Skip to main content
Log in

Hyperbaric oxygen therapy (HBOT) suppresses biomarkers of cell stress and kidney injury in diabetic mice

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The disease burden from diabetic kidney disease is large and growing. Effective therapies are lacking, despite an urgent need. Hyperbaric oxygen therapy (HBOT) activates Nrf2 and cellular antioxidant defenses; therefore, it may be generally useful for treating conditions that feature chronic oxidative tissue damage. Herein, we determined how periodic exposure to oxygen at elevated pressure affected type 2 diabetes mellitus-related changes in the kidneys of db/db mice. Two groups of db/db mice, designated 2.4 ATA and 1.5 ATA, were treated four times per week with 100 % oxygen at either 1.5 or 2.4 ATA (atmospheres absolute) followed by tests to assess kidney damage and function. The sham group of db/db mice and the Hets group of db/+ mice were handled but did not receive HBOT. Several markers of kidney damage were reduced significantly in the HBOT groups including urinary biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C (CyC) along with significantly lower levels of caspase-3 activity in kidney tissue extracts. Other stress biomarkers also showed trends to improvement in the HBOT groups, including urinary albumin levels. Expressions of the stress response genes NRF2, HMOX1, MT1, and HSPA1A were reduced in the HBOT groups at the end of the experiment, consistent with reduced kidney damage in treated mice. Urinary albumin/creatinine ratio (ACR), a measure of albuminuria, was significantly reduced in the db/db mice receiving HBOT. All of the db/db mouse groups had qualitatively similar changes in renal histopathology. Glycogenated nuclei, not previously reported in db/db mice, were observed in these three experimental groups but not in the control group of nondiabetic mice. Overall, our findings are consistent with therapeutic HBOT alleviating stress and damage in the diabetic kidney through cytoprotective responses. These findings support an emerging paradigm in which tissue oxygenation and cellular defenses effectively limit damage from chronic oxidative stress more effectively than chemical antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abidia A, Laden G, Kuhan G, Johnson BF, Wilkinson AR, Renwick PM, Masson EA, McCollum PT (2003) The role of hyperbaric oxygen therapy in ischaemic diabetic lower extremity ulcers: a double-blind randomised-controlled trial. Eur J Vasc Endovasc Surg 25:513–518

    Article  CAS  PubMed  Google Scholar 

  • Alex J, Laden G, Cale ARJ et al (2005) Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass: a prospective randomized double-blind trial. J Thorac Cardiovasc Surg 130:1623–1630

    Article  PubMed  Google Scholar 

  • Al-Waili NS, Butler GJ (2006) Effects of hyperbaric oxygen on inflammatory response to wound and trauma: possible mechanism of action. Sci World J 6:425–441

    Article  CAS  Google Scholar 

  • Babchin A, Levich E, Melamed MDY, Sivashinsky G (2011) Osmotic phenomena in application for hyperbaric oxygen treatment. Colloids Surf B: Biointerfaces 83:128–132

    Article  CAS  PubMed  Google Scholar 

  • Barrera-Chimal J, Perez-Villalva R, Cortes-Gonzalez C, Ojeda-Cervantes M, Gamba G, Morales-Buenrostro LE, Bobadilla NA (2011) Hsp72 is an early and sensitive biomarker to detect acute kidney injury. EMBO Mol Med 3:5–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bishop AJ, Mudge E (2012) A retrospective study of diabetic foot ulcers treated with hyperbaric oxygen therapy. Int Wound J 9:665–676

  • Bonventre JV, Vaidya VS, Schmouder R, Feig P, Dieterle F (2010) Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 28:436–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breyer MD (2012) Drug discovery for diabetic nephropathy: trying the leap from mouse to man. Semin Nephrol 32:445–451

    Article  CAS  PubMed  Google Scholar 

  • Breyer MD, Böttinger E, Brosius FC III, Cofffman TM, Harris RC, Heilig CW, Sharma K (2005) Mouse models of diabetic nephropathy. J Am Soc Nephrol 16:27–45

    Article  PubMed  Google Scholar 

  • Brosius FC, Alpers CE, Bottinger EP et al (2009) Mouse models of diabetic nephropathy. J Am Soc Nephrol 20:2503–2512

    Article  PubMed Central  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, Scuto M, Rizza S, Zanoli L, Neri S, Castellino P (2012a) Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta 1822(5):729–736

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT et al (2012b) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822:753–783

    Article  CAS  PubMed  Google Scholar 

  • Cheng O, Ostrowski RP, Wu B, Liu W, Chen C, Zhang JH (2011) Cyclooxygenase-2 mediates hyperbaric oxygen preconditioning in the rat model of transient global cerebral ischemia. Stroke 42:484–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daniel RAF, Cardoso VK, Góis E Jr, Parra RS, Garcia SB, Rocha JJ, Féres O (2011) Effect of hyperbaric oxygen therapy on the intestinal ischemia reperfusion injury. Acta Cir Bras 26:463–469

