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Abstract
Fractional Repetition (FR) codes break the data into smaller fragments and distribute
these fragments across multiple storage nodes. This paper focuses on extension-based
construction methods for obtaining new FR codes from existing FR codes. Addition-
ally, it formulates a particular case of extension codes as an exact cover problem,
enabling an algorithmic construction of FR codes.
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1 Introduction

In today’s data-driven landscape, the management and preservation of vast amounts of
information have becomecritical. Large-scale data storage systems are used in a variety
of domains, from social networking and video streaming sites to the ever-expanding
realm of cloud storage solutions. In these contexts, ensuring the integrity and avail-
ability of stored data is paramount, especially when storage nodes are individually
unreliable. The fundamental challenge of maintaining data resiliency and accessibil-
ity in the face of node failures is traditionally addressed by introducing redundancy
through data replication and erasure coding [3]. Distributed storage systems are a key
solution to this challenge. These systems effectively distribute data across multiple
nodes or servers, which are often geographically dispersed. In addition to ensuring
reliable data access, they have a unique property: after a regeneration process, the
resulting system retains the essential characteristics of the original configuration. The
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regeneration process may require a balance between optimizing certain metrics, such
as the speed of regeneration and the minimum number of nodes involved. The design
of coding techniques tailored to meet these objectives has consequently become an
area of research interest [3, 4, 12, 16, 18].

In the general framework, a Distributed Storage System (DSS) with parameters
(n, k, d), or simply an (n, k, d)-DSS, consists of n storage nodes. Each of these nodes
stores packets, or equivalently symbols, in such a way that allows the data collector to
reconstruct the stored file by contacting any k nodes. This property is referred to as the
MaximumDistance Separability (MDS) property of the system. In the event of a node
failure, the system connects to any set of d ≥ k surviving nodes and downloads β

packets from each of them. This collective operation results in a total repair bandwidth
of γ = dβ packets. The parameters d,β, and γ are called the repair degree, normalized
repair bandwidth, and total repair bandwidth, respectively.

In certain DSSs, replacement nodes are designed to connect only to predetermined
subsets of nodes for repair. In these systems, the repair process is exact and uncoded,
accomplished by simply downloading packets from the surviving nodes [9, 14, 17, 19,
24]. The encoding process begins with the use of an outer MDS code. The encoded
symbols are then placed into storage nodes using an inner fractional repetition code to
meet specific desired characteristics. This dual-layered approach allows the entireDSS
to function without requiring any computation at the surviving nodes or the replace-
ment nodes [1, 10, 11, 18, 19, 22]. Notably, the known constructions for exact repair
processes typically operates at one of two distinct points: the Minimum Bandwidth
Regenerating (MBR) point, minimizing the repair bandwidth γ ; the Minimum Stor-
age Regenerating (MSR) point, minimizing the storage per node. In parallel, several
studies have investigated code constructions, called local codes, aimed at minimizing
the number of nodes involved in the regeneration process [4, 12, 15, 21]. In these
codes, the repair degree d is strictly less than k.

In this paper, we present novel constructions based on an extension method that
adds new symbols to the storage nodes of existing FR codes. In particular, we obtain
an infinite family of codes through the extension process associated with affine planes
and projective planes. The resultant codes may achieve optimality without altering the
minimum distances. Additionally, we introduce families of locally repairable codes
originating from net FR codes. Furthermore, we outline the construction of extensions
to certain FR codes that arised frompartitioning the edges of complete bipartite graphs.

2 Fractional repetition codes

Let θ represent the number of encoded symbols generated by an outer (n, k)-MDS
code, such as the Reed–Solomon code. Copies of these symbols are distributed across
n nodes, with each symbol occurring ρ times and each node containing α symbols.
In the event of a node failure, recovery is possible by downloading exactly β packets
from a predetermined set of d surviving nodes, resulting in a total repair bandwidth
of dβ. In other words, α = dβ.
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Fig. 1 A (4, 2, 3)-DSS

Example 1 Let X = (x1, x2, x3, x4, x5) ∈ F
5
q be a file of 5 packets to be stored in

a DSS. Consider the (6, 5)-MDS code that inputs the file X , and outputs the coded
file Y = (y1, y2, y3, y4, y5, y6) of 6 packets, where yi = xi for 1 ≤ i ≤ 5, and
y6 = ∑5

i=1 xi . The coded packets are then distributed among the storage nodes V1 =
{y1, y2, y5}, V2 = {y1, y4, y6}, V3 = {y2, y3, y6} and V4 = {y3, y4, y5}, as shown
in Fig. 1. In this configuration, every node contains a subset of 3 packets from the
set {y1, y2, . . . , y6}, and each yi is replicated twice in the storage system. When a
node fails, the system can connect to the remaining 3 nodes to download 1 packet
from each to repair the failed node. As any distinct pair of nodes shares exactly one
symbol in common, any two storage nodes contain at least 5 distinct symbols together.
Consequently, the entire file can be recovered from any two nodes by means of the
MDS property.

