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Mehmet Gümüş1 · Kemal Türk1

Received: 16 March 2024 / Revised: 17 April 2024 / Accepted: 18 April 2024
© The Author(s) 2024

Abstract
Hepatitis is inflammation of the liver, and one of its types, hepatitis B, is a conta-
gious infection. Using mathematical models, the nature of the spread of the Hepatitis
B virus can be predicted. In the present paper, a hepatitis B epidemic model with a
Beddington–DeAngelis type incidence rate and a constant vaccination rate is consid-
ered. Some dynamical properties of this model, such as non-negativity, boundedness
character, the basic reproduction numberR0, stability nature, and the bifurcation phe-
nomenon, are investigated. By the Bendixson theorem, it is demonstrated that the
disease-free equilibrium is globally asymptotically stable. It is shown that a transcrit-
ical bifurcation phenomenon occurs when R0 = 1. It is concluded that the endemic
equilibrium is globally asymptotically stable when R0 > 1, by utilizing Dulac’s cri-
teria. Also, a discrete system of difference equations is obtained by constructing a
non-standard finite difference (NSFD) scheme for the continuous model. It is shown
that the solutions of this discrete system are dynamically consistent for all finite step
sizes. The theoretical results obtained are also supported and visualized by numeri-
cal simulations. These simulations also demonstrate that the NSFD scheme produces
muchmore efficient results than the Euler or RK4 schemes, as shown in the theoretical
results obtained.
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1 Introduction

Outbreaks of infectious diseases pose a significant threat to human health. One of the
most dangerous epidemic diseases that causes a large number of deaths worldwide
is hepatitis B. Hepatitis B infection is a viral disease caused by the hepatitis B virus
(HBV), which primarily affects the liver. It is a significant global health issue. If left
undetected and untreated, this disease can lead to cirrhosis, liver cancer, or liver failure,
resulting in substantial morbidity and mortality worldwide. Notably, it is associated
with approximately 800,000 deaths annually, primarily from liver cancer and cirrhosis,
making it a significant global threat. Additionally, it is estimated that there are over 350
million chronic HBV carriers worldwide. In chronic carriers, HBV persists within the
host’s body for an extended period, posing a significant risk to overall health. While
many individuals with carrier hepatitis never experience an acute infection, hepatic
fibrosis can develop, eventually leading to liver failure. Medical research has revealed
that HBV infection is responsible for approximately 80% of all primary liver cancer
cases, highlighting the urgent need for effective techniques to predict and eradicate
HBV. Advanced preventive treatments are available to prevent the spread of HBV.
Among these measures, routine vaccination programs have been highly effective in
controlling the spread of HBV. The virus spreads through contact with an infected
person’s blood, semen, or other bodily fluids (see [1–3]).

In response to this urgent need, an effective technique is highly necessary to predict
and eradicateHBV.Mathematicalmodeling, likemanyother epidemiological diseases,
is one of the most effective tools used for hepatitis B. Extensive research has been
conducted to develop deterministic and stochastic mathematical models for the spread
dynamics of infectious diseases (see [2–15] and references therein). The classical SIR
model, introduced as early as 1927 by Kermack and McKendrick, remains one of the
oldest and most extensively used models in the field of mathematical epidemiology
(see [16]). In this study, we will formulate a deterministic model for the transmission
of HBV using the classical SIR model concept.

1.1 Mathematical tools and literature survey

In mathematical epidemiology, models depend on an incidence rate which represents
the number of individuals who become infected per unit of time, and plays a crucial
role in ensuring that the models accurately capture the qualitative dynamics of disease
transmission. In the classical SIR model proposed by Kermack and McKendrick, the
incidence rate is given by βSI , where β represents the infection rate and S and I rep-
resent susceptible and infected individuals, respectively. This type of incidence rate
is commonly known as mass action incidence or bilinear incidence (see [13, 14, 16,
17]). A widely used alternative to the bilinear incidence rate in epidemic models is the
standard incidence rate βSI

N , where N represents the total population size. While the
bilinear and standard incidence rates coincide when the total population size remains
constant, they diverge in cases where the total population size varies. Bilinear inci-
dence is employed in diseases where disease-related contact rises as the population
size increases. Standard incidence is utilized in diseases where the contact rate cannot
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continually increase and is constrained, even with an increase in the population size
(see [18]). It is important to note that, bilinear incidence rate might yield unrealistic
outcomes for large populations since it implies that the number of individuals getting
infected per unit of time increases as the number of susceptible individuals increases,
which may not be a realistic assumption. To address this concern, various alternative
incidence rates have been proposed in the literature. For instance, in 1978, Anderson
andMay [19] introduced a saturated incidence rate in the form of βSI

1+α1S
, where the sat-

uration factorα1 represents the effect of epidemic control. Another approach suggested
by Capasso and Serio in [20] involves a saturated incidence rate of βSI

1+α2 I
, where 1

1+α2 I
accounts for the inhibitory effect resulting from behavioral changes among susceptible
individuals or the crowding effect caused by infectives. These alternative approaches
aim to overcome the limitations of the bilinear incidence rate and offer a more real-
istic representation of the infection dynamics. These saturated incidence rates have
been utilized by several authors in epidemiological models (see [2, 15]). In 1975,
Beddington in [21] and DeAngelis in [22] independently introduced the non-linear
incidence rate known as the Beddington–DeAngelis type, expressed as βSI

1+α1S+α2 I
.

