-inflammatory cytokines’ secretion as well as TLR2 and TLR4 gene expression.

rhHsp70 and CSE alone stimulated IL-6, IL-8 and TNF-α secretion. CSE and rhHsp70 had antagonistic effect on IL-6 secretion, while combinations of LPS or LTA with rhHsp70 showed antagonistic effect on TNF-α release. By using specific inhibitors, we demonstrated that effects of rhHsp70 on cytokines’ secretion were mediated via NF-κB and/or MAPK signalling pathways. rhHsp70 increased, and CSE decreased TLR2 gene expression compared to untreated cells, but their combinations increased it compared to CSE alone. LPS and rhHsp70 combinations decreased TLR2 gene expression compared to untreated cells. TLR4 expression was not induced by any of the treatments.

In conclusion, we demonstrated that extracellular Hsp70 modulates pro-inflammatory responses of human airway epithelial cells to cigarette smoke and bacterial components LPS and LTA. Simultaneous presence of those compounds and their interactions might lead to inappropriate immune responses and adverse consequences in COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

This work has been fully supported by the Croatian Science Foundation under the project number IP-2014-09-1247.

This work has been supported in part by project Strengthening the scientific research and innovation capacities of the Faculty of Pharmacy and Biochemistry, University of Zagreb (FarmInova; project number KK.01.1.1.02.0021), financed from the European Regional Development Fund, Operational Program Competitiveness and Cohesion for the period 2014-2020.

The work of PhD student Iva Hlapčić has been fully supported by the “Young researchers' career development project – training of doctoral students” of the Croatian Science Foundation funded by the European Union from the European Social Fund.

Andrea Hulina-Tomašković is recipient of a European Respiratory Society Fellowship (STRTF 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lada Rumora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulina-Tomašković, A., Somborac-Bačura, A., Grdić Rajković, M. et al. Extracellular Hsp70 modulates 16HBE cells' inflammatory responses to cigarette smoke and bacterial components lipopolysaccharide and lipoteichoic acid. Cell Stress and Chaperones 27, 587–597 (2022). https://doi.org/10.1007/s12192-022-01294-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-022-01294-w

Keywords

Navigation