
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12192-022-01281-1

ORIGINAL ARTICLE

Multivalent protein–protein interactions are pivotal regulators 
of eukaryotic Hsp70 complexes

Oleta T. Johnson1 · Jason E. Gestwicki1

Received: 18 May 2022 / Revised: 18 May 2022 / Accepted: 24 May 2022 
© The Author(s) 2022

Abstract
Heat shock protein 70 (Hsp70) is a molecular chaperone and central regulator of protein homeostasis (proteostasis). Para-
mount to this role is Hsp70’s binding to client proteins and co-chaperones to produce distinct complexes, such that under-
standing the protein–protein interactions (PPIs) of Hsp70 is foundational to describing its function and dysfunction in disease. 
Mounting evidence suggests that these PPIs include both “canonical” interactions, which are universally conserved, and 
“non-canonical” (or “secondary”) contacts that seem to have emerged in eukaryotes. These two categories of interactions 
involve discrete binding surfaces, such that some clients and co-chaperones engage Hsp70 with at least two points of contact. 
While the contributions of canonical interactions to chaperone function are becoming increasingly clear, it can be challeng-
ing to deconvolute the roles of secondary interactions. Here, we review what is known about non-canonical contacts and 
highlight examples where their contributions have been parsed, giving rise to a model in which Hsp70’s secondary contacts 
are not simply sites of additional avidity but are necessary and sufficient to impart unique functions. From this perspective, 
we propose that further exploration of non-canonical contacts will generate important insights into the evolution of Hsp70 
systems and inspire new approaches for developing small molecules that tune Hsp70-mediated proteostasis.
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Introduction

In order to maintain protein homeostasis (proteostasis), 
every cell employs a coordinated network of molecular 
chaperones that ensures the exquisite balance of protein 
levels. These chaperone networks are frequently dysregu-
lated in diseases, including cancer, neurodegeneration, and 
viral infection, underscoring their importance (Labbadia and 
Morimoto 2015). Central components of this network are 
members of the heat shock protein 70 (Hsp70) family, which 
regulate protein quality control in organisms—from bacteria 
to humans—by binding to unfolded, misfolded, or damaged 
protein substrates, termed “clients.” Hsp70s then deliver cli-
ents to downstream pathways, including those involved in 
folding, trafficking, or degradation (M. P. Mayer and Bukau 
2005). How do Hsp70s choose between these dramatically 

different outcomes? Why do they promote folding of a cli-
ent under some conditions but turnover under others? These 
questions are at the center of many ongoing studies in the 
field. Moreover, Hsp70s need to make these decisions for an 
impressive variety of proteins because they recognize a sim-
ple motif enriched in hydrophobic amino acids (Gragerov 
et al. 1994; Rudiger 1997) that is common throughout the 
proteome (Srinivasan et al. 2012; Behnke et al. 2016), such 
that most proteins are likely to be clients under the right 
circumstances (Calloni et al. 2012). Thus, understanding 
the mechanisms of Hsp70-mediated quality control might 
provide significant insight into regulation of the proteome 
and how it might be leveraged to treat disease.

Across organisms, members of the Hsp70 family exhibit 
remarkable conservation of molecular structure. All 
orthologs consist of two domains: a nucleotide-binding 
domain (NBD) and a substrate-binding domain (SBD) (Mat-
thias P. Mayer and Gierasch 2019). The SBD is further sub-
divided into three regions: (i) a beta-barrel domain (SBDβ), 
a (ii) an alpha-helical lid (SBDα or lid), and (iii) a disor-
dered C-terminal extension (Fig. 1A) (Matthias P. Mayer and 
Gierasch 2019). Pioneering studies of the bacterial Hsp70, 
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DnaK, have provided invaluable insight into the structure of 
these regions and how their intramolecular motions are coor-
dinated. Specifically, the NBD contains a cleft that binds 
and hydrolyzes ATP (McCarty et al. 1995), resulting in dra-
matic, long-range conformational changes throughout the 
NBD, SBDβ, and lid (Fig. 1B) (A. Buchberger et al. 1994; 
Alexander Buchberger et al. 1995; Pellecchia et al. 2000; J. 
Jiang et al. 2005; Meng et al. 2018; Zuiderweg et al. 2017; 
English et al. 2017; Lai et al. 2017; Meng et al. 2018; Wu 
et al. 2020). For example, in the ATP-bound “open” state, 
the lid is docked to the NBD, leaving the SBDβ available 
to weakly interact with clients (Arhar et al. 2021; Qi et al. 
2013); then, upon hydrolysis, the ADP-bound state under-
goes a significant conformational change and the lid docks 
to the SBDβ to form a “closed” state that binds clients with 
stronger affinity (Schlecht et al. 2011; Rüdiger et al. 1997; 
Matthias P Mayer et al. 2000; Bertelsen et al. 2009; Zhurav-
leva and Gierasch 2015). Consistent with its high conserva-
tion, Hsp70s from other organisms seem to undergo similar 
(but not identical) conformational changes and to interact 
with client proteins in a way that is broadly comparable to 
DnaK (Meng et al. 2018; Wu et al. 2020).

While these conformational changes are important for 
Hsp70’s interactions with clients, this activity does not 
fully describe their decision-making ability. Rather, the 

diverse functions of Hsp70 require coordination with a 
suite of co-chaperone proteins that tune its activity and 
program client fate. In humans, these co-chaperones 
include three major families: the J-domain proteins (JDPs), 
the nucleotide exchange factors (NEFs), and the tetratri-
copeptide repeats (TPR) proteins. These co-chaperones 
make direct physical contact with Hsp70s (Zuiderweg 
et al. 2017) and a subset of them, JDPs and NEFs, accel-
erate nucleotide cycling (Fig. 1B) (Rosenzweig et al. 2019; 
Kampinga and Craig 2010). Moreover, many of these co-
chaperones also serve as adapters, which physically bridge 
Hsp70s and their clients with the pathways involved in 
folding, trafficking, degradation, and other outcomes 
(Rosenzweig et al. 2019). Thus, Hsp70s are only functional 
when they are part of a multi-protein complex, in which 
the chaperone, its clients and its co-chaperones engage in 
protein–protein interactions (PPIs) (Schröder et al. 1993). 
Notably, most eukaryotic cells express multiple members 
of each chaperone and co-chaperone family; for example, 
there are at least 11 distinct Hsp70 isoforms (Tavaria et al. 
1996) and ~ 45 JDP genes in humans (Kampinga and Craig 
2010). This diversity allows Hsp70s to form many possi-
ble combinations of complexes to diversify its functions. 
Moreover, these various complexes are dynamic—they 
form and dissolve in response to temperature (Palleros 