Many researchers have employed this non-linear incidence rate in subsequent studies
to describe their epidemiological models (see [23–25]). Beddington–DeAngelis type
incidence rate can be expressed in three different forms:

(i) βSI when both α1 and α2 are equal to zero,
(ii) βSI

1+α1S
when α2 is equal to zero,

(iii) βSI
1+α2 I

when α1 is equal to zero.

Therefore the Beddington–DeAngelis type incidence rate is a generalization of the
bilinear and saturated incidence rates. This is because the Beddington–DeAngelis
type incidence rate takes into account inhibition effects such as susceptible individuals
taking preventive measures and infected individuals undergoing treatment (α1 and α2
parameters). Also, vaccination plays a pivotal role in the prevention of infectious
diseases from spreading. Including the vaccination parameter in the model may be
necessary to develop models suitable for the disease. Numerous researchers in the
literature have extensively investigated mathematical models with vaccination (see [2,
3, 17, 18, 26, 27]).

Epidemiological models are often formulated as systems of non-linear differential
or difference equations. When a model represented by a nonlinear system of differ-
ential equations is given, this model can be discretized using certain methods. It is
important to ensure that the discretized model retains as many dynamical properties
of the continuous model as possible. For the purpose of discretization, Euler and
Runge–Kutta methods, along with numerous other finite-difference techniques, are
commonly used. However, these methods can give rise to certain undesirable dynam-
ical behaviors. These include convergence to incorrect equilibrium points or periodic
cycles, as well as numerical instabilities (see [15, 28, 29]). Mickens introduced an
innovative approach known as the non-standard finite difference (NSFD) method to
address these issues (see [30, 31]). If a property P is observed in both a differential
equation and/or its solutions, as well as in the corresponding discrete equation and/or
its solutions, it is stated that these two equations are dynamically consistent in terms
of property P . For a mathematical model and its finite difference discretization to be
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considered valid, it is crucial that they are dynamically consistent with each other.
The NSFD method has found applications in a wide range of problems, where it has
been observed that the resulting discrete models successfully retain the dynamical
properties of the corresponding continuous models (see [13, 15, 29, 32–34]).

In [23, 24], Kaddar proposed a delayed SIRmodel with the Beddington–DeAngelis
incidence rate given by the system

dS

dt
= � − βSI

1 + α1S + α2 I
− μS,

d I

dt
= βSI

1 + α1S + α2 I
− (μ + ν + σ)I ,

dR

dt
= ν I − μR,

(1.1)

where � denotes the recruitment rate, β is the disease transmission rate, μ is the
natural death rate. ν is the proportion of the infectives that are treated per unit of time,
σ is the death rate induced by the disease. Kaddar analyzed some dynamics of the
model (1.1). In [15], the model (1.1) was discretized by using a non-standard finite
difference scheme using Mickens’s idea, and the authors showed that the discretized
model is dynamically consistent with continuous model in terms of some dynamical
properties.

In [2], the authors proposed and analyzed an SIR model for the control of HBV
spreading by the system

dS

dt
= � − βSI

1 + α2 I
− (p + μ)S,

d I

dt
= βSI

1 + α2 I
− (μ + ν + σ)I ,

dR

dt
= pS + ν I − μR,

(1.2)

where p is the proportion of the susceptibles that are vaccinated per unit of time. In
[3], the authors constructed a non-standard difference scheme for the model (1.2):

Sn+1 − Sn
ϕ

= � − βSn In
1 + α2 In

− (p + μ)S1,

In+1 − In
ϕ

= βSn In
1 + α2 In

− (μ + ν + σ)In,

Rn+1 − Rn

ϕ
= pSn + ν In − μRn .

They reached dynamically consistent results with the continuous model under some
assumptions on the time step size value h. In [33], the authors discretized the model
(1.2) by a different approach:
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Sn+1 − Sn
ϕ

= � − βSn+1 In
1 + α2 In

− (p + μ)Sn+1,

In+1 − In
ϕ

= βSn+1 In
1 + α2 In

− (μ + ν + σ)In+1,

Rn+1 − Rn

ϕ
= pSn+1 + ν In+1 − μRn+1.

Here ϕ is a function of h and called the denominator function. The authors have
dynamically consistent results with the continuous model without any constraint on
the value of h.

In this study,motivated by the papers discussed above, anHBVmodel incorporating
the Beddington–DeAngelis type incidence rate, constant vaccination, and treatment
rates has been presented. Firstly, a dynamical analysis has been conducted to deter-
mine the existence of positive solutions for the proposed deterministic model, and
disease-free and endemic states have been identified. The threshold quantity known
as the basic reproduction number R0 has been determined using the next-generation
matrix method. Subsequently, the local asymptotically stability (LAS) of the model
has been analyzed using the linear stability theorem. Poincare-Bendixson theorem has
been employed in the global asymptotically stability (GAS) analysis. The presence
of a transcritical bifurcation has been established. Then, an NSFD scheme has been
developed using Mickens’ approach. By examining the stability properties of the dis-
cretized model and comparing them with the corresponding continuous model, their
dynamical consistency has been analyzed. Finally, some numerical simulations have
been provided to illustrate our theoretical results.

1.2 The formulation of hepatitis B epidemic model

Let N (t) represent the entire population at time t , divided into three classes: susceptible
individuals, infected individuals, and recovered individuals denoted respectively by
S(t), I (t), and R(t). So, we have N (t) = S(t)+ I (t)+R(t). Here we take into account
a constant recruitment rate for the susceptible class, an incidence rate following the
Beddington–DeAngelis type, vaccination of the susceptible class, and both natural and
disease-induced death rates. Furthermore, we assume that certain infected individuals
with sufficient physical strength can recover on their own without requiring medical
treatment. Moreover, wemake several assumptions for themodel that are listed below:

a1. The initial population sizes must be non-negative and denoted as S(0), I (0) and
R(0).

a2. All newborn individuals are initially assigned to the susceptible class.
a3. The incidence rate is assumed to follow the Beddington–DeAngelis type.
a4. Successfully vaccinated individuals will be moved to the recovered class.
a5. The recovered population acquires permanent immunity.
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By including all of the assumptions, the differential equation system of theHBVmodel
can be formulated as follows:

dS

dt
= � − βSI

1 + α1S + α2 I
− (p + μ)S,

d I

dt
= βSI

1 + α1S + α2 I
− (μ + ν + σ)I ,

dR

dt
= pS + ν I − μR,

(1.3)

with

S(0) > 0, I (0) > 0, R(0) > 0.

Parameters used in HBV model (1.3) are non-negative.

1.3 The novelty of the paper

Most of the models examined in the literature are continuous epidemic models. How-
ever, as an important part of epidemiology, great importance is given to studies on
epidemic models defined in a discrete structure. However, studies on discrete epi-
demic models are currently very few in the literature. Defining the model discretely
or examining the continuous model by discretizing it has many advantages in epi-
demiology. The fact that epidemic data is generally collected in separate time units
(such as daily, monthly or annual) is just one of them. Thus, using discrete models in
the mathematical modeling of epidemic diseases may be more useful. These models
are more advantageous than continuous ones. On the other hand, difference equations
are discrete analogues of ordinary differential equations and are used to study their
numerical solutions. In cases where analytical solutions of the system of differential
equations cannot be obtained, its discrete structure can be used. Therefore, there is a
need to discretize the system to calculate good analytical approximations of the solu-
tions. Meanwhile, the resulting discrete model should preserve the dynamic properties
of the original continuous model as much as possible. Recently, the nonstandard finite
difference schemewas proposed byMickens [30, 31] and has receivedmuch attention.
An important advantage of the Mickens method is that it provides more effective pro-
tection of global asymptotic stability (compared to Euler and Runga Kutta methods).
To our knowledge, there is no study in the literature that includes both vaccination and
general incidence rates that examines both continuous and discrete models. Therefore,
we consider a deterministic model that is more general than the models given in the
literature and examine both its continuous structure and discrete structure.

1.4 Paper layout

The organization of this paper is as follows. In Sect. 2, we have investigated the dynam-
ical properties of the HBVmodel (1.3), including the non-negativity and boundedness
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Fig. 1 Flow diagram of the HBV model (1.3)

of solutions, the existence of equilibria, and the computation of the basic reproduc-
tion number. The local asymptotic stability of disease-free and endemic equilibria has
been conducted. Lastly, the transcritical bifurcation behavior has been investigated.
In Sect. 3, the NSFD scheme of the HBV model (1.3) has been constructed. Sec-
tion4 is dedicated to studying the dynamical properties of the discretized model that
corresponds to the HBV model (1.3). The analysis of non-negativity, boundedness,
and stability for the discretized model has been presented in this section. The obtained
results indicate that there is dynamical consistency in terms of these properties between
the discrete and continuous models. Finally, in the last section, we supplement our
results with several numerical simulations for further clarification.

The schematic diagram of the HBV model (1.3) is shown in Fig. 1.

2 Dynamical analysis of the continuousmodel

In this section, we will analyze the qualitative behavior of the solutions of the HBV
epidemic model (1.3) at the equilibrium points. First, we will examine the invariance
interval and boundedness of solutions.

The requirement of non-negativity for S(t), I (t), and R(t), along with non-negative
initial values for all t ≥ 0, is a fundamental condition in the HBV model (1.3) due to
its biological nature. It is easy to see that the non-negative region R

3+ is a positively
invariant set for the HBV model (1.3). Furthermore, it is essential to establish the
boundedness of solutions in the HBV model as it reflects the constraints on avail-
able resources and prevents uncontrolled population growth. As such, ensuring the
non-negativity and boundedness of solutions in the HBVmodel (1.3) is a biologically
relevant consideration, which will be demonstrated in the following analysis. By sum-
ming the three equations in the HBV model (1.3) side by side, we reach the following
population conservation law

dN

dt
= � − μN − σ I ≤ � − μN . (2.1)

By solving this ODE, we have

N (t) ≤ �

μ
+

(
N (0) − �

μ

)
e−μt , (2.2)
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which implies that

lim sup
t→∞

N (t) ≤ �

μ
,

where N (t) = S(t) + I (t) + R(t) denotes the total population size. Based on these
results, it is enough to examine the HBV model (1.3) within the feasible region

�1 =
{
(S, I , R) ∈ R

3+ | S + I + R ≤ �

μ

}
.

Remark 1 As the first two equations in the HBV model (1.3) are independent of the
third equation, it can be excluded without loss of generality. This leads to the reduction
of the HBV model (1.3) as follows:

dS

dt
= � − βSI

1 + α1S + α2 I
− (p + μ)S

d I

dt
= βSI

1 + α1S + α2 I
− (μ + ν + σ)I , (2.3)

with

S(0) > 0, I (0) > 0.

We will perform our analysis on the following feasible set:

� =
{
(S, I ) ∈ R

2+ | S + I ≤ �

μ

}
.

2.1 Stability nature of the DFE

If we set the equations’ side on the right in the reduced HBV model (2.3) to zero and
assume I = 0, it becomes immediately clear that the system always possesses a DFE
point

E0 = (S0, I0) =
(

�

p + μ
, 0

)
.

Now, by determining the basic reproduction number denoted as R0, locally asymp-
totically stability at the DFE point will be examined. We can find R0 using the
next-generation matrix method (see [35]). In the HBV model (2.3), there exists just
one infected compartment, identified as I . The basic reproduction number is defined
as the spectral radius of the next-generation matrix FV−1, where

F =
(

βS(1 + α1S)

(1 + α1S + α2 I )2

) ∣∣∣∣
E0

= β�

p + μ + α1�
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V = (μ + ν + σ)

∣∣∣
E0

= μ + ν + σ.

Therefore, we have

R0 = ρ(FV−1) = β�

(p + μ + α1�)(μ + ν + σ)
.

Let us note thatR0 is the average number of secondary infections caused by a single
infected individual in a population fully susceptible to the disease.

Theorem 1 The DFE point E0 of the HBV model (2.3) is LAS ifR0 < 1, and E0 is an
unstable saddle point ifR0 > 1.

Proof The Jacobian matrix of the HBV model (2.3) at the DFE point is

J0 =
(−(p + μ) −R0(μ + ν + σ)

0 (R0 − 1)(μ + ν + σ)

)
.

It is easy to obtain the eigenvalues of J0:

λ1 = −(p + μ), λ2 = (μ + ν + σ)(R0 − 1).

Clearly if R0 < 1, then λ1,2 < 0. Hence the HBV model (2.3) is LAS at E0. Con-
versely, if R0 > 1, then Jacobian matrix J0 has eigenvalues of both positive and
negative signs. That is, λ1 is negative, while λ2 is positive. This indicates that the
HBV model (2.3) is unstable, and E0 is also an unstable saddle point. Then, the proof
is completed, as desired. ��

The result mentioned above indicates that when the basic reproduction numberR0
is less than 1, a small population of infected individuals will not be able to spread
the infection. The spread of infection in this case depends on the initial size of the
sub-populations.

Theorem 2 The DFE point E0 of the HBV model (2.3) is GAS ifR0 < 1.