    Article  PubMed  Google Scholar 

  • Dennog C, Radermacher P, Barnett YA, Speit G (1999) Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat Res 428:83–89

    Article  CAS  PubMed  Google Scholar 

  • Deverajan P (2011) Biomarkers for the early detection of acute kindey injury. Curr Opin Pediatr 23:194–200

    Article  Google Scholar 

  • Dieterle F, Perentes E, Cordier A et al (2010) Urinary clusterin, cystatin C, [beta]2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 28:463–469

    Article  CAS  PubMed  Google Scholar 

  • Duzgun AP, Satır HZ, Ozozan O, Saylam B, Kulah B, Coskun F (2008) Effect of hyperbaric oxygen therapy on healing of diabetic foot ulcers. J Foot Ankle Surg 47:515–519

    Article  PubMed  Google Scholar 

  • Faglia E, Favales F, Aldeghi A et al (1996) Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. Diabetes Care 19:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Sureda A, Batle J, Tauler P, Tur J, Pons A (2007) Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils. Free Radic Res 41:274–281

    Article  CAS  PubMed  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

  • Fuller AM, Giardina C, Hightower LE, Perdrizet GA, Tierney CA (2013) Hyperbaric oxygen preconditioning protects skin from UV-A damage. Cell Stress Chaperones 18:97–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill AL, Bell CNA (2004) Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM 97:385–395

    Article  CAS  PubMed  Google Scholar 

  • Godman C, Chheda K, Hightower L, Perdrizet G, Shin D-G, Giardina C (2010a) Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 15:431–442

  • Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE (2010b) Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci 1197:178–183

    Article  CAS  PubMed  Google Scholar 

  • Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, Humphreys BD, Bonventre JV (2012) Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82:172–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han C, Lin L, Zhang W et al (2008) Hyperbaric oxygen preconditioning alleviates myocardial ischemic injury in rats. Exp Biol Med 233:1448–1453

    Article  CAS  Google Scholar 

  • He X, Xu X, Fan M et al (2011) Preconditioning with hyperbaric oxygen induces tolerance against renal ischemia-reperfusion injury via increased expression of heme oxygenase-1. J Surg Res 170:e271–e277

    Article  CAS  PubMed  Google Scholar 

  • Hooper PL, Hooper PL (2009) Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14:113–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hooper PL, Balogh G, Riivas E, Kavanagh K, Vigh L (2014) The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 19:447–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • House SD, Guidon PT Jr, Perdrizet GA, Rewinski M, Kyriakos R, Bockman RS, Mistry T, Gallagher PA, Hightower LE (2001) Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones 6(2):164–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Humphreys D, Carver J, Easterbrook-Smith S, Wilson M (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881

    Article  CAS  PubMed  Google Scholar 

  • Jun M, Venkataraman V, Razavian M, Cooper B, Zoungas S, Ninomiya T, Webster AC, Perkovic V (2012) Antioxidants for chronic kidney disease. Cochrane Database Syst Rev

  • Karadurmus N, Sahin M, Tasci C, Naharci I, Ozturk C, Ilbasmis S, Dulkadir Z, Sen A, Saglam K (2010) Potential benefits of hyperbaric oxygen therapy on atherosclerosis and glycaemic control in patients with diabetic foot. Endokrynologia Pol 61(3):275–279

    CAS  Google Scholar 

  • Kessler L, Bilbault P, Ortéga F, Grasso C, Passemard R, Stephan D, Pinget M, Schneider F (2003) Hyperbaric oxygenation accelerates the healing rate of nonischemic chronic diabetic foot ulcers. Diabetes Care 26:2378–2382

    Article  PubMed  Google Scholar 

  • Konner A, Bruning J (2012) Selective insulin and leptin resistance in metabolic disorders. Cell Metab 16:144–152

    Article  PubMed  Google Scholar 

  • Koyner J, Bennett M, Worcester E et al (2008) Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kindney Int 74:1059–1069

    Article  CAS  Google Scholar 

  • Li J, Liu W, Ding S, Xu W, Guan Y, Zhang JH, Sun X (2008) Hyperbaric oxygen preconditioning induces tolerance against brain ischemia–reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res 1210:223–229

    Article  CAS  PubMed  Google Scholar 

  • Li JS, Zhang W, Kang ZM, Ding SJ, Liu WW, Zhang JH, Guan YT, Sun XJ (2009) Hyperbaric oxygen preconditioning reduces ischemia–reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain. Neuroscience 159:1309–1315

    Article  CAS  PubMed  Google Scholar 

  • Lin KC, Niu KC, Tsai KJ, Kuo JR, Wang LC, Chio CC, Chang CP (2012) Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J Trauma Acute Care Surg 72:650–659

    Article  CAS  PubMed  Google Scholar 

  • Londahl M (2012) Hyperbaric oxygen therapy as treatment of diabetic foot ulcers. Diabetes Metab Res Rev 28(Suppl 1):78–84