Fig. 1   Members of the Hsp70 family have a conserved architecture 
and ATPase cycle. A General structure of Hsp70 family members, 
including a nucleotide-binding domain (NBD), substrate-binding 
domain (SBD). The SBD is sub-divided into SBDβ, SBDα (lid) and 
C-terminal extension. The various Hsp70 orthologs vary in the length 
and composition of the C-terminal region and cytoplasmic isoforms 

of eukaryotic Hsp70s also have an EEVD motif. The structure of 
the prokaryotic Hsp70, DnaK (PDB 2KHO), is shown, along with a 
cartoon representation. B Schematic of the ATPase cycle of Hsp70s 
(PDB 2KHO and 5NRO), highlighting the conformational changes 
that accompany hydrolysis and the roles of the co-chaperones: 
J-domain proteins (JDPs) and nucleotide exchange factors (NEFs)

398 O. T. Johnson, J. E. Gestwicki



1 3

et al. 1991), ATP cycling (Palleros et al. 1991; Matthias 
P. Mayer and Gierasch 2019), competing PPIs (Rosam 
et al. 2018; Gowda et al. 2018; Johnson et al. 2022), post-
translational modifications (PTMs) (Assimon et al. 2015; 
Nitika et al. 2020), and the thermodynamic and kinetic 
requirements of the client itself (Sekhar et al. 2012).

Because Hsp70s act as part of dynamic, multi-protein 
complexes, one key way to understanding their function is 
to probe their PPIs. Indeed, decades of work has revealed 
how clients and co-chaperones interact with Hsp70s. For 
example, JDPs use a J-domain to contact the NBD and inter-
domain linker (Kampinga and Craig 2010) and NEFs use a 
variety of domains to bind surfaces on the NBD (Bracher 
and Verghese 2015). Collectively, we refer to these PPIs as 
the “canonical” interactions to denote their importance in 
the history of Hsp70 research and their striking conserva-
tion in both prokaryotes and eukaryotes. While the canoni-
cal PPIs of Hsp70 are sufficient for some functions, such 
as promoting nucleotide cycling, there has been an appar-
ent expansion of PPIs in eukaryotes to add new functions. 
For example, TPR co-chaperones, which are not present in 
prokaryotes, use their TPR domains to bind an EEVD motif 
at the C-terminus of cytosolic, eukaryotic Hsp70s—serving 
as adapters that link cytosolic Hsp70s to cellular pathways 
involved in folding, localization, and degradation (D’Andrea 
2003; Weber et al. 2020). Evidence suggests that eukaryotic 
Hsp70s have also evolved to engage in additional contacts 
with the clients, JDPs, and NEFs that already contain canon-
ical binding domains. These secondary interactions involve 
interfaces that are distinct from those employed in canonical 
binding, such that Hsp70s can interact with some clients or 
co-chaperones via multiple points of contact. In many bio-
logical systems, it is well known that a mixture of primary 
and secondary binding sites stabilizes complexes through 
enhanced avidity (Kitov and Bundle 2003; Errington et al. 
2019); thus, one role of multivalent, non-canonical con-
tacts in the eukaryotic Hsp70 systems might be to likewise 
tune avidity. However, this effect has rarely been explored 
or quantified for Hsp70 PPIs and the contributions of indi-
vidual contacts to avidity remain unclear. In contrast, it is 
becoming apparent that these secondary contacts are neces-
sary and sufficient for many of the ascribed functionalities 
of eukaryotic Hsp70 sub-networks.

To complement recent reviews on Hsp70 structure and 
function (Freilich et al. 2018; Clerico et al. 2015; Matthias P. 
Mayer and Gierasch 2019; Lang et al. 2021), we focus here 
on discussing what is known about non-canonical contacts. 
We chose this focus because non-canonical interactions 
seem to be often overlooked—perhaps because the prokar-
yotic models lack them. From this literature analysis, we 
propose that a deeper understanding of non-canonical inter-
actions is critical to revealing the logic of Hsp70-mediated 
proteostasis in eukaryotes. function.

Hsp70 clients

An integral part of Hsp70 function is its ability to bind cli-
ent proteins and promote their native folding (Sekhar et al. 
2012) and disaggregation (Nillegoda et al. 2018; Melo et al. 
2022). Initial efforts to identify what sequences are bind-
ing sites for Hsp70s focused on screening peptide librar-
ies (Gragerov et al. 1994; Gragerov and Gottesman 1994; 
Rudiger 1997; Behnke et al. 2016). Broadly, these studies 
reveal a preference of Hsp70s for sequences of 5 to 7 resi-
dues enriched in hydrophobic and non-polar amino acids 
(Blond-Elguindi 1993; Gragerov et al. 1994; Richarme and 
Kohiyama 1993; Rudiger 1997). This motif makes logical 
sense, as hydrophobic sequences are normally sequestered 
into the interior of properly folded proteins; thus, by binding 
to these motifs, Hsp70s might discriminate between folded 
and misfolded/unfolded clients. Guided by these large-scale 
peptide array studies, algorithms have been created to com-
putationally predict Hsp70 binding sites in client amino acid 
sequences. Most recently, approaches based on a position-
specific scoring matrix (PSSM) (Van Durme et al. 2009; 
Schneider et al. 2016; Nordquist et al. 2021) and position-
independent scoring matrix (PISM) (Gutierres et al. 2019) 
have been reported. Here, we will briefly review what is 
known about the structure of canonical client interactions 
before turning our attention to the non-canonical client con-
tacts present in eukaryotes.

Canonical Hsp70/client interactions

Early work with DnaK showed that a canonical peptide 
motif binds in a linear, extended conformation within a 
hydrophobic groove of SBDβ (Fig. 2) (Landry et al. 1992; 
Swain et al. 2006; Marcinowski et al. 2013; Schlecht et al. 
2011). The SBDβ is composed of an 8-stranded, antiparallel 
beta barrel (Matthias P Mayer et al. 2000; Zhu et al. 1996), 
and conserved residues within its groove, namely Ile401, 
Phe426, Val436, and Ile438, are critical for binding to a 
model peptide (NRLLLTG) (Fig. 2) (Zhu et al. 1996; Lar-
kin et al. 2007). Additionally, the Gln433 side chain, along 
with the backbone at Met404 and Ala429, form hydrogen 
bonds with the backbone of NRLLLTG, consistent with the 
broad selectivity of Hsp70s for non-polar sequences with 
minor contributions from side chain recognition. All three 
of these residues are in conformationally dynamic β-loops 
of the SBD that form an arch over the hydrophobic cleft and 
appear to moderate client association (Fig. 2) (Zhu et al. 
1996; Stevens et al. 2009). The relatively shallow nature 
of the groove is also consistent with the weak measured 
affinity for Hsp70’s clients, which is measured to be ~ 0.1 to 
10 μM depending on the sequence (McCarty et al. 1996). It 
should be noted that Met404 and Ala429 are more variable 
across Hsp70 homologs (Fig. 2) and appear to account for 
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differences in client selectivity within Hsp70 family mem-
bers (Rüdiger et al. 2000; Marcinowski et al. 2011). Never-
theless, the overall theme is that Hsp70s use their conserved 
SBD to bind exposed, hydrophobic motifs in clients.

