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Abstract
This study is involved with a class of three-dimensional system of difference equations
incorporating quadratic term, which naturally extends and improve several results in
the literature. Firstly, we demonstrate the existence of fixed points, the boundedness,
persistence and invariance of positive solution of the mentioned system. Later, for
this system, we give the global asymptotic stability at fixed point and the rate of
convergence resultwhichplay an important role in the discrete dynamical systems.And
lastly, some numerical examples are given to validate the effectiveness and feasibility
of the theoretical findings.

Keywords System of difference equations · Global asymptotic stability ·
Boundedness · Rate of convergence
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1 Introduction

Let’s say that N0 is the set of all nonnegative integers, N is the set of all natural
numbers, Z is the set of all integers, R is the set of all real numbers, and for k ∈ Z the
notation Nk denotes the set of {n ∈ Z : n ≥ k}.
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A popular area of study in applied sciences is nonlinear difference equations or
systems of difference equations with order greater than one. In nature, these equations
or systems also exist as discrete analogues of numerical solutions of delay differential
equations, which represent various phenomena in fields such as biology, geometry,
probability theory, stochastic time series, physics, ecology, neural networks and engi-
neering. The behavior of solutions to concrete difference equations or systems of
difference equations with orders greater than one, as well as the asymptotic stability
of their equilibrium points, have caught the attention of numerous authors recently. For
example, in [1], Bešo et al. considered the following nonlinear second order difference
equation

un+1 = γ + δ
un
u2n−1

, n ∈ N0, (1)

where the parameters γ , δ and the initial conditions u−i , i ∈ {0, 1}, are positive real
numbers. Boundedness, global attractivity and Neimark-Sacker bifurcation results
were obtained. Subsequently, Tasdemir, in [2], generalized some results of Eq. (1) to
the following higher-order difference equation

un+1 = μ + η
un

u2n−m
, n ∈ N0, (2)

where the parameters μ, η and the initial conditions u−i , i ∈ {0, 1, . . . ,m}, are
positive real numbers. Also, in [3], the equation in (1) was extended to the following
discrete two-dimensional system of difference equations

un+1 = μ + η
vn

v2n−1

, vn+1 = μ + η
un
u2n−1

, n ∈ N0, (3)

where the parameters μ, η and the initial conditions u−i , v−i , i ∈ {0, 1}, are positive
real numbers. Further, Khan, in [4], studied the asymptotic proporties of the following
discrete difference equations system

un+1 = B1 + B2
vn

v2n−1

, vn+1 = B3 + B4
un
u2n−1

, n ∈ N0, (4)

where Bi , for i ∈ {1, 2, 3, 4}, are positive real numbers and the initial conditions
u− j , v− j , for j ∈ {0, 1} may be positive or negative real numbers, is a natural
generalization of both the equation given in (1) and the system given in (2). Motivated
by aforementioned studies, we consider the following nonlinear three-dimensional
system of difference equations with quadratic terms

xn+1 = A1 + B1
yn

y2n−1

, yn+1 = A2 + B2
zn

z2n−1

, zn+1 = A3 + B3
xn

x2n−1

, n ∈ N0,

(5)
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where the parameters Ai , Bi , i ∈ {1, 2, 3}, and the initial conditions x− j , y− j , z− j ,

j ∈ {0, 1}, are positive real numbers. In this paper we study the equilibrium point, the
boundedness character, local asymptotic stability and global behavior of equilibrium
point of system (5), the rate of convergences of the solutions and confirmation of
theoretical results of mentioned system numerically. It is important to note that the
results derived from this article are a generalization and extension of above mentioned
articles. Other related difference equations and systems of difference equations can
be found in references [4–24].

Let us consider a three-dimensional discrete dynamical system with second-order
of the following form

⎧
⎪⎨

⎪⎩

un+1 = f1 (vn, vn−1) ,

vn+1 = f2 (wn, wn−1) ,

wn+1 = f3 (un, un−1) ,

n ∈ N0, (6)

where f1 : I2 × I2 → I1, f2 : I3 × I3 → I2 and f3 : I1 × I1 → I3, are continuously
differentiable functions and I j , j ∈ {1, 2, 3}, are some intervals of real numbers.
Moreover, the solution {(un, vn, wn)}∞n=−1 of corresponding system is uniquely deter-
mined by certain initial conditions.

Definition 1 [25] Let fi , i ∈ {1, 2, 3}, be continuously differentiable functions at the
equilibrium (ū, v̄, w̄) that is an equilibrium point of the map�. The linearized system
of (6) about the equilibrium point (ū, v̄, w̄) is

Un+1 = �(Un) = FJUn, n ∈ N0, (7)

where Un = (un, un−1, vn, vn−1, wn, wn−1)
T and FJ is a Jacobian matrix of system

(6) related to equilibrium point Ū = (ū, v̄, w̄).

Theorem 1 [17] Consider system (7), where Ū is a fixed point of �. If all eigenvalues
of the Jacobian matrix FJ about Ū lie inside the open unit disk ‖ρ‖ < 1, that is, if
all of them have absolute value less than one, then Ū is locally asymptotically stable.
If at least one of the eigenvalues has a modulus greater than 1, than Ū is unstable.

2 Linearized stability system

First of all, by employing the change of variables αn = xn
A1

, βn = yn
A2

, γn = zn
A3

, for
n ≥ −1, system (5) becomes

αn+1 = 1 + p
βn

β2
n−1

, βn+1 = 1 + q
γn

γ 2
n−1

, γn+1 = 1 + r
αn

α2
n−1

, n ∈ N0, (8)

where

p = B1

A1A2
> 0, q = B2

A2A3
> 0, r = B3

A1A3
> 0. (9)
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From here on, we will study on the equivalent system (8).

Lemma 1 System (8) has two equilibrium points 	1 = (ξ11, ξ12, ξ13) and 	2 =
(ξ21, ξ22, ξ23), where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ11 = 1+p+q−r+
√

(1+p+q−r)2+4(1+p)(1+q)r
2(1+q)

,

ξ12 = 1−p+q+r+
√

(1+p+q−r)2+4(1+p)(1+q)r
2(1+r) ,

ξ13 = 1+p−q+r+
√

(1+p+q−r)2+4(1+p)(1+q)r
2(1+p) ,

(10)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ21 = 1+p+q−r−
√

(1+p+q−r)2+4(1+p)(1+q)r
2(1+q)

,

ξ22 = 1−p+q+r−
√

(1+p+q−r)2+4(1+p)(1+q)r
2(1+r) ,

ξ23 = 1+p−q+r−
√

(1+p+q−r)2+4(1+p)(1+q)r
2(1+p) .

(11)

Proof Let 	 = (
ᾱ, β̄, γ̄

)
be equilibrium point of system (8). Then, from system (8),

we have

ᾱ = 1 + p
β̄

β̄2
, β̄ = 1 + q

γ̄

γ̄ 2 , γ̄ = 1 + r
ᾱ

ᾱ2 , (12)

from which it follows that

β̄ = p

ᾱ − 1
, γ̄ = q

β̄ − 1
, ᾱ = r

γ̄ − 1
. (13)

By substituting the second equation in (13) into the third one in (13) and then the first
equation in (13) into the third one in (13), it follows that

(q + 1) ᾱ2 − (p + q − r + 1) ᾱ − r (p + 1) = 0, (14)

whose roots are

ᾱ1,2 = 1 + p + q − r ±
√

(1 + p + q − r)2 + 4 (1 + p) (1 + q) r

2 (1 + q)
, (15)

where p = B1A1A2
> 0, q = B2A2A3

> 0 and r = B3A1A3
> 0. Similarly, by substituting

the third equation in (13) into the first one in (13) and then the second equation in (13)
into the first one in (13), by keeping in mind the truth of (9) and after manipulation,
we get

(r + 1) β̄2 − (−p + q + r + 1) β̄ − p (q + 1) = 0, (16)
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whose roots are

β̄1,2 = 1 − p + q + r ±
√

(1 + p + q − r)2 + 4 (1 + p) (1 + q) r

2 (1 + r)
, (17)

where p = B1A1A2
> 0, q = B2A2A3

> 0 and r = B3A1A3
> 0. Analogously, by

substituting the first equation in (13) into the second equation in (13) and the third
equation in (13) into the second equation in (13), later by keeping in mind the truth of
(9) and, finally, after manipulation, we have

(p + 1) γ̄ 2 − (p − q + r + 1) γ̄ − q (r + 1) = 0, (18)

whose roots are

γ̄1,2 = 1 + p − q + r ±
√

(1 + p + q − r)2 + 4 (1 + p) (1 + q) r

2 (1 + p)
, (19)

where p = B1A1A2
> 0, q = B2A2A3

> 0 and r = B3A1A3
> 0. From (15), (17) and (19),

one deduces that system (8) has two equilibrium points such as 	1 = (
ᾱ, β̄, γ̄

) =
(ξ11, ξ12, ξ13) and 	2 = (

ᾱ, β̄, γ̄
) = (ξ21, ξ22, ξ23), where is described in (10) and

(11). �	
Now, we will carry out the linearized form of system (8) related to the equilibrium
point 	1 = (ξ11, ξ12, ξ13). Firstly, we will write system (8) in vectorial form. To do
this, we define the function F : (0,∞)6 → (0,∞)6 by

F (X) = (g1 (X) , u2, g2 (X) , v2, g3 (X) , w2) , (20)

where X = (u1, u2, v1, v2, w1, w2) , g1 (X) = 1 + p v1
v22

, g2 (X) = 1 + q w1
w2
2
and

g3 (X) = 1 + r u1
u22

. From (20), one can write the vector form and linearized form of

system (8) as follows

Xn+1 = F (Xn) = J |	 Xn, (21)

where Xn = (un, un−1, vn, vn−1, wn, wn−1)
T and J |	 is a Jacobian matrix of the

system (8) about equilibirum point 	1 = (ξ11, ξ12, ξ13), which is given by

J |	=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 p
ξ212

−2p
ξ212

0 0

1 0 0 0 0 0
0 0 0 0 q

ξ213

−2q
ξ213

0 0 1 0 0 0
r

ξ211

−2r
ξ211

0 0 0 0

0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (22)
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3 Boundedness and persistence of system (8)

In the following result, we prove that system (8) is bounded and persists.

Theorem 2 If pqr < 1, then the solution {(αn, βn, γn)}∞n=−1 of system (8) is bounded
and persists.

Proof Let {(αn, βn, γn)}∞n=−1 be a positive solution of system (8). Then, from (8) we
have

αn ≥ 1, βn ≥ 1, γn ≥ 1, n ∈ N. (23)

Further, from (23) and system (8), the following inequalities can be easily obtained

⎧
⎪⎨

⎪⎩

αn+1 ≤ 1 + p + pq + pqrαn−2,

βn+1 ≤ 1 + q + qr + pqrβn−2,

γn+1 ≤ 1 + r + pr + pqrγn−2.

(24)

From the first inequality in (24) one has

α̂n+1 = 1 + p + pq + pqr α̂n−2, (25)

such that α̂ j = α j , j ∈ {−1, 0, . . . , 3}, whose solution is

α̂n = 1 + p + pq

1 − pqr
+ (

3
√
pqr

)n
(

C11 + C12 cos

(
2π

3
n

)

+ C13 sin

(
2π

3
n

))

,

(26)

where C1i , for i ∈ {1, 2, 3}, are bounded up with α̂− j , for j ∈ {−1, 0, 1}. From the
second inequality in (24) one gets

β̂n+1 = 1 + q + qr + pqr β̂n−2, (27)

such that β̂ j = β j , j ∈ {−1, 0, . . . , 3}, whose solution is

β̂n = 1 + q + qr

1 − pqr
+ (

3
√
pqr

)n
(

C21 + C22 cos

(
2π

3
n

)

+ C23 sin

(
2π

3
n

))

,

(28)

where C2i , for i ∈ {1, 2, 3}, are bounded up with β̂− j , for j ∈ {−1, 0, 1}. Similarly,
from the third equality in (24) one obtains

γ̂n+1 = 1 + r + pr + pqr γ̂n−2, (29)
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such that γ̂ j = γ j , j ∈ {−1, 0, . . . , 3}, whose solution is

γ̂n = 1 + r + pr

1 − pqr
+ (

3
√
pqr

)n
(

C31 + C32 cos

(
2π

3
n

)

+ C33 sin

(
2π

3
n

))

,

(30)

where C3i , for i ∈ {1, 2, 3}, are depicted in γ̂− j , for j ∈ {−1, 0, 1}. By considering
α̂ j = α j , β̂ j = β j , and γ̂ j = γ j , for j ∈ {−1, 0, . . . , 3}, and from the assumption
pqr < 1, then one has the following inequalities

αn ≤ 1 + p + pq

1 − pqr
, βn ≤ 1 + q + qr

1 − pqr
, γn ≤ 1 + r + pr

1 − pqr
, (31)

from which along with (23), it follows that

1 ≤ αn ≤ 1 + p + pq

1 − pqr
, 1 ≤ βn ≤ 1 + q + qr

1 − pqr
, 1 ≤ γn ≤ 1 + r + pr

1 − pqr
. (32)

�	
Theorem 3 System (8) has an invariant interval when 0 < pqr < 1. Further the set
[1, 1+p+pq

1−pqr ] × [1, 1+q+qr
1−pqr ] × [1, 1+r+pr

1−pqr ] is an invariant.

Proof Assume that {(αn, βn, γn)}∞n=−1 is the solution of system (8) such that α−i ∈
[1, 1+p+pq

1−pqr ], β−i ∈ [1, 1+q+qr
1−pqr ] and γ−i ∈ [1, 1+r+pr

1−pqr ], for i ∈ {0, 1}. Then, from
system (8) and equalities in (23) one gets

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ≤ α1 = 1 + p β0

β2−1
≤ 1+p+pq

1−pqr ,

1 ≤ β1 = 1 + q γ0

γ 2−1
≤ 1+q+qr

1−pqr ,

1 ≤ γ1 = 1 + r α0
α2−1

≤ 1+r+pr
1−pqr ,

(33)

from which deduce that α1 ∈ [1, 1+p+pq
1−pqr ], β1 ∈ [1, 1+q+qr

1−pqr ] and γ1 ∈ [1, 1+r+pr
1−pqr ].

Finally, by using inductionmethod, one easily shows thatαk+1 ∈ [1, 1+p+pq
1−pqr ], βk+1 ∈

[1, 1+q+qr
1−pqr ] and γk+1 ∈ [1, 1+r+pr

1−pqr ] if αk ∈ [1, 1+p+pq
1−pqr ], βk ∈ [1, 1+q+qr

1−pqr ] and

γk ∈ [1, 1+r+pr
1−pqr ]. �	

4 Stability analysis of system (8)

The global attractivity and the local asymptotic stability of the equilibrium point given
in (10) of system (8) will be addressed in this section. Also, the globally asymptotic
result will be presented by using the gained results.
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Theorem 4 If the following condition

max

⎧
⎪⎨

⎪⎩

12r (1 + q)2

(
1 + p + q − r + √

�
)2 ,

12p (1 + r)2
(
1 − p + q + r + √

�
)2 ,

12q (1 + p)2
(
1 + p − q + r + √

�
)2

⎫
⎪⎬

⎪⎭
< 1,

(34)

where � = (1 + p + q − r)2 + 4 (1 + p) (1 + q) r , holds, then the equilibrium
point 	1 = (ξ11, ξ12, ξ13) of system (8) is locally asymptotically stable.

Proof From (21), the linearized equation of system (8) about equilibrium point 	1 =
(ξ11, ξ12, ξ13) is

Xn+1 = J |	1 Xn, (35)

where Xn = (un, un−1, vn, vn−1, wn, wn−1)
T and

J |	1=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 4p(1+r)2
(
1−p+q+r+√

�
)2

−8p(1+r)2
(
1−p+q+r+√

�
)2 0 0

1 0 0 0 0 0

0 0 0 0 4q(1+p)2
(
1+p−q+r+√

�
)2

−8q(1+p)2
(
1+p−q+r+√

�
)2

0 0 1 0 0 0
4r(1+q)2

(
1+p+q−r+√

�
)2

−8r(1+q)2
(
1+p+q−r+√

�
)2 0 0 0 0

0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(36)

where � = (1 + p + q − r)2 + 4 (1 + p) (1 + q) r . Let λi , for i ∈ {1, 2, . . . , 6},
be the eigenvalues of J |	1 . From (34) we can choose an ε > 0 such that

max

⎧
⎪⎪⎨

⎪⎪⎩

3

√
√
√
√
√

12p (1 + r)2
(
1 − p + q + r + √

�
)2 , 3

√
√
√
√
√

12q (1 + p)2
(
1 + p − q + r + √

�
)2 ,

3

√
√
√
√
√

12r (1 + q)2

(
1 + p + q − r + √

�
)2

⎫
⎪⎪⎬

⎪⎪⎭

< ε < 1, (37)

where � = (1 + p + q − r)2 + 4 (1 + p) (1 + q) r . If

D = diag
(
1, ε, ε−1, ε−2, ε−3, ε−4, ε−5

)
, (38)

then
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D−1J |	1 D

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 4p(1+r)2ε−2
(
1−p+q+r+√

�
)2

−8p(1+r)2ε−3
(
1−p+q+r+√

�
)2 0 0

ε 0 0 0 0 0

0 0 0 0 4q(1+p)2ε−2
(
1+p−q+r+√

�
)2

−8q(1+p)2ε−3
(
1+p−q+r+√

�
)2

0 0 0 ε 0 0
4r(1+q)2ε4

(
1+p+q−r+√

�
)2

−8r(1+q)2ε3
(
1+p−q−r+√

�
)2 0 0 0 0

0 0 0 0 ε 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(39)

where � = (1 + p + q − r)2 + 4 (1 + p) (1 + q) r . Then, we can obtain the next
norm of the matrix D−1J |	1 D as

‖D−1J |	1 D‖ = max

⎧
⎪⎨

⎪⎩

4p(1 + r)2ε−2

(
1 − p + q + r + √

�
)2 + 8p (1 + r)2 ε−3

(
1 − p + q + r + √

�
)2 ,

4q (1 + p)2 ε−2

(
1 + p − q + r + √

�
)2 + 8q (1 + p)2 ε−3

(
1 + p − q + r + √

�
)2 ,

4r (1 + q)2 ε4

(
1 + p + q − r + √

�
)2 + 8r (1 + q)2 ε3

(
1 + p − q − r + √

�
)2 , ε

⎫
⎪⎬

⎪⎭
.

(40)

Since ε < 1 and the inequality in (37) satisfies, we can write the following inequalities

‖D−1J |	1 D‖ ≤ max

⎧
⎪⎨

⎪⎩

12p (1 + r)2 ε−3

(
1 − p + q + r + √

�
)2 ,

12q (1 + p)2 ε−3

(
1 + p − q + r + √

�
)2 ,

12r (1 + q)2 ε−3

(
1 + p − q − r + √

�
)2 , ε

⎫
⎪⎬

⎪⎭
< 1. (41)

Since J |	1 possesses the same eigenvalues as D−1J |	1 D, we have that |λi | ≤
‖D−1J |	1 D‖ < 1, where λi , for i ∈ {1, 2, . . . , 6}, are the eigenvalues of J |	1 .
From Theorem (1), the equilibrium point given in (10) of system (8) is locally asymp-
totically stable, which is desired. �	

Theorem 5 Assume that p, q, r ∈ (
0, 1

2

)
. Then, the equilibrium point 	1 of system (8)

is global attractor.
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Proof Let {(αn, βn, γn)}∞n=−1 be a positive solution of system (8) and be p, q, r ∈
(
0, 1

2

)
. From Theorem (2), there exists

limn→∞ supαn = U1, limn→∞ supβn = U2, limn→∞ sup γn = U3,

limn→∞ inf αn = l1, limn→∞ inf βn = l2, limn→∞ inf γn = l3,
(42)

whereU1,U2,U3, l1, l2, l3 ∈ (0,∞) . Then, from system (8) and the relations in (42),
one gets the following inequalities

U1 ≤ 1 + pU2
l22

, U2 ≤ 1 + q U3
l23

, U3 ≤ 1 + r U1
l21

,

l1 ≥ 1 + p l2
U2
2
, l2 ≥ 1 + q l3

U2
3
, l3 ≥ 1 + r l1

U2
1
,

(43)

from which it follows that

U2 + p
l2
U2

≤ l1U2, (44)

U3 + q
l3
U3

≤ l2U3, (45)

U1 + r
l1
U1

≤ l3U1, (46)

U1l2 ≤ l2 + p
U2

l2
, (47)

U2l3 ≤ l3 + q
U3

l3
, (48)

U3l1 ≤ l1 + r
U1

l1
. (49)

By multiplying both sides of inequality in (44) by U3 and both sides of inequality in
(49) by U2, one has

U3l1U2 ≥ U2U3 + p
l2U3

U2
, U2U3l1 ≤ U2l1 + r

U2U1

l1
,

from which it follows that

U2U3 + p
l2U3

U2
≤ U2l1 + r

U2U1

l1
. (50)

Similarly,multiplying both sides of inequality in (45) byU1 andboth sides of inequality
in (47) by U3, one gets

U1U3l2 ≥ U1U3 + q
l3U1

U3
, U1U3l2 ≤ U3l2 + p

U2U3

l2
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from which it follows that

U1U3 + q
l3U1

U3
≤ U3l2 + p

U2U3

l2
. (51)

Analogously, multiplying both sides of inequality in (46) by U2 and both sides of
inequality in (48) by U1, one obtains

U1U2l3 ≥ U1U2 + r
l1U2

U1
, U2l3U1 ≤ l3U1 + q

U1U3

l3
,

from which it follows that

U1U2 + r
l1U2

U1
≤ l3U1 + q

U1U3

l3
. (52)

From (50), (51) and (52), one can write

U2U3 + p
l2U3

U2
+U1U3 + q

l3U1

U3
+U1U2 + r

l1U2

U1
≤ U2l1 + r

U1U2

l1
+U3l2 + p

U2U3

l2
+ l3U1

+q
U1U3

l3
, (53)

which implies that

U2U3 + p
l2U3

U2
+U1U3 + q

l3U1

U3
+U1U2 + r

l1U2

U1
−U2l1 − r

U1U2

l1
−U3l2 − p

U2U3

l2
− l3U1

− q
U1U3

l3
≤ 0 (54)

and consequently

U3(U2 − l2) +U2(U1 − l1) +U1(U3 − l3) + pU3(
l2
U2

− U2

l2
) + qU1(

l3
U3

− U3

l3
)

+ rU2(
l1
U1

− U1

l1
) ≤ 0. (55)

From (55) and after some basic calculation, one has

U3(U2 − l2)

(

1 − p(
1

l2
+ 1

U2
)

)

+U2(U1 − l1)

(

1 − r(
1

l1
+ 1

U1
)

)

+U1(U3 − l3)

(

1 − q(
1

l3
+ 1

U3
)

)

≤ 0. (56)

From the fact that 1 ≤ l1, 1 ≤ l2, 1 ≤ l3 and from the assumption p, q, r ∈ (
0, 1

2

)
,

then one gets

1 − p

(
1

l2
+ 1

U2

)

> 0, 1 − r

(
1

l1
+ 1

U1

)

> 0, 1 − q

(
1

l3
+ 1

U3

)

> 0, (57)
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from which it follows that

U1 − l1 = 0, U2 − l2 = 0, U3 − l3 = 0, (58)

and so, U1 = l1, U2 = l2 and U3 = l3, which completes the proof. �	

Taking into account Theorem (4) and Theorem (5), the following theorem gives the
main result of this article.

Theorem 6 If the condition in (34) and p, q, r ∈ (
0, 1

2

)
are hold, then the equilibrium

point given in (10) of system (8) is globally asymptotically stable.

5 Rate of convergence

In this section, we study the rate of convergence of a solutions which converges to the
equilibrium point 	1 = (ξ11, ξ12, ξ13) of the system (8) in the region of parameters
described by p, q, r ∈ (0,∞) . The following result gives the rate of convergence of
solutions of difference equations system

�n+1 = [M + N (n)]�n (59)

where �n is a k-dimensional vector, M ∈ Ck×k is a constant matrix and N : Z+ →
Ck×k is a matrix function with

‖N (n)‖ → 0, as n → ∞, (60)

where ‖.‖ denotes any matrix norm.

Theorem 7 (Perron’s Theorem, see, [26]) Assume that condition in (60) holds. If �n

is a solution of (59), then either �n = 0 for all large n or

ϑ = lim
n→∞

‖�n+1‖
‖�n‖

or

ϑ = lim
n→∞ (‖�n‖) 1

n

exists and ϑ is equal to the modulus of one of the eigenvalues of matrix M .
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Theorem 8 Assume that p, q, r ∈ (
0, 1

2

)
and the solution {(αn, βn, γn)}∞n=−1 of system

(8) tends to 	1 = (ξ11, ξ12, ξ13). Then, the error vector

En =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1n
e1n−1
e2n
e2n−1
e3n
e3n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

αn − ξ11
αn−1 − ξ11
βn − ξ12

βn−1 − ξ12
γn − ξ13

γn−1 − ξ13

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

of every solution of system (8) satisfies both of the asymptotic relations

ϑ = lim
n→∞(||�n||) 1

n =|λ1,2,3,4,5,6 JF (ξ11, ξ12, ξ13) |,

ϑ = lim
n→∞

||�n+1||
||�n|| =|λ1,2,3,4,5,6 JF (ξ11, ξ12, ξ13) |,

where ϑ is equal to the modulus of one of the eigenvalues of JF about (ξ11, ξ12, ξ13).
and λ1,2,3,4,5,6 JF (ξ11, ξ12, ξ13) are the characteristic roots of the Jacobian matrix
JF (ξ11, ξ12, ξ13).

Proof Let {(αn, βn, γn)}∞n=−1 be a positive solution of system (8) such that the fol-
lowing conditions hold

lim
n→∞ αn = ξ11, lim

n→∞ βn = ξ12, lim
n→∞ γn = ξ13. (61)

In order for the error terms of system, from (12) with depicting on 	1 = (
ᾱ, β̄, γ̄

) =
(ξ11, ξ12, ξ13), one has

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αn+1 − ξ11 = p βn

β2
n−1

− p
ξ12

= p
β2
n−1

(
βn − ξ12

)
− p(βn−1+ξ12)

ξ12β
2
n−1

(
βn−1 − ξ12

)
,

βn+1 − ξ12 = q γn

γ 2
n−1

− q
ξ13

= q
γ 2
n−1

(
γn − ξ13

)
− q(γn−1+ξ13)

ξ13γ
2
n−1

(
γn−1 − ξ13

)
,

γn+1 − ξ13 = r αn
α2
n−1

− r
ξ11

= r
α2
n−1

(
αn − ξ11

)
− r(αn−1+ξ11)

ξ11α
2
n−1

(
αn−1 − ξ11

)
.

(62)

Set

e1n = αn − ξ11, e2n = βn − ξ12, e3n = γn − ξ13. (63)

From (62) and (63), one gets

⎧
⎪⎨

⎪⎩

e1n+1 = a11e2n + a12e2n−1,

e2n+1 = a21e3n + a22e3n−1,

e3n+1 = a31e1n + a32e1n−1,

(64)

123



Y. Yazlık et al.

where a11 = p
β2
n−1

, a12 = − p(βn−1+ξ12)

ξ12β
2
n−1

, a21 = q
γ 2
n−1

, a22 = − q(γn−1+ξ13)

ξ13γ
2
n−1

, a31 = r
α2
n−1

and a32 = − r(αn−1+ξ11)

ξ11α
2
n−1

, from which it follows that

⎧
⎪⎪⎨

⎪⎪⎩

limn→∞ a11 = p
ξ212

, limn→∞ a12 = −2p
ξ212

,

limn→∞ a21 = q
ξ213

, limn→∞ a22 = −2q
ξ213

,

limn→∞ a31 = r
ξ211

, limn→∞ a32 = −2r
ξ211

.

(65)

That is,

⎧
⎪⎪⎨

⎪⎪⎩

a11 = p
ξ212

+ ρ11, a12 = −2p
ξ212

+ ρ12,

a21 = q
ξ213

+ ρ21, a22 = −2q
ξ213

+ ρ22,

a31 = r
ξ211

+ ρ31, a32 = −2r
ξ211

+ ρ32,

(66)

where ρi j → 0 as n → ∞. Then, one possesses the following system of the form in
(59)

En+1 = (M + N (n)) En, (67)

where En = (
e1n, e

1
n−1, e

2
n, e

2
n−1, e

3
n, e

3
n−1

)T
and

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 p
ξ212

−2p
ξ212

0 0

1 0 0 0 0 0
0 0 0 0 q

ξ213

−2q
ξ213

0 0 1 0 0 0
r

ξ211

−2r
ξ211

0 0 0 0

0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, N (n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ρ11 ρ12 0 0
1 0 0 0 0 0
0 0 0 0 ρ21 ρ22
0 0 1 0 0 0

ρ31 ρ32 0 0 0 0
0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (68)

where ‖N (n)‖ → 0 as n → ∞. The matrix M is equal to JF (ξ11, ξ12, ξ13). So, by
using Theorem (7) to system (8), the result easily follows. �	

6 Numerical simulations

In this section, we verify the above mathematical discussion and represent some inter-
esting dynamical properties of system (8) through numerical simulations. For this,
certain parametric values are taken into account for system (8).

Example 1 Consider system (8) with p = 0.49, q = 0.48, r = 0.41. Then, system
(8) can be written as
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Fig. 1 Plot of αn , βn and γn in system (69) with p, q, r ∈
(
0, 1

2

)
.

αn+1 = 1 + 0.49
βn

β2
n−1

, βn+1 = 1 + 0.48
γn

γ 2
n−1

,

γn+1 = 1 + 0.41
αn

α2
n−1

, n ∈ N0, (69)

with the initial conditions x−1 = 21.2, x0 = 0.8, y−1 = 9.2, y0 = 7.3, z−1 = 2.71,
z0 = 6.47. From Theorem (5), one easily sees that every positive solution of system
(8) is bounded and the equilibrium point	1 = (1.35801, 1.36869, 1.30191) of system
(69) is global attractor (See, Figs. 1 and 2).

Example 2 Consider system (8) with p = 1.7, q = 0.6, r = 3.4. Then, system (8)
can be written as

αn+1 = 1 + 1.7
βn

β2
n−1

, βn+1 = 1 + 0.6
γn

γ 2
n−1

,

γn+1 = 1 + 3.4
αn

α2
n−1

, n ∈ N0, (70)

with the initial conditions x−1 = 4.2, x0 = 5.1, y−1 = 0.6, y0 = 3.1, z−1 = 0.6,
z0 = 14.6. The the positive equilibrium point 	1 = (2.36426, 1.2461, 2.43808) of
system (70) is not global attractor. (See, Figs. 3 and 4).
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Fig. 2 Plot of attractor of system (69) with p, q, r ∈
(
0, 1

2

)
.

Fig. 3 Plot of αn , βn and γn in system (70)

7 Conclusion

This study represents a contribution to the analysis of three-dimensional concrete non-
linear system of difference equations, with arbitrary constant and different parameters.
This paper mainly discusses the dynamic properties of a class of second-order system
of difference equations by utilizing stability theory and rate of convergence. The main
results are as follows.

i. When pqr < 1, then the solution of system (8) is bounded and persists. Further
for under this condition, system (8) has an invariant interval.

ii. When 12r(1+q)2
(
1+p+q−r+√

�
)2 < 1, 12p(1+r)2

(
1−p+q+r+√

�
)2 < 1 and 12q(1+p)2

(
1+p−q+r+√

�
)2 < 1,

where � = (1 + p + q − r)2 + 4 (1 + p) (1 + q) r , then the equilibrium point
	1 = (ξ11, ξ12, ξ13) of system (8) is locally asymptotic stable.
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Fig. 4 The plot of system (70) with p, r /∈
(
0, 1

2

)
and q ∈

(
0, 1

2

)

iii. When p, q, r ∈ (
0, 1

2

)
, then the equilibrium point 	1 of system (8) is global

attractor.

The results imply that this approachmight alsobehelpfully expanded to k−dimensional
system of difference equations, or to system of difference equations with higher-order,
or to system of difference equations with arbitrary powers. Thereby, we are going to
offer a significant unresolved problem for scholars studying difference equations the-
ory.
OpenProblem.One can study the dynamical proporties of the following k−dimesional
system of difference equations with quadratic terms

x(1)
n+1 = A1 + B1

x(2)
n

(
x(2)
n−1

)2 , x(2)
n+1 = A2 + B2

x(3)
n

(
x(3)
n−1

)2 , . . . , x(k)
n+1 = Ak + Bk

x(1)
n

(
x(1)
n−1

)2 ,

where n ∈ N0, k ∈ N4, the parameters Ai , Bi , for i ∈ {1, 2, . . . , k}, and the initial
conditions x (i)

− j , for i ∈ {1, 2, . . . , k} and j ∈ {0, 1}, are positive real numbers.
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