The nodes of a DSS can be represented by a binary matrix N = [ni j ] of size θ × n
defined as follows:

ni j =
{
1; if yi ∈ Vj ,

0; otherwise.

For example, the nodes of the DSS in Example 1 can be represented by the following
matrix.

V1 V2 V3 V4

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

y1
y2
y3
y4
y5
y6

Definition 1 Let � = {1, 2, . . . , θ} denote the index set of coded packets. An FR
code C, with repetition degree ρ, for an (n, k, d)-DSS is a collection of n subsets
V1, V2, . . . , Vn of � that satisfy the following conditions:

1. Each subset Vi has a cardinality of d for all 1 ≤ i ≤ n.
2. Each element of � belongs to exactly ρ sets within the collection.
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Constructing FR codes based on combinatorial structures, including regular graphs
and combinatorial designs such as affine planes and projective planes, were presented
in [9, 13, 14, 17, 19, 21, 23].

In a DSS with parameters (n, k, d), the stored file should be constructed from an
arbitrary set of k nodes. The file size depends on the parameter k and is defined as
follows.

Definition 2 The supported file size of an FR code C for an (n, k, d)-DSS, denoted as
Mk(C), corresponds to the minimum number of distinct symbols stored within any set
of k nodes. In other words,

Mk(C) = min
I⊂[n],|I |=k

|∪i∈I Vi | .

Rouayheb and Ramchandran [17] derived two upper bounds for the file size that
an FR code can support. The first bound is given by the formula

Mk(C) ≤
⌊
nd

ρ

(

1 −
(n−ρ

k

)

(n
k

)

)⌋

.

The second bound is sharper than the first bound, and it is given as Mk(C) ≤ φ(k),
where φ(k) is recursively defined by

φ(1) = d,

φ(k + 1) = φ(k) + d −
⌈

ρφ(k) − kd

n − k

⌉

.

The minimum distance, denoted as dmin, is another metric considered in DSSs. It
represents the size of the smallest subset of nodes whose failure ensures that the file
stored in the system cannot be reconstructed from the remaining nodes. The following
lemma establishes a Singleton-like bound on the minimum distance of an FR code.

Lemma 1 [14, Lemma 1] The minimum distance of an FR code C for an (n, k, d)-DSS
is bounded from above by

dmin(C) ≤ n −
⌈
Mk(C)

α

⌉

+ 1.

An FR code C designed for an (n, k, d)-DSS is called locally recoverable if d < k.
Locally repairable codes suffer a penalty on the maximum possible minimum dis-
tance [4].

Lemma 2 [15, Theorem 1] Consider an (n, k, d)-DSS. If the file size is M, then

dmin(C) ≤ n −
⌈
M

α

⌉

−
⌈
M

dα

⌉

+ 2.
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Assume that each node is part of a local structure that forms a (local) FR code. We
have the following bound for locally recoverable codes.

Lemma 3 [21, Theorem 3] Let C = (�,V) be a locally recoverable FR code designed
for an (n, k, d = α)-DSS, where each node is part of a local FR code C′ = (�′,V ′)
with

∣
∣�′∣∣ = θ ′,

∣
∣V ′∣∣ = n′ per-node storage α′ = α and repetition degree ρ′ = ρ.

Then the minimum distance of C is bounded from above by

dmin(C) ≤ n −
⌈

(ρ′ − 1)θ ′⌊Mk (C)−1
θ ′

⌋ + Mk(C)

α

⌉

+ 1. (1)

3 Extension-based code constructions

In this section, we will construct new FR codes based on existing FR codes. Our
strategy is to keep the number of storage nodes in the DSS constant, while increasing
the number of symbols within each node. To this end, we begin with a motivating
example. Consider the following FR code:

C = {123, 456, 789, 147, 258, 369, 159, 267, 348} .

The file size of C is M3(C) = 6. For example, users connecting to the second, fourth,
and eighth nodes can download six distinct symbols. In other words, only six symbols
are retrievable from the nodes containing symbols 456, 147, and 267. However, the
upper bound of the file size is φ(3) = 7. Now, we extend the number of symbols in
each node by adding a certain symbol from the set {a, b, c} as follows:

C′ = {123a, 456a, 789a, 147b, 258b, 369b, 159c, 267c, 348c} .

The file size of C′ is M3(C′) = 9, which meets the upper bound. Recall that an FR
code for an (n, k, d)−DSS attains the Singleton-like bound if k = ⌈Mk (C)

α

⌉
. Both C

and C′ require the failure of at least seven nodes to guarantee that the file stored in
the DSS cannot be reconstructed from the surviving nodes. Consequently, C does not
meet the Singleton-like bound while C′ achieves optimality with respect to this bound.

In summary, we have constructed an optimal FR code for a (9, 3, 4)-DSS using an
existing code without altering the minimum distance. To generalize this idea, we can
now define code extensions.

Definition 3 Consider an (n, k, d)-DSS, whose inner fractional repetition code C =
(�1,V) is characterized by the parameters (n, θ1, α1, ρ1). Let �2 be a finite set of
symbols. Extend each node of the DSS by adding α2 symbols from �2, resulting in
the creation of the following nodes:

W = {(V |W ) : V ⊂ �1,W ⊂ �2, |V | = α1, |W | = α2} .

If C′ = (�1 ∪ �2,W ′) forms a fractional repetition code for W ′ ⊆ W , then we say
that C′ is an extension of C.
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It is worth highlighting the operation in defining the nodes in C′. This operation
adjoins symbols to each node of a given FR code C to form a new FR code C′. In
particular it takes each node V of size α1 from C, and adjoins to it a set W of size α2,
resulting in a node (V |W ) of size α1 + α2. This set W comprises specific symbols
from �2, rather than encompassing all possible α2-element subsets of �2.

Projective planes and affine planes serve as important tools for constructing code
extensions. These structures belong to the category of balanced incomplete block
designs. Let us now revisit their definitions.

Definition 4 A (θ, α, λ) Balanced Incomplete Block Design (BIBD) is a pair (�,V),
where � is a set with θ elements, called points, and V is a collection of subsets of �,
called blocks. These blocks satisfy the following conditions: each block has precisely
α points, and every 2-subset of � is contained in exactly λ blocks.

Let |V| = n. Then it is easy to verify that

nα = θρ and ρ(α − 1) = λ(θ − 1)

where ρ represents the replication number of each point in the design. We can use the
notation (θ, ρ, α, λ)-BIBD in order to capture the parameter ρ.

Remark 1 A BIBD is in fact an FR code, with the additional property that every pair
of distinct points is contained in exactly λ blocks [13].

A BIBD with parameters (n2 + n + 1, n + 1, 1) where n ≥ 2, is referred to as a
projective plane of order n. Correspondingly, an (n2, n, 1)-BIBD is called an affine
plane of order n. Projective and affine planes of order n exist for prime power values
of n. We refer to [20] for further details.

Definition 5 Let C = (�,V) be an FR code with V = {V1, V2, . . . , Vn}. A subset
P ⊂ V is called a parallel class if Vi ∩ Vj = ∅ for all Vi , Vj ∈ P with i �= j , and
∪Vi∈PVi = �.

Theorem 1 An extension of an FR code for a (p2, p, p + 1)-DSS exists if p is an
odd prime. Moreover, the code extension is optimal with respect to the Singleton-like
bound for k = 3.

Proof Let p be an odd prime. Then there exists an affine plane of order p, which is a
(p2, p, p+ 1)-BIBD. This affine plane has p(p+ 1) lines that fall into p+ 1 parallel
classes, with each class consisting of p lines. A projective plane can be formed by
adjoining a set of p + 1 points in a one-to-one correspondence with parallel classes.
In this case, each new point is incident to all lines of the corresponding parallel class.
Observe that any p distinct parallel classes of the affine plane form an FR code C
with parameters (n = p2, θ = p2, α = p, ρ = p). By adjoining p new symbols in
one-to-one correspondence with these p parallel classes, we obtain an extension C′ of
C with parameters (n = p2, θ = p2 + p, α = p + 1, ρ = p).

Next, we show that C′ is optimal for k = 3. In the projective plane, any two lines
intersect in exactly one point. Since the new nodes are part of the projective plane of
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order p, the union of any k = 3 nodes will have at least 3(p+1)− (3
2

) = 3p symbols.

As 3 = � 3p
p+1
, C′ is optimal with respect to the Singleton-like bound for k = 3. This

completes the proof. ��
Theorem 2 Let q be a prime power. Consider the FR code C obtained from q distinct
parallel classes of the affine plane. Then the file size of the extension C′ of C is given
by Mk(C′) = q2 + q − (q

2

)
for k = q.

Proof It can be deduced from Lemma 9 in [14] that the DSS achieves the minimum
file size by selecting storage nodes from different parallel classes. These storage nodes
introduce q additional new symbols through the extension process. By applying the
inclusion–exclusion principle, it can be seen that at least q2 + q − (q

2

)
symbols are

covered by any q storage nodes. Consequently, we have demonstrated a set of nodes
that attains this bound. ��

Next, we present an extension family of FR codes where the new code has a larger
minimum distance than the existing code. Before proceeding, let us state a result
known as Corrádi’s bound [2], which establishes bounds on the size of the union of
certain subsets.

Lemma 4 Let V1, V2, . . . , Vn be α-element sets and let X be their union. If |Vi ∩Vj | ≤
k for all i �= j , then

|X | ≥ α2n

α + (n − 1)k
.

Theorem 3 Let q be a prime power. Consider an FR code C = (�,V) obtained from
a projective plane of order q. Suppose there exists an FR code C′ where extra symbols
are adjoined to the nodes of C in a one-to-one correspondence with the elements of
� such that any pair of distinct symbols appears together in at most 2 nodes in the
resulting FR code. Then,

dmin(C′) ≥ dmin(C) + 1.

Proof The Corrádi’s bound is optimal for projective planes [6]. Therefore,

Mq2(C) =
⌈

(q + 1)2q2

q + 1 + (q2 − 1)1

⌉

= q2 + q.

Given that each symbol is present in q + 1 nodes, and any distinct pair of nodes
intersect in exactly one symbol, the minimum distance dmin(C) is equal to 2q + 1.
Now assume that there exists an extension C′ with nodes (Ni | i), where i /∈ Ni and
for every j ∈ �, the count of nodes containing both i and j is at most 2. The failure
of certain 2q + 1 nodes guarantees that 2 symbols from the projective plane cannot
be recovered. However, according to our assumption, there will be at least one copy
of these symbols that will survive in the new FR code obtained by the extension
technique. Therefore, dmin(C′) ≥ dmin(C) + 1. ��

123



M. Daǧlı

In the rest of this section, we will focus on locally recoverable codes. In particular,
we will investigate an infinite family of locally recoverable FR codes obtained by the
extension technique. But let us recall the definition of resolvable FR codes first [13].

Definition 6 Let C = (�,V) be an FR code. A resolution is a partition of V into r
parallel classes. If a resolution exists, then the code is called resolvable.

Before stating our next theorem, let us present a motivating example. Consider the
FR code C1 = {12, 34, 13, 24} and its isomorphic copy C2 = {56, 78, 57, 68}. Adjoin
symbols from x1, x2 and y1, y2 to the non-parallel classes of C1 and C2 as follows:

C =
{
12x1, 34x1, 13x2, 24x2, 56x1, 78x1, 57x2, 68x2
12y1, 34y1, 13y2, 24y2, 56y1, 78y1, 57y2, 68y2

}

. (2)

This forms a locally recoverable FR code for an (16, 5, 3)-DSS. Each node is part of
a local FR code with parameters (n = 4, θ = 6, α = 3, ρ = 2) where the local FR
codes are obtained from isomorphic copies of the extension of C1 and C2 by adding a
symbol to each node in a given parallel class.

We are now ready to generalize the idea illustrated in this example.

Theorem 4 Consider a resolvable FR code C1 = (�1,V1) with parameters (n =
a2, θ = a2, α = a, ρ = a) such that any pair of non-parallel nodes intersect in
exactly one symbol. Let C2 = (�2,V2) be an isomorphic copy of C1 with�1∩�2 = ∅.
Also, let x1, . . . , xa and y1, . . . , ya be symbols not in�1∪�2. Denote the j-th node in
the i-th parallel classes of C1 and C2 by Ti, j and Ui, j , respectively. Then the collection
C of all the extended nodes

(
Ti, j | xi

)
,
(
Ti, j | yi

)
,
(
Ui, j | xi

)
,
(
Ui, j | yi

)

forms an FR code with parameters (n = 4a2, θ = 2(a2 + a), α = a + 1, ρ = 2a).
Moreover, C is optimal with respect to the bound given in (1) for the file size a2+a+1.

Proof Let C be defined as above. It is easy to observe from its construction that C is a
locally recoverable FR code for an (4a2, a2+1, a+1)-DSS. In this setting, each node
is part of a local FR code with parameters (n′ = a2, θ ′ = a2 +a, α′ = a+1, ρ′ = a).
Consequently, we have the following bound on the minimum distance:

dmin(C) ≤ 4a2 −
⌈ (a − 1)(a2 + a)

⌊
a2+a
a2+a

⌋
+ a2 + a + 1

a + 1

⌉

+ 1.

Thus, dmin(C) ≤ 3a2. Now choose k < 3a2 nodes and suppose that the file is not
recoverable. This implies that a minimum of a2 + a symbols are inaccessible within
the DSS. Without loss of generality, assume that all symbols in �1 ∪ {x1, . . . , xa} are
not recoverable in the DSS. Hence, all the nodes

(
Ti, j | xi

)
,
(
Ti, j | yi

)
, and

(
Ui, j | xi

)

should fail. As a result, we are left with only a2 + a symbols, and in this situation,
recovering the file in the DSS is not possible. Since all the local codes are isomorphic
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Fig. 2 The complete bipartite
graph K4,2

to each other, the above calculation remains valid when xi is replaced by yi and �1
is replaced by �2. Now consider the case where a2 + a symbols are chosen from
�1 ∪ �2. This implies that we need to select at least a of the symbols from �1 and
�2. To minimize the number of node failures required to ensure that a symbols are
not recoverable, such a symbols should be contained in a single node. Based on this
observation, eliminating the symbolswould necessitate aminimumofa(a−1)+1node
failures in each of the four categories of extended nodes. However, this contradicts
our assumption that k < 3a2. A similar calculation for the case in which a2 + a
symbols are chosen from �1 ∪ �2 and �3 = {x1, . . . , xa, y1, . . . , ya} will lead to the
conclusion that dmin(C) = 3a2. ��
Example 2 Consider the FR code C constructed in (2). Let us compare our code with
the bound given in (1). Here, we have n = 16, ρ′ = 2, θ ′ = 6, and M5(C) = 7. It can
easily be seen that dmin ≤ 12. Hence, the failure of at least 12 nodes guarantees that
the file stored in the DSS cannot be reconstructed from the surviving nodes.

4 FR codes from complete bipartite graphs

In this section, we introduce a family of FR codes that can be obtained by edge
partitioning of the complete bipartite graph Kc,d into copies of the complete bipartite
graph Ka,b. We begin our discussion with an example.

Example 3 Consider the complete bipartite graph K4,2 whose vertices are partitioned
into the subsets V = {1, 2, 3, 4} and W = {a, b}. We can partition K4,2 into four
copies of K2,1. Each copy of K2,1 can be represented by the vertices involved in the
partition. For example, {12a, 34a, 14b, 23b} represents one of such partitions. Note
that this partition served as storage nodes in Example 1.

A partition of Kc,d into the copies of Ka,b may or may not exist. The following
theorem by Hoffman and Liatti [5] gives necessary and sufficient conditions for the
partition problem on complete bipartite graphs.

Theorem 5 Let a, b, c, and d be positive integers. Let g = (a, b), the greatest common
divisor of a and b; let e, f be integers satisfying ae − b f = g, and let h = ae + b f .
For each integer x, let: α(x) = � x f

a 
, β(x) = � xe
b �, and γ (x) = x

ab . Then the edges
of the complete bipartite graph Kc,d can be partitioned into copies of the complete
bipartite graph Ka,b if and only if the following conditions are true:

1. ab | cd,
2. g | c and α(c) ≤ β(c),
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3. g | d and α(d) ≤ β(d),
4. cα(d) + dα(c) ≤ hγ (cd) ≤ cβ(d) + dβ(c).

The task of partitioning the edges of the complete bipartite graph