    Article  PubMed  Google Scholar 

  • Londahl M, Landin-Olsson M, Katzman P (2011) Hyperbaric oxygen therapy improves health-related quality of life in patients with diabetes and chronic foot ulcer. Diabet Med 28:186–190

    Article  CAS  PubMed  Google Scholar 

  • Lowell B, Shulman G (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  CAS  PubMed  Google Scholar 

  • Matarese G, Procaccini C, Rosa V (2012) At the crossroad of T cells, adipose tissue, and diabetes. Immunol Rev 249:116–134

    Article  CAS  PubMed  Google Scholar 

  • Matsunami T, Sato Y, Sato T, Ariga S, Shimomura T, Yukawa M (2009) Oxidative stress and gene expression of antioxidant enzymes in the streptozotocin-induced diabetic rats under hyperbaric oxygen exposure. Int J Clin Exp Pathol 3:177–188

    PubMed Central  PubMed  Google Scholar 

  • Matsunami T, Sato Y, Hasegawa Y, Ariga S, Kashimura H, Sato T, Yukawa M (2011) Enhancement of reactive oxygen species and induction of apoptosis in streptozotocin-induced diabetic rats under hyperbaric oxygen exposure. Int J Clin Exp Pathol 4:255–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Musial K, Zwolinska D (2011) Heat shock proteins in chronic kidney disease. Pediatr Nephrol 26:1031–1037

    Article  PubMed Central  PubMed  Google Scholar 

  • Nathan C (2008) Epidemic inflammation: pondering obesity. Mol Med 14:485–492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  • Padgaonkar VA, Giblin FJ, Fowler K, Leverenz VR, Reddan JR, Dziedzic DC (1997) Heme oxygenase synthesis is induced in cultured lens epithelium by hyperbaric oxygen or puromycin. Exp Eye Res 65:435–443

    Article  CAS  PubMed  Google Scholar 

  • Rothfuss A, Radermacher P, Speit G (2001) Involvement of heme oxygenase-1 (HO-1) in the adaptive protection of human lymphocytes after hyperbaric oxygen (HBO) treatment. Carcinogenesis 22:1979–1985

    Article  CAS  PubMed  Google Scholar 

  • Sabbisetti V, Ito K, Wang C, Yang L, Mefferd S, Bonventre J (2013) Novel assays for detection of urinary KIM-1 in mouse models of kidney injury. Toxicol Sci 131:13–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salek R, Maguire M, Bentley E et al (2007) A metabolomic comparision of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 29:99–108

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel N (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, McCue P, Dunn S (2003) Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 284:F1138–F1144

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi N, Aono K, Utsumi K (1983) Increased metallothionein content in rat liver induced by X irradiation and exposure to high oxygen tension. Radiat Res 95:298–302

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi FS, Advani A (2012) Endothelial-podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes 62(11):3647–3655

    Article  Google Scholar 

  • Simsek K, Ay H, Topal T et al (2011) Long-term exposure to repetitive hyperbaric oxygen results in cumulative oxidative stress in rat lung tissue. Inhal Toxicol 23:166–172

    Article  PubMed  Google Scholar 

  • Sun Q, Sun Q, Liu Y, Sun X, Tao H (2011) Anti-apoptotic effect of hyperbaric oxygen preconditioning on a rat model of myocardial infarction. J Surg Res 171:41–46

    Article  CAS  PubMed  Google Scholar 

  • Tesch GH, Lim AKH (2011) Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol 300:F301–F310

    Article  CAS  PubMed  Google Scholar 

  • Thackham JA, McElwain DLS, Long RJ (2008) The use of hyperbaric oxygen therapy to treat chronic wounds: a review. Wound Repair Regen 16:321–330

    Article  PubMed  Google Scholar 

  • Trougakos IP, Gonos ES (2009) Chapter 9 oxidative stress in malignant progression: the role of clusterin, a sensitive cellular biosensor of free radicals. In: Advances in Cancer Research, ed Van de Waude GF, Klein G.. Academic Press, 171-210

  • Waring W, Moonie A (2011) Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol 49:720–728

    Article  CAS  Google Scholar 

  • Wellen K, Hotamisligil G (2005) Inflammation, stress, and dabetes. J Clin Invest 115:1111–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank OxyHeal Health Group, Inc., for funding and their CEO W. T. “Ted” Gurneè for his vision to extend the applications of HBOT to further improve human health care.

The Mouse Metabolic Phenotypic Center at Yale University is funded by a grant from the NIH/NIDDK # U24 DK-059635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Verma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 77 kb)

ESM 2

(JPEG 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Chopra, A., Giardina, C. et al. Hyperbaric oxygen therapy (HBOT) suppresses biomarkers of cell stress and kidney injury in diabetic mice. Cell Stress and Chaperones 20, 495–505 (2015). https://doi.org/10.1007/s12192-015-0574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0574-3

Keywords

Navigation