Non‑canonical Hsp70/client interactions

Recently, Hsp70s were found to interact with sequences that 
do not fit the normal consensus for a canonical client (Sarkar 
et al. 2008; Burmann et al. 2020; Tao et al. 2021), often 
containing negative charges or other polar groups. Concur-
rently, evidence has emerged that Hsp70s are capable of 
binding to clients that are in an assortment of non-linear 
conformational states (Mashaghi et al. 2016), and not just 
linear, extended motifs. Together, these types of observa-
tions suggest that eukaryotic Hsp70s may have evolved alter-
native ways of binding clients. Intriguingly, two intrinsically 
disordered proteins (IDPs), microtubule-associated protein 
tau (tau) and alpha-synuclein (α-syn), have been shown to 
contain both canonical and non-canonical interaction motifs 
(Sarkar et al. 2008; Taylor et al. 2018; Burmann et al. 2020), 
and, thus, have become interesting models for probing the 
two modes of client binding.

In a class of neurodegenerative diseases, termed tauopa-
thies, tau accumulates to form toxic aggregates (Mandelkow 
and Mandelkow 2012). In these disorders, cytosolic Hsp70s 
have been closely associated with tau disaggregation (Nach-
man et al. 2020) and turnover (Thompson et al. 2012; Jin-
wal et al. 2013; Kundel et al. 2018; Baughman et al. 2018; 
Mok et al. 2018), and these chaperones have been shown to 
directly interact with several sequences in tau’s microtubule-
binding repeats (Fig. 3A) (Sarkar et al. 2008; Wang et al. 
2009; Jinwal et al. 2013). To better understand how these 

motifs bind to Hsp70s, peptides corresponding to two of 
these sequences 274KVQIINKK281 and 306VQIVYK311 (num-
bering from the 2N4R splice isoform of human tau) were 
examined for their ability to bind the canonical, hydropho-
bic groove of the SBDβ from Hsc70 (HSPA8). Fascinat-
ingly, NMR titrations and fluorescence polarization (FP) 
competition studies found that only the 274KVQIINKK281 
peptide bound similarly to canonical, model peptides (Taylor 
et al. 2018). In contrast, the 306VQIVYK311 peptide seemed 
to bind in a non-canonical manner that was not competi-
tive with the model peptide. Further evidence for a non-
canonical interaction came from studies focusing on tau’s 
KFERQ-like motifs. Briefly, KFERQ sequences are known 
to be required for binding to Hsp70 during chaperone-medi-
ated autophagy (CMA) (Dice et al. 1986; Fred Dice 1990; 
Sahu et al. 2011; Morozova et al. 2016; Mukherjee et al. 
2016). Tau is a CMA substrate and it contains two ostensible 
KFERQ-like sequences, 336QVEVK340 and 347KDRVQ351 
(Wang et al. 2009). However, these KFERQ peptides do not 
compete with the model canonical peptides for binding to 
Hsp70’s SBD (Taylor et al. 2018), suggesting that they too 
bind non-canonically.

If the 306VQIVYK311, 336QVEVK340, and 347KDRVQ351 
do not bind the SBDβ groove, where do they bind? While 
the exact details are not yet known, it is speculated that they 
might bind in the SBDα/lid region (Fig. 3B). Circumstantial 
evidence for this possibility comes from NMR titrations, in 
which the peptides do not interact with an SBDβ lacking the 
lid (Taylor et al. 2018). Furthermore, the lid and C-terminal 
domains are the most divergent between Hsp70 orthologs 
and tau is known to bind differently to the major cytosolic 
family members, Hsc70 and Hsp72 (Jinwal et al. 2013; 
Nachman et al. 2020). However, the exact site responsible 

Fig. 2   Canonical clients bind 
a conserved, hydrophobic 
groove in Hsp70’s SBDβ. 
The SBDβ and lid of DnaK is 
pictured bound to the model 
client peptide NRLLLTG 
(PDB 1DKZ), highlighting 
the key residues involved. The 
conservation of those residues 
across Hsp70 orthologs in E. 
coli (DnaK), yeast (Ssa1), and 
humans (mtHsp70, BiP, Hsp72, 
and Hsc70) is shown from a 
CLUSTALW multiple sequence 
alignment
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for the non-canonical interactions with tau remain poorly 
defined and it is not clear if 306VQIVYK311, 336QVEVK340, 
and 347KDRVQ351 share the same interaction site(s).

More insight into non-canonical client interactions can 
be gleaned from recent studies using α-syn, which is known 
to form aggregates in Parkinson’s disease (Auluck et al. 
2002; Danzer et al. 2011; Klucken et al. 2004). Like tau, 
disaggregation of α-syn seems to be, in part, reliant on its 
interaction(s) with Hsp70 (M. M. Schneider et al. 2021; Gao 
et al. 2015). NMR titrations have shown that Hsp70 binds at 
least two distinct sites on α-syn: “Site 1”—the first 12 amino 
acids of the protein’s N-terminus and “Site 2”—a 6 amino 
acid sequence centered on tyrosine 39 (Fig. 3A) (Burmann 
et al. 2020). While site 2 resembles a canonical sequence, 
site 1 does not. Consistent with this observation, site 1 
binding to Hsp70 seems to be less sensitive to nucleotide, 
when compared to site 2 (Burmann et al. 2020). Is the non-
canonical, site 1 interaction of Hsp70 with α-syn function-
ally important? The answer seems to be yes because a non-
canonical interaction was recently reported to suppresses 
α-syn pathological aggregation in a nucleotide-independent 
fashion (Tao et al. 2021). Thus, the non-canonical interac-
tion is not simply an “extra” contact. Although it is not yet 
clear where site 1 binds on Hsp70s, a C-terminal truncation 
demonstrated that the lid domain is required for anti-aggre-
gation activity (Tao et al. 2021), again focusing attention on 
this domain as a possible site for the non-canonical contact 
(Fig. 3B). Interestingly, Hsp70’s lid domain is also known to 

interact with membranes (Morozova et al. 2016), ribosomal 
proteins and rRNA (Gumiero et al. 2016), and mitochondrial 
clients (Strub et al. 2003). Thus, these non-canonical interac-
tions might be more widespread than previously thought.

IDPs, such as α-syn and tau, are not the only examples of 
clients that include non-canonical-binding sites. X-linked 
inhibitor of apoptosis protein (XIAP) is an important anti-
cancer drug target that binds to Hsp70 with an uncharacter-
istically tight affinity (~ 260 nM) in vitro (Cesa et al. 2018). 
XIAP is composed of three baculoviral IAP repeat (BIR) 
domains, a ubiquitin-associated (UBA) domain, and a RING 
domain. Using prediction algorithms, canonical Hsp70 cli-
ent–binding sites were identified in the BIR2 and BIR3 
domains (Fig. 3A) and, as expected, point mutations within 
some of these sequences significantly weaken the interaction 
of XIAP with Hsp70 (Cesa et al. 2018). However, NMR 
studies using 15 N-labeled SBDβ surprisingly showed that 
titration with XIAP120–356, which contains BIR2 and BIR3 
but no other domains (Fig. 3A), did not cause the expected 
chemical shift perturbations (CSPs) in the hydrophobic 
groove (Cesa et al. 2018). Competitive FP assays supported 
this conclusion, as the NRLLLTG peptide was unable to 
compete with XIAP120–356 for binding to Hsp70. These find-
ings can be rationalized by the fact that although XIAP con-
tains predicted, canonical Hsp70-binding sequences, they 
are present within the folded BIR2/3 domains and, thus, may 
not be in the linear state required to bind Hsp70s in that 
way. Instead, binding seems to be driven by an alternate 

Fig. 3   Certain clients engage Hsp70 both canonically and non-canon-
ically. A The domain architecture of three client proteins is shown, 
with known Hsp70-binding sequences displayed. A subset of these 
sequences is experimentally shown to bind in a nucleotide-independ-
ent, non-canonical manner and they are not competitive with canoni-

cal, model substrates for binding SBDβ. B Schematic to illustrate that 
some clients, including α-syn and tau, have both canonical and non-
canonical binding motifs, and are able to interact with both the SBDβ 
and SBDα domains of Hsp70s. Still, the exact binding site of non-
canonical peptides is unknown. See text for citations and details
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mechanism. Concordant with this hypothesis, there was 
a rather surprising finding in this study—that titration of 
Hsp70’s NBD alone (lacking the SBDβ, lid or C-terminal 
domains) could abolish XIAP120–356 association (Cesa et al. 
2018). Thus, the non-canonical interaction of Hsp70 with 
XIAP120–356 seems to require the NBD. Furthermore, this 
non-canonical interaction also seems to be functionally 
important for XIAP stability, as disrupting Hsp70 expres-
sion or activity leads to rapid degradation of XIAP in cells 
(Zhang et al. 2015; Cesa et al. 2018). While non-canonical 
client interactions with the NBD are not commonly reported 
in the literature, XIAP120–356 is not the only example. In fact, 
HLA-DR, an MHC II receptor protein, has also been found 
to interact with the NBD (Rohrer et al. 2014), and like XIAP, 
binds with an unusually tight affinity (~ 15 to 130 nM) (Haug 
et al. 2007). Further studies are needed to elucidate both the 
location and the role of these non-canonical client interac-
tions for XIAP120–356, HLA-DR, and likely other clients.

Taken together, work on tau, α-syn and XIAP have 
revealed that eukaryotic Hsp70s engage in non-canonical 
interactions with clients. Moreover, comparing these exam-
ples reveals some shared features. For example, these inter-
actions occur exclusively outside of SBDβ and do not com-
pete with canonical peptides. Additionally, non-canonical 
interactions seem largely insensitive to the nucleotide status 
of Hsp70 (Tao et al. 2021; Cesa et al. 2018), which is in stark 
contrast to canonical clients. This nucleotide independence 
might be important for decoupling client interactions from 
the canonical ATPase cycle (see Fig. 1B) for reasons that are 
not yet clear. However, not all of the non-canonical interac-
tions are the same, and client-specific differences are also 
notable. For XIAP, Hsp70’s NBD appears to be critical for 
the interaction; yet, for tau and α-syn, the lid domain (and 
possibly the C-terminal extension) have emerged as the most 
likely binding site(s). These results suggest that there could 
be at least two, unique non-canonical binding sites for clients 
on eukaryotic Hsp70s.

It is not yet clear why some clients, such as tau and α-syn, 
contain both canonical and non-canonical motifs. Given that 
these sites engage different surfaces on Hsp70 and have dif-
ferent nucleotide dependences, it is possible that the number 
and type of binding site(s) within a client may convey func-
tional information. For example, having two types of sites 
may allow for multiple ways of degrading important clients 
through different Hsp70 complexes. One example of this 
logic appears to be α-syn, where mutating a KFERQ motif 
is sufficient to interrupt its degradation via CMA, but with-
out affecting its global turnover (Cuervo et al. 2004). In this 
case, having two types of Hsp70-binding sites (canonical 
and non-canonical) may provide redundancy and the ability 
of Hsp70s to access multiple degradation pathways. It is also 
possible that having both canonical and non-canonical-bind-
ing sites is useful for recruiting multiple Hsp70s to a single 

client protein, as exemplified by the model client, hTRF1, 
where at least 2 Hsp70 molecules can bind simultaneously 
to multiple sites on a single hTRF1 polypeptide (Rosenz-
weig et al. 2017). Likewise, multiple points of contact have 
been proposed to be important for the disaggregation activ-
ity of Hsp70 systems (Szabo et al. 1994; Nillegoda et al. 
2015). However, not all clients have both canonical and non-
canonical-binding sites; for example, huntingtin seems to 
exclusively bind non-canonically to Hsp70 (Monsellier et al. 
2015; Taylor et al. 2018). More work is needed to dissect the 
contributions of canonical and non-canonical interactions 
and uncover the information encoded in these combinations.

Hsp70 nucleotide exchange factors (NEFs)

In eukaryotes, there are four categories of NEFs: the GrpE, 
Hsp110, HspBP1, and Bag families (Bracher and Verghese 
2015). GrpE is most ancient of these NEFs, and its eukary-
otic orthologs are localized to the mitochondria (Bracher 
and Verghese 2015). Despite significant variance in their 
amino acid sequence and three-dimensional structures, all 
four NEF families bind near the nucleotide-binding cleft of 
the NBD to accelerate ATP re-binding (Brehmer et al. 2001; 
Sondermann 2001; Shomura et al. 2005; Schuermann et al. 
2008). We collectively refer to Hsp70’s interactions with 
these NEF’s domains as canonical, even though the different 
family members contain distinct domains and they utilize a 
variety of binding modes (Fig. 4A).

In addition to their canonical interaction domains, 
most NEFs also contain additional domains. For exam-
ple, Hsp110 includes a domain that resembles Hsp70’s 
SBD, which binds clients (Goeckeler et al. 2008; Xu et al. 
2012) and plays an essential role in protein disaggregation 
(Yamagishi et al. 2003; Ishihara et al. 2003; Abrams et al. 
2014). The Bag proteins exemplify this modular architec-
ture of the NEFs. The five members of this family (Bag1-
5) are defined by the presence of a Bag domain at their 
C-terminus (Bimston et al. 1998; Shinichi Takayama et al. 
1999; Gässler et al. 2001), but they differ in their other 
domains (Fig. 4B). For instance, Bag1 has a ubiquitin-like 
domain (UBL), which is hypothesized to play a role in tri-
age of Hsp70-bound clients to the ubiquitin–proteasome 
system (Lüders et al. 2000; Demand et al. 2001; Alberti 
et al. 2002). Another prominent member of the family, 
Bag3, has a number of additional domains, including IPV 
motifs that bind to small heat shock proteins (Carra et al. 
2008; Rauch et al. 2017; Guilbert et al. 2018) and a WW 
domain that allows it to shuttle clients to the autophagy-
lysosome pathway (Merabova et al. 2015). These adapter 
functions of Bag NEFs appear to be functionally impor-
tant because mutations in Bag3’s domains that alter its 
interactions with Hsp70 give rise to dilated cardiomyopa-
thy (Homma et al. 2006; McClung et al. 2017; Judge et al. 
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2017; Meister-Broekema et al. 2018). Here, we briefly 
review the canonical interactions of the BAG family NEFs 
with Hsp70s before discussing the growing evidence that 
they also make important non-canonical contacts.

Canonical Hsp70/BAG interactions

In the Bag family of NEFs, the canonical interaction with 
Hsp70 occurs via the Bag domain. This interaction stabilizes 

Fig. 4   Canonical Interactions of Hsp70 NEFs are highly conserved. 
A NEF interaction sites are mapped onto the Hsc70 NBD (PDB 
1HX1) and color coded by NEF. Binding sites shared by 2 or more 
NEFs are colored purple. B Domain architecture of the 5 Bag fam-
ily NEFs shows significant variance outside of the C-terminal Bag 
domain. C The co-crystal structure of the human Bag1 Bag domain 

(green) and Hsc70 (gray; PDB 1HX1) highlight an important network 
of electrostatics stabilizes the PPI interface. Conservation of these 
residues across Bag family members is shown below (C-terminal Bag 
domain was used for Bag 5) from a CLUSTALW multiple sequence 
alignment
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the NBD in an “open” conformation that favors ADP dis-
sociation and ATP re-binding (S. Takayama 1997; Bimston 
et al. 1998; Gässler et al. 2001; Sondermann 2001). These 
complexes are also relatively tight, with binding affinities 
in the mid-nanomolar range (Stuart et al. 1998; Rauch and 
Gestwicki 2014). Structural studies have shown that the 
Bag domains engage lobes IB and IIB of Hsp70’s NBD 
via a highly conserved network of electrostatic interac-
tions (Fig. 4C) (Briknarová et al. 2001; Sondermann 2001; 
Arakawa et al. 2010). Indeed, mutating one of these residues 
to alanine is sufficient to block the interaction and interrupt 
Hsp70-Bag functions both in vitro (Arakawa et al. 2010; 
Rauch et al. 2016) and in cells (Gentilella and Khalili 2011; 
Colvin et al. 2014). Furthermore, the canonical interaction 
through the BAG domain is sufficient to promote Hsp70’s 
ADP release, as treatment with the Bag domains of Bag1 
and Bag3 alone (without the other regions) will promote dis-
sociation of a fluorescent nucleotide with a similar potency 
to the full-length proteins (~ 0.4 to 0.7 µM) (Rauch and Gest-
wicki 2014).

Non‑canonical Hsp70/BAG interactions

Beyond their effects on nucleotide exchange, the NEFs 
have long been known to also promote client release from 
Hsp70. For example, addition of a NEF, such as Bag3, trig-
gers the release of a fluorescently labeled LVEAVY peptide 
from the Hsp70 complex, as measured by FP assays (Rauch 
and Gestwicki 2014; Rauch et al. 2016). Originally, this 
activity was believed to be solely the result of the NEF’s 
impact on nucleotide cycling. In this model, favoring the 
ATP-bound state would eventually weaken Hsp70’s affinity 
for client, increase the off-rate and promote client release. 
However, emerging evidence suggests that client release is 
rapidly and actively promoted by secondary contacts with 
some NEFs. This is the case with both GrpE (Brehmer et al. 
2004; Moro et al. 2007) and HspBP1 (Rosam et al. 2018; 
Gowda et al. 2018), where N-terminal regions, found outside 
of the canonical site of Hsp70 binding, are important for 
client release. Similarly, truncation studies have shown that 
the human Bag domain is both dispensable for rapid client 
release (S. Takayama 1997; Rauch et al. 2016), and that an 
isolated Bag domain from Bag3 (lacking the other domains) 
has negligible activity in client release assays (Rauch et al. 
2016; Rauch and Gestwicki 2014)—even though it potently 
promotes nucleotide exchange within the same time and 
concentration regimes. Together, these findings support a 
model in which regions outside the NEF domains function 
as distinct “release domains,” stimulating client release in 
a way that is, at least partially, de-coupled from nucleotide 
exchange.

How does the non-canonical interaction promote client 
release? NMR studies have shown that titration of Bag3 

lacking the Bag domain (Bag3-ΔBag) into a sample of 
15 N-labeled SBD yields significant CSPs in and around the 
client-binding groove (Rauch et al. 2016). Thus, one sim-
ple model for the BAG family of NEFs is that the “release 
domains” might be pseudo-substrates, which directly com-
pete with clients for binding to the SBD. Indeed, binding 
studies have shown that non-canonical interaction of Bag3-
ΔBag with Hsp70 has an apparent affinity of ~ 10 μM (Rauch 
et al. 2016), which is similar to the affinity of many model 
substrates. Yet, most of the interaction between the full-
length proteins must originate from the canonical interaction 
because the affinity for the two full-length proteins is signifi-
cantly tighter (~ 3 nM in the apo state, ~ 10 nM in the ATP 
state, and ~ 40 nM in the ADP state) (Rauch and Gestwicki 
2014). Therefore, it is possible that the canonical interaction 
drives initial binding, but that the secondary, non-canonical 
interaction, now brought in close proximity, is then impor-
tant for rapidly releasing the client.

Although Hsp70’s SBDβ seems to be the primary site 
for binding these pseudo-substrates, early attempts to map 
the regions on Hsc70 required for binding to Bag1 revealed 
possible alternatives. Specifically, using phage display and 
peptide arrays, seven distinct Hsc70-derived peptides were 
found to associate with Bag1 (Petersen et al. 2001). While 
two of these peptides encompass the canonical interface with 
the Bag domain, three of the identified sequences are in a 
region of the NBD that is involved in docking the lid in the 
ATP-bound state (Petersen et al. 2001). Thus, it is possible 
that additional contacts outside the SBDβ might be involved, 
but their significance remains unclear.

Likewise, the exact region of the Bag proteins that is 
involved in non-canonical interactions is not yet known. In 
HspBP1, there is a recognizable domain that resembles a 
substrate and it has a demonstrated interaction with SBDβ 
(Gowda et al. 2018). However, an equivalent site has not 
been identified within the Bag family and efforts to do so 
are complicated by the significant variance in the N-ter-
minal sequences of the Bag proteins. Previous attempts to 
find pseudo-substrate sequences used the LIMBO algorithm 
(Van Durme et al. 2009) to computationally predict client-
like sequences in both Bags 1 and 3; however, only one 
such motif was identified outside the Bag domain (Rauch 
et al. 2016). More recently, next-generation PISM-based 
algorithms, such as ChaperISM, have been used to re-visit 
this endeavor (Gutierres et al. 2019). Using the ChaperISM 
python script, we repeated this exercise to identify several, a 
priori client sequences in the N-terminal domains of Bags 1, 
3, and 4 (Fig. 5A). Interestingly, two of these predicted sites 
in Bag3 overlap with its IPV motifs. It has been shown that 
IPV motifs mimic the IxI/V motifs of small heat shock pro-
teins (sHsps) (Delbecq et al. 2012) to directly interact with 
sHsps (Rauch et al. 2017). If the ChaperISM predictions are 
accurate, then Bag3’s scaffolding activity may enable client 
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release from both sHsps and Hsp70, perhaps assisting in 
client handoff between the two chaperone families. Other 
predicted sites are more mysterious. For instance, a poten-
tial client-like motif was also predicted in Bag5; however, 
this motif is located between two of its five Bag domains 
(Fig. 5A), casting doubt on its accessibility for interactions 
with the hydrophobic grove of the SBD. Regardless, we 
suggest that the predicted client-like sites represent starting 
points for better understanding non-canonical interactions 
between Hsp70s and Bag NEFs.

Would a single Bag protein be able to make multiple con-
tacts with a single Hsp70? Most of the Bag proteins contain 
stretches of disorder; AlphaFold predicts substantial disor-
der outside of the Bag domain for Bags 1, 3, and 4 (Jumper 
et al. 2021; Varadi et al. 2022). This prediction is supported 
by light scattering experiments, which have shown that 
Bag1 has an overall, elongated shape, with a hydrodynamic 
radius of ~ 3.3 nm (Stuart et al. 1998). This degree of dis-
order may allow the Bag domain to make contact with the 
NBD, while still permitting the N-terminal region of Bag1 
to make contact with SBDβ (Fig. 5B). The alternative is that 
multivalent PPIs in the BAG-Hsp70 complex involve inter-
molecular, bridging contacts (i.e., one Bag protein binding 
two Hsp70s). The contributions of these putative binding 
modes and their functional importance remain unclear.

J‑domain proteins

JDPs comprise a family of important Hsp70 co-chaperones. 
The defining feature of these proteins is the presence of 
a conserved J-domain, which is named from the Escheri-
chia coli ortholog, DnaJ (Kampinga and Craig 2010). This 
J-domain directly binds to the NBD and linker regions in the 
ATP state to accelerate hydrolysis of ATP to ADP, “trap-
ping” bound clients at the SBDβ (Minami et al. 1996; Laufen 
et al. 1999; Kampinga and Craig 2010). The JDP family is 
further sub-divided into three classes (classes A, B, and C), 
which vary except for the presence of the J-domain. Here, we 
will focus on the class B proteins, which contain an N-ter-
minal J-domain, a Gly/Phe-rich (G/F) linker, two C-terminal 
domains (CTDI and CTDII), and, sometimes, a dimerization 
domain (DD) (or oligomerization sequence) at the extreme 
C-terminus (Kampinga and Craig 2010). The canonical 
interaction between Hsp70s and class B JDPs occurs through 
the conserved J-domain, while other domains are involved in 
additional contacts; for example, the G/F motif autoinhibits 
the J-domain (Karamanos et al. 2019; Faust et al. 2020), 
the DD mediates self-assembly (Sha et al. 2000; Li et al. 
2003; Hu et al. 2008; Suzuki et al. 2010; Jiang et al. 2019), 
and the CTDs bind clients (Li et al. 2003; Sha et al. 2000; 
Jiang et al. 2019). Among the co-chaperone families, the 

Fig. 5   Bag family NEFs contain sequences predicted to bind Hsp70’s 
SBD and displace clients. A Sequences predicted to bind Hsp70 
SBDβ within the Bag proteins. Briefly, the ChaperISM python script 
was used to search human Bag protein sequences in both quantitative 
mode (cutoff = 2.7) and qualitative mode (cutoff = 0.2). Sequences 
were only included if they met cutoff thresholds in both quantitative 

and qualitative modes, and were found outside of the Bag domain. B 
Model for how a representative BAG protein, Bag3, might use both 
its canonical Bag domain and its non-canonical, pseudo-substrate 
motif to interact with two separate sites on Hsp70. In this model, the 
pseudo-substrate acts as a “release domain” to promote client release 
from the Hsp70 complex
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JDPs have been most broadly linked to disease. For example, 
dysregulation of JDP expression or activity has pathological 
consequences in diseases including cancer (Chen et al. 2002; 
Isomoto et al. 2003; Kanazawa et al. 2003; Syken et al. 1999; 
Tang et al. 2005; Tsai et al. 2006), viral infection (Campbell 
et al. 1997; Genevaux et al. 2003; Kelley and Georgopoulos 
1997) and neurodegenerative disease (Hageman et al. 2010; 
Månsson et al. 2014; Kakkar et al. 2016, 2016; Mok et al. 
2018; Westhoff et al. 2005; Claeys et al. 2010; Chen et al. 
2016). Hence, much attention has been directed to the PPIs 
between Hsp70s and JDPs as a key axis to understanding 
proteostasis in disease.

Canonical Hsp70/JDP interactions

Much of our knowledge on the canonical-binding interaction 
between Hsp70 and JDPs comes from studies of the bacterial 
proteins: DnaK and DnaJ. Briefly, this work has revealed 
that the J-domain interacts with Hsp70’s NBD using two sets 
of complementary electrostatic surfaces, as well as a third 
contact in which the invariable HPD motif between helices II 
and III contacts Hsp70’s interdomain linker (Fig. 6) (Unge-
wickell et al. 1997; Greene et al. 1998; Matthias P. Mayer 
et al. 1999; Suh et al. 1999; Ahmad et al. 2011; J. Jiang et al. 
2007; Kityk et al. 2018). Mutations in these sites hinder 
association with Hsp70 and block the stimulation of ATP 
turnover (Kityk et al. 2018; Tomiczek et al. 2020), support-
ing their functional importance. The affinity of the J-domain 
for Hsp70s has been measured using a variety of approaches 
and is variably estimated to be between 0.07 and 0.54 μM 
(Suh et al. 1998; Suh et al. 1999) or 5 to 10 μM (Greene 
et al. 1998). The disparity between these values might arise 
from differences in experimental conditions and the ques-
tion deserves to be re-explored. Regardless, this canonical 
interaction is likely the major contributor to the overall inter-
action affinity, because the full-length proteins bind with a 

Kd ~ 3.6 µM (Matthias P. Mayer et al. 1999). It should be 
noted that the mechanism by which the G/F region regulates 
the J-domain interaction the Hsp70 has only recently been 
uncovered (Faust et al. 2020), so it will be important to re-
evaluate the overall interaction affinities and the contribu-
tions of the J-domain contact within that context. Finally, 
it is worth noting that there are some variations in canoni-
cal J-domain recognition by specialized Hsp70 systems 
(Schilke et al. 2006; Ciesielski et al. 2012, 1; Uhrigshardt 
et al. 2010; Delewski et al. 2016). All together, it is clear that 
the J-domain contact with Hsp70s is ancient, well conserved, 
and essential for stimulating ATPase activity.

Non‑canonical Hsp70/JDP interactions

Hints of a non-canonical interaction between JDPs and 
eukaryotic Hsp70s arose in genetic studies, which showed 
that mutation or deletion of an EEVD motif, found at the 
extreme C-terminus of cytosolic Hsp70s, blocked Hsp70-
JDP collaboration in cells (Lopez-Buesa et al. 1998). This 
finding was also observed in vitro, as the Class B JDP, 
DnaJB1, was shown to interact with immobilized, full-length 
GST-Hsp70, but not with a variant lacking the C-terminal 
EEVD (Freeman et al. 1995; Demand et al. 1998). These 
data were initially puzzling because the EEVD motif is 
located far from the site of the canonical J-domain interac-
tion. However, since then, a number of structural and bio-
chemical studies have refined our knowledge of this non-
canonical interaction. Specifically, the EEVD motif has been 
found to interact with beta-sheets in CTDI of Class B JDPs 
(Fig. 7A) (Sha et al. 2000; Li et al. 2006; Suzuki et al. 2010). 
Co-structures of complexes formed between EEVD peptides 
and CTDI of DnaJB1, solved by x-ray crystallography, 
revealed that the PPI was mediated by both an electrostatic 
interaction, between Lys182 and the C-terminal carboxylate, 
and interactions of Ile637 of the Hsp70 EEVD motif with 

Fig. 6   The canonical interaction 
of Hsp70s with JDPs is medi-
ated by three major contacts 
within the J-domain, as shown 
in a co-crystal structure of the 
E. coli DnaK/DnaJ system 
(PDB 5NRO). The conservation 
of those residues across Hsp70 
orthologs in E. coli (DnaJ), 
yeast (Ydj1 and Sis1), and 
humans (DnaJA1 and DnaJB1) 
is shown from a CLUSTALW 
multiple sequence alignment
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a hydrophobic pocket (Fig. 7B) (Suzuki et al. 2010). We 
recently confirmed the importance of these contacts, using 
truncations and mutations of Hsp70-derived EEVD pep-
tides (Johnson et al. 2022). Furthermore, NMR experiments 
showed that the EEVD motif exhibits selectivity for binding 
CTDI over CTDII in the class B JDPs of humans and yeast 
(Jiang et al. 2019; Faust et al. 2020). As mentioned above, 
this non-canonical PPI has also been revealed to serve a cru-
cial role in regulating the canonical Hsp70-binding interface 
of the J-domain (Faust et al. 2020; Jiang et al. 2019; Kara-
manos et al. 2019). Specifically, binding of the EEVD motif 
at CTDI produces long-range conformational change that 
disrupts an autoinhibitory helix near the J-domain, liberating 
the canonical-binding site (Faust et al. 2020). Thus, for the 
class B JDPs, the non-canonical and canonical PPIs are in 
close communication.

Intriguingly, the EEVD motif in Hsp70s is also the pri-
mary site for interacting with the TPR family of co-chap-
erones (Allan and Ratajczak 2011; Weber et al. 2020), and 
early evidence suggested that this region was subject to 
direct competition between the two co-chaperone families 
(Demand et al. 1998). In recent studies, this competition was 
directly measured, showing that both DnaJB1 and DnaJB4 
can partially block the function of a complex between Hsp70 
and the TPR protein, CHIP, whereas CHIP can block fold-
ing by the Hsp70-DnaJB4 complex in vitro (Stankiewicz 
et al. 2010; Johnson et al. 2022). Notably, the EEVD does 
not bind in an identical configuration in the CTDI and TPR 

domains; it is linear and extended in the CTDI-bound com-
plex, but “bent” in the TPR-bound complex. Moreover, the 
CTDI exhibits a much higher tolerance for mutations in 
the EEVD motif; for example, aromatic residues at Hsp70 
residue 637 significantly hinder TPR binding while peptides 
with Phe or Tyr at residue 637 bind comparably to the wild-
type Ile637 peptide (Johnson et al. 2022). Taken together, 
these data suggest that class B JDPs and TPRs evolved to 
engage in competition for binding at the EEVD motif, tuning 
Hsp70’s activity.

In addition to its ability to bind Hsp70, CTDI of class B 
JDPs, along with CTDII, directly bind client proteins. NMR 
titration experiments have shown that the Class B JDPs bind 
clients via CTDI, which shows selectivity for a subset of 
non-native client sequences (Jiang et al. 2019; Faust et al. 
2020; Lee et al. 2002). Thus, the EEVD motif and client pro-
teins must, presumably, directly compete for binding CTD I. 
This feature supports the possibility that the EEVD regulates 
the handoff of clients from Class B JDPs to Hsp70s (Sha 
et al. 2000; Jiang et al. 2019). In this model, clients first bind 
the CTDI and are then released, in part, by competition with 
the EEVD motif, presumably for delivery to Hsp70’s SBDβ. 
While this speculative hypothesis requires additional study, 
it is clear that the non-canonical interaction, in addition to 
the classic J-domain interaction, is critical to coordination 
of at least a subset of Hsp70-client complexes.

Multiple sites of contact between the class B JDPs and 
Hsp70s might serve another purpose. Specifically, it is 

Fig. 7   JDPs and Hsp70 interact 
using multiple sites. (A) The 
conserved J-domain binds to 
the NBD and linker of Hsp70s 
(see Fig. 6). In addition, Class 
B JDPs also bind to the EEVD 
motif present in cytoplasmic 
Hsp70s. (B) Co-crystal structure 
of an Hsp70 derived EEVD 
motif peptide (gray) bound to 
CTDI of human DnaJB1 (blue; 
PDB 3AGY), highlighting the 
key residues responsible for 
complex formation
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known that these proteins, plus Class A JDPs and Hsp110, 
can form a complex that is able to disaggregate protein 
deposits (Nillegoda et al. 2015; Nillegoda et al. 2018). Hav-
ing two sites of binding might allow the Hsp70s and JDPs 
to coordinate via intra- and inter-molecular contacts, favor-
ing the geometry and orientation of the components within 
the machinery to carry out this complex disaggregation 
function.

Discussion

The proteome complexity of organisms has expanded signif-
icantly throughout evolution. Thus, one might postulate that, 
as the number of potential client proteins, proteoforms and 
PPIs expanded (Bludau and Aebersold 2020), the molecular 
chaperone machinery needed to co-evolve. Indeed, eukary-
otes possess a greater number of both Hsp70 and co-chap-
erone genes compared to prokaryotes (Kominek et al. 2013) 
and these “newer” chaperones are associated with special-
ized processes, such as clathrin uncoating (Ungewickell 
et al. 1997), protein maturation (Vembar et al. 2010; Shen 
and Hendershot 2005), folding/stabilization (Arndt et al. 
2005), and degradation (Alberti et al. 2002; Carra et al. 
2008; Gamerdinger et al. 2011; Bhattacharya et al. 2020). 
Concurrently, the increased diversity of sub-cellular com-
partments in eukaryotes has demanded expansion of chap-
erone systems into those spaces. For Hsp70, which works so 
closely with co-chaperones and clients, this expansion likely 
placed increased demands on its ability to form a diverse 
array of functional complexes. Thus, while the canonical 
interactions, including Hsp70 binding to the J-domain, NEF 
domains and hydrophobic client peptides, have remained as 
crucial drivers of chaperone activity in eukaryotes, addi-
tional, non-canonical interactions have also emerged.

In some cases, non-canonical interactions with Hsp70 
have been found to be necessary and sufficient to drive 
chaperone functions, such as autophagic degradation (for 
clients) (Cuervo et al. 2004), client release (for NEFs) 
(Moro et al. 2007; Rauch et al. 2016; Gowda et al. 2018), 
and J-domain activation (for Class B JDPs) (Faust et al. 
2020). Thus, one way to think about non-canonical inter-
actions is that they are not “extra.” Rather, they custom-
ize and/or diversify the Hsp70 interactome and, therefore, 
expand Hsp70’s functions. These binding sites might also 
exert more control over the chaperone’s decision-making. 
For example, the secondary contact between the EEVD 
motifs of eukaryotic Hsp70’s and CTDI of class B JDPs 
allows the complex to be tuned by competition with both 
clients (Jiang et al. 2019; Faust et al. 2020) and TPR pro-
teins (Demand et al. 1998; Stankiewicz et al. 2010; John-
son et al. 2022). In this case, cells might adjust their rela-
tive levels of TPR proteins, for example, to change which 

co-chaperones contact is favored and re-direct clients to 
specific fates. Thus, by using multivalent and modular 
PPIs, eukaryotic Hsp70 systems might have evolved more 
precise control.

Yet, our knowledge of non-canonical contacts and their 
roles in the Hsp70 complexes is far from complete. While 
some mechanistic information has been gleaned (and 
reviewed here), there are many important questions remain-
ing. First, most studies of non-canonical interactions have 
used 1 or 2 representative co-chaperones within the families 
(e.g., Bag1 and Bag3 NEFs), so generality to other members 
is not clear. Additionally, few studies have asked whether 
secondary contacts impact the overall binding kinetics. This 
is an important question because multivalent interactions 
often enhance the dwell time of complexes, through slower 
off-rates and higher occupancy (Mammen et al. 1998; Gest-
wicki et al. 2000; Gestwicki et al. 2002). It was recently 
shown that tighter binding of tau by Hsp70 favors its deg-
radation (Young et al. 2016); hence, the secondary contacts 
could be important in controlling dwell time. Another major 
gap in knowledge is that few structural details are available 
for most non-canonical interactions. Where do the non-
canonical client sequences, such as KFERQ, bind on Hsp70? 
How do the “release domains” of Bag or HspBP1 NEFs 
work to dislodge clients? Finally, another outstanding ques-
tion is how secondary binding sites contribute to cellular 
proteostasis. The majority of knowledge on non-canonical 
PPIs of Hsp70s comes from in vitro studies; thus, it will be 
important to conduct further studies in cells and animals to 
understand their role(s) in a cellular context. Mutations that 
disrupt non-canonical interactions, while sparing the canoni-
cal ones, will be particularly powerful.

Given the key roles for Hsp70 complexes in disease, its 
PPIs are potential targets for chemical probes (Balch et al. 
2008; Gestwicki and Shao 2019). While pan-inhibitors of 
all Hsp70 functions would likely be toxic, it seems logi-
cal to predict that targeting a subset of its PPIs would be 
safer. To date, efforts to create such chemical probes and 
therapeutics have largely focused on molecules that dis-
rupt canonical interactions with the J-domain (Wisén et al. 
2010) and the Bag domain (Shao et al. 2018), as well as 
the EEVD motif (Vasko et al. 2010; Zaiter et al. 2019; 
Ravalin et al. 2019). Accordingly, we speculate that an in-
depth understanding of non-canonical contacts could open 
new possibilities to create molecules that more finely tune 
Hsp70-mediated proteostasis as a way to treat diseases 
such as cancer and neurodegeneration.
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