Proof IfR0 < 1, then there is no other equilibrium point than the disease-free equilib-
rium point (see (2.4)). Also, fromRemark 1, positive solutions of the HBVmodel (2.3)
are ultimately bounded and the S-axis is positively invariant, the I -axis repels the pos-
itive solutions. Since E0 is a locally asymptotically stable point, it follows from the
Bendixson Theorem that every positive solution of the HBV model (2.3) approaches
E0 as t approaches infinity. So, DFE point E0 of the HBV model (2.3) is globally
asymptotically stable. The proof is completed, as desired. ��

2.2 Stability nature of the EE

To find the endemic equilibrium points, we have to set the differential equations of
the HBV model (2.3) equal to zero. Then, we can obtain the endemic equilibrium
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E∗ = (S∗, I ∗), where

S∗ = μ + ν + σ + α2�

β − α1(μ + ν + σ) + α2(p + μ)

= �(μ + ν + σ + α2�)

(μ + ν + σ)[R0(p + μ) + α1�(R0 − 1)] + α2�(p + μ)

I ∗ = (p + μ + α1�)(R0 − 1)

β − α1(μ + ν + σ) + α2(p + μ)

= �(p + μ + α1�)(R0 − 1)

(μ + ν + σ)[R0(p + μ) + α1�(R0 − 1)] + α2�(p + μ)
.

(2.4)

From the above equations, one can easily see that ifR0 > 1, then the EE point exists.

Theorem 3 The EE point E∗ of the HBV model (2.3) is LAS ifR0 > 1.

Proof Let’s assume R0 > 1. After performing some algebraic calculations, one can
easily find the Jacobian matrix evaluated at E∗ as follows:

J ∗ =
(

−[β�−a(b+α1�)](β−α1a)
β(a+α2�)

− b − a2[β+α2(b+α1�)]
β(a+α2�)

[β�−a(b+α1�)](β−α1a)
β(a+α2�)

a2[β+α2(b+α1�)]
β(a+α2�)

− a

)
, (2.5)

where

a = μ + ν + σ

b = p + μ.

To have negative eigenvalues for the matrix mentioned above, both conditions must
be satisfied: Tr(J ∗) < 0, and det(J ∗) > 0 (see [26]). The trace of J ∗ can be easily
obtained by

Tr(J ∗) = − (R0 − 1)a2(b + α1�)[R0b + (R0 − 1)α1� + α2�]
β�(a + α2�)

− b.

Also, the determinant of the matrix (2.5), after some algebraic calculations can be
determined as follows:

det(J ∗) = (R0 − 1)a2(b + α1�) [R0ab + (R0 − 1)aα1� + α2b]

β�(a + α2�)
.

Obviously if R0 > 1, then the trace is negative while the determinant is positive for
J ∗, which means that the EE point of the HBV model (2.3) is LAS. Thus, the proof is
completed, as desired. ��

In the following theorem, we provide a necessary condition for the globally asymp-
totically stability of the endemic equilibrium point E∗.
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Theorem 4 If R0 > 1, then the EE point E∗ of the HBV model (2.3) is GAS in the
interior of the positive quadrant �.

Proof Let’s assume R0 > 1. Consider the functions f (S, I ) and g(S, I ) as the func-
tions right-hand side of the HBV model (2.3). Consider the Dulac function defined
by

B(S, I ) = I−1.

Then, we have

∂(B f )

∂S
+ ∂(Bg)

∂ I
= − β(1 + α2 I )

(1 + α1S + α2 I )2
− p + μ

I
− α2βS

(1 + α1S + α2 I )2
< 0

for all (S, I ) ∈ �. Hence the HBV model (2.3) has no periodic orbits in the �. Since
all solutions of (2.3) are bounded and E0 is an unstable saddle point forR0 > 1, from
the Poincare-Bendixson theorem, we obtain the globally asymptotically stability of
the endemic equilibrium E∗. Thus, the proof is completed, as desired. ��

2.3 Transcritical bifurcation

The occurrence of a change in the stability behavior or dynamics of equilibrium points
is commonly referred to as bifurcation (see [2, 36, 37]). An equilibrium point at which
this changeoccurs is knownas the bifurcation point. In this subsection,wewill examine
the behavior of the HBV model (2.3) when R0 = 1.

Let S = γ1 and I = γ2 and denote by f1(γ1, γ2) and f2(γ1, γ2) the right-hand side
functions of the HBV model (2.3). Then, the HBV model (2.3) can be rewritten as

dγ1

dt
= � − βγ1γ2

1 + α1γ1 + α2γ2
− (p + μ)γ1 = f1(γ1, γ2)

dγ2

dt
= βγ1γ2

1 + α1γ1 + α2γ2
− (μ + ν + σ)γ2 = f2(γ1, γ2). (2.6)

The Jacobian matrix at DFE of the HBVmodel (2.3) evaluated atR0 = 1 and β = β∗
where β∗ = (p+μ+α1�)(μ+ν+σ)

�
is given by

J =
(

−(p + μ) − β∗�
p+μ+α1�

0 β∗�
p+μ+α1�

− (μ + ν + σ)

)
.

Indeed, the existence of a zero eigenvalue in matrix J indicates the existence of a
bifurcation. Let the left and right eigenvectors corresponding to the zero eigenvalue
of J be denoted as u = [u1, u2]T and w = [w1, w2], respectively. One can easily
calculate the components of u and w as follows:

u1 = 0, u2 = 1, and w1 = − β∗�
(p + μ)(p + μ + α1�)

, w2 = 1.
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From Theorem 4.1 in [37], the bifurcation constants can be computed as

ξ1 =
2∑

i, j,k=1

ukwiw j
∂2 fk(E0)

∂γi∂γ j
= − 2βS0

(1 + α1S0)2

(
α2 + β∗�

(p+μ)(p+μ+α1�)

)
< 0

ξ2 =
2∑

i,k=1

vkwi
∂2 fk(E0)

∂γi∂β∗ = S0
1 + α1S0

> 0.

Therefore, the HBV model (2.3) undergoes transcritical bifurcation at R0 = 1. In
other words, the stability of the DFE point transitions from stable to unstable when
R0 reaches a value of 1, indicating the existence of a positive equilibrium as R0
crosses this threshold.

3 Constructing of the NSFD scheme

In this section, we will develop an NSFD scheme for the HBV model (1.3). Our
aim is to formulate numerical approaches that preserve the essential features of the
HBV model (1.3). These features include non-negativity of populations, population
conservation law, and stability properties of DFE and EE points.

In the subsequent sections of this section, the variables Sn , In , and Rn will be used to
denote the numerical approximations of S(t), I (t), and R(t), respectively, at discrete
time points t = nh, where n = 0, 1, 2, . . .. Here, h represents the time-step size. To
discretize the HBV model (1.3), we follow the approach proposed by Mickens (see
[30]) in the following manner:

Sn+1 − Sn
ϕ(h)

= � − βSn+1 In
1 + α1Sn + α2 In

− (p + μ)Sn+1,

In+1 − In
ϕ(h)

= βSn+1 In
1 + α1Sn + α2 In

− (μ + ν + σ)In+1,

Rn+1 − Rn

ϕ(h)
= pSn+1 + ν In+1 − μRn+1,

(3.1)

with

S0 > 0, I0 > 0, R0 > 0,

where ϕ(h) is the denominator function to be determined later. By adding all terms
on both sides of the equations in the HBV model (3.1), we can obtain the expression:

Nn+1 − Nn

ϕ(h)
= � − μNn+1 − σ In+1, (3.2)
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which leads to the inequality:

Nn+1 − Nn

ϕ(h)
≤ � − μNn+1, (3.3)

where Nn = N (tn) = Sn + In + Rn . Notably, (3.3) serves as an approximation of
the continuous population conservation law (2.1). To ensure the conservation of the
population, we decide on the following formulation for the denominator function:

ϕ(h) = eμh − 1

μ
. (3.4)

It is easy to see that substituting the denominator function (3.4) into the inequality
(3.3) gives

Nn+1 ≤ �

μ
+

(
Nn − �

μ

)
e−μh . (3.5)

Thus, by usingmathematical induction, it is easy to see that for any h > 0, the solution
of (3.3) satisfies the exact population conservation law (2.2):

Nn ≤ �

μ
+

(
N0 − �

μ

)
e−μnh . (3.6)

Let us rewrite the HBV model (3.1) in the explicit form:

Sn+1 = �ϕ(h) + Sn
1 + ϕ(h)[�(Sn, In) + p + μ]

In+1 = In + ϕ(h)�(Sn, In)Sn+1

1 + ϕ(h)(μ + ν + σ)

Rn+1 = Rn + ϕ(h)(pSn+1 + ν In+1)

1 + μϕ(h)
,

S0 > 0, I0 > 0, R0 > 0,

(3.7)

where

ϕ(h) = eμh − 1

μ
and �(S, I ) = β I

1 + α1S + α2 I
.

4 Dynamical analysis of the discrete HBVmodel

Here, we will explore the dynamical properties of the discrete HBV model (3.7). The
results to be obtained here will demonstrate that the discrete HBVmodel (3.7) and the
continuousHBVmodel (1.3) are dynamically consistent with the following properties:

• Non-negativity of solutions,
• Boundedness of solutions,

123
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• The existence of steady states,
• Stability nature of equilibrium points.

Because of the non-negativity of all parameters in (3.7), and that ϕ(h) > 0 for all
values of h, clearly Sn+1, In+1, Rn+1 ≥ 0 if Sn, In, Rn ≥ 0. Therefore, the non-
negative region R

3+ is a positively invariant set for the discrete HBV model (3.7).
From (3.6), we have

lim sup
n→∞

Nn ≤ �

μ
.

These results imply that the discrete model is dynamically consistent with the con-
tinuous model concerning non-negativity and boundedness. Based on these result, we
can conclude that a feasible region �2 can be defined for analyzing the solutions of
the HBV model (3.7) as follows;

�2 =
{
(Sn, In, Rn) ∈ R

3+ | Sn + In + Rn ≤ �

μ

}
.

Remark 2 By observing that the first two equations of the HBV model (3.7) are inde-
pendent of Rn , it is enough to only consider the first two equations without loss of
generality. Thus, we can rewrite the HBV model (3.7) as

Sn+1 = �ϕ + Sn
1 + ϕ(φ + p + μ)

,

In+1 = In + ϕφSn+1

1 + ϕ(μ + ν + σ)
, (4.1)

where Sn ≥ 0, In ≥ 0, φ = φ(S, I ) = β I
1+α1S+α2 I

, ϕ = ϕ(h), and analyze it on the
feasible set:

�d =
{
(Sn, In) ∈ R

2+ | Sn + In ≤ �

μ

}
.

4.1 Stability nature of the DFE

We can verify that the discrete HBVmodel (4.1) and the continuous HBVmodel (2.3)
share the same equilibrium points, namely, the DFE point E0 = (S0, I0) and the
EE point E∗ = (S∗, I ∗). It should be noted that the EE point exists when the basic
reproduction number R0 is greater than 1.

Let us define the following functions for simplicity:

F(S, I ) = �ϕ + Sn
1 + ϕ(φ + p + μ)

,

G(S, I ) = In + ϕφSn+1

1 + ϕ(μ + ν + σ)
. (4.2)
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So, the Jacobian matrix of the discrete HBV model (4.1) at an equilibrium point
E = (S, I ) can be represented as:

J (E) =
(

∂F
∂S (S, I ) ∂F

∂ I (S, I )
∂G
∂S (S, I ) ∂G

∂ I (S, I )

)
.

To analyze the locally asymptotically stability of equilibrium points, we examine the
magnitudes of eigenvalues of the Jacobian matrix evaluated at these points.

Theorem 5 If R0 < 1, then the DFE point E0 of the discrete HBV model (4.1) is
locally asymptotically stable regardless of the magnitude of h. Conversely, ifR0 > 1,
then E0 is unstable regardless of the magnitude of h.

Proof The Jacobian matrix of the HBV model (4.1) at E0 is

J (E0) =
(

1
1+ϕ(p+μ)

−R0ϕ(h)(μ+ν+σ)
1+ϕ(h)(p+μ)

0 1+R0ϕ(h)(μ+ν+σ)
1+ϕ(h)(μ+ν+σ)

)
.

The eigenvalues of the matrix are

λ1 = 1

1 + ϕ(p + μ)
, λ2 = 1 + R0ϕ(h)(μ + ν + σ)

1 + ϕ(h)(μ + ν + σ)
.

Obviously ifR0 < 1, then |λ1,2| < 1 for all h. Therefore the discrete HBVmodel (4.1)
is locally asymptotically stable at E0. Conversely, it is evident that if R0 > 1, then
λ2 > 1. This indicates that E0 is unstable. Thus, the proof is completed. ��

4.2 Stability nature of the EE

By conducting algebraic computations, we can establish that the discrete HBV
model (4.1) shares the same positive equilibrium point as the continuous HBV
model (2.3), that is the endemic equilibrium point as given in (2.4). This equilibrium
point exists only ifR0 > 1.

Theorem 6 The EE point E∗ of the discrete HBV model (4.1) is LAS if R0 > 1, for
all time-step sizes h.

Proof Suppose that R0 > 1. The Jacobian matrix of the HBV model (4.1) at EE is

J (E∗) =
(

1
x + α1t I ∗

x2
− (1+α1S∗)t

x2
1
xy

[
z + α1t I ∗

x (z − x)
]

1
y

[
1 + t(1+α1S∗)(x−z)

x2

]
)

.

where

x = 1 + ϕ(φ∗ + p + μ) > 1,

y = 1 + ϕ(μ + ν + σ) > 1,
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z = ϕφ∗ > 0,

t = βϕ(ϕ� + S∗)
(1 + α1S∗ + α2 I ∗)

> 0,

and φ∗ = β I ∗
1+α1S∗+α2 I ∗ . From J (E∗), we have

Tr(J (E∗)) = 1

x
+ α1t I ∗

x2
+ 1

y

[
1 + 1(1 + α1S∗)(x − z)

x2

]

and

det(J (E∗)) = 1

x2y
(x + t(1 + α1S

∗ + α1 I
∗)).

Therefore, the EE point E∗ is LAS if the condition |Tr(J )| < 1 + det(J ) < 2 is
satisfied (see [26]). Hence, the proof is completed. ��

5 Numerical simulations and discussion

Simulations are used as important tools to assess the suitability of the proposed mathe-
maticalmodel for real-world scenarios.Here, somenumerical simulations are provided
to validate the theoretical results obtained in the paper. We will provide two exam-
ples for cases where R0 is less and greater than 1. Through these examples, we will
compare the Euler and RK4 schemes with the proposed NSFD scheme of the HBV
model (1.3) and highlight the advantages of the NSFD approach. The simulations we
will provide have been conducted using the MATLAB software.

Example 1 (R0 < 1 Case) The parameters chosen for this example are provided in
the Table 1. According to the parameters given in Table 1, it can be observed that

R0 = 0.31353151869 < 1 and E0 = (8.33055648117, 0).

In Fig. 2, we simulate a comparison of numerical solutions of the HBV model (1.3)
obtained by the Euler, RK4 and proposed NSFD scheme. We choose the initial values
as S(0) = 100 and I (0) = 40 and time-step size h = 4.While Euler and RK4 schemes
exhibit numerical inconsistencies such as unrealistic negative populations and failure

Table 1 Parameter values used
in examples

Parameter Value Parameter Value

� 0.5 p 0.00002

β 0.3 or 2 μ 0.06

α1 0.8 ν 0.9

α2 0.6 σ 0.08
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Fig. 2 Comparison of numerical solutions obtained by Euler and RK4 schemes with by NSFD scheme for
S(0) = 100, I (0) = 40 and h = 4
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Fig. 3 Numerical solutions obtained by NSFD scheme for h = 4, h = 2.5, h = 1 and h = 0.5

to converge to the equilibrium point, the NSFD scheme does not suffer from these
issues. In Fig. 3, it is demonstrated that the NSFD scheme provides consistent results
for different time-step size values.
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Fig. 4 Global stability of E∗ in the NSFD scheme for h = 0.08
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Fig. 5 Effect of vaccination rate p on the susceptible and infected populations

Example 2 (R0 > 1 Case) Apart from the previous example, here β = 2, while all
other parameters remain the same. In this case,

R0 = 2.09021012464 > 1 and E∗ = (1.11294571815, 0.41653942114).

In Fig. 4, the global asymptotically stability of E∗ can be observed from the S − I
phase plane. There, the NSFD scheme is used for h = 0.08. Also, Fig. 5 illustrates
the effect of vaccination rate p on susceptible and infected populations. Moreover,
Figs. 6 and 7 show the effect of the parameters α1 and α2 on susceptible and infected
populations, respectively.

123



Dynamical behavior of a hepatitis B epidemic model and…

Fig. 6 Effect of α1 on the susceptible and infected populations

Fig. 7 Effect of α2 on the susceptible and infected populations

6 Conclusions and remarks

In this study, we have investigated the dynamical properties of an HBV model with
Beddington–DeAngelis type incidence and constant vaccination rate. We used the
Beddington–DeAngelis type incidence rate, which includes both a measure of inhibi-
tion effect, such as preventivemeasures taken by susceptible individuals, and ameasure
of inhibition effect, such as treatment concerning infectives. This approach enabled us
to study the HBVmodel (1.3), which yields results that are more meaningful and real-
istic when compared to the bilinear and saturated incidence rates. The non-negativity,
boundedness, basic reproduction number, stability properties, and bifurcation of the
HBVmodel (1.3) have been examined in detail. While locally asymptotically stability
properties are demonstrated using the linear stability theorem, globally asymptoti-
cally stability of E∗ has been shown using the Poincaré-Bendixson theorem. Stability
conditions have been derived based on the threshold quantity R0. The transcritical
bifurcation has been proven using the center manifold theory.

Mathematical epidemic models are often expressed through systems of nonlin-
ear differential or difference equations. It’s also worth noting that the model can be
directly constructed using a system of difference equations. Given a model expressed
in a system of differential equations, it is usually necessary to discretize it for prac-
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tical purposes. In the literature, various standard numerical methods such as Euler or
Runge–Kutta methods have been used to solve nonlinear differential equation sys-
tems. It has been demonstrated that these methods can potentially fail to preserve the
dynamical properties of the corresponding continuous model. To avoid this dynamical
inconsistency, discretized HBV model (3.1) has been derived by applying a non-
locally approach to the non-linear terms for the continuous HBV model (1.3) and
choosing a denominator function to satisfy the population conservation law. The dis-
crete HBV model has been analyzed in terms of its non-negativity, boundedness, and
stability properties. It has been concluded that both the discrete and continuousmodels
maintain dynamical consistency for any finite step size. Finally, by presenting some
numerical simulations, the theoretical results have been validated. Moreover, the pro-
vided simulations demonstrate that the parameters α1, α2 and p are significant factors
in preventing the spread of the disease within the population.

In the near future, with theHBVmodel given by the system (1.3), further studies can
be conducted on control strategies, rate of convergence, bifurcation analysis, local sen-
sitivity analysis, and other related topics. Also, dynamically consistent NSFD schemes
will be developed for several other epidemiological models to study their dynamical
behavior.

Finally, let’s conclude the article by presenting a conjecture.

Conjecture The DFE point E0 of the discrete HBV model (4.1) is GAS if R0 < 1,
and the EE point E∗ is GAS ifR0 > 1, for all time-step sizes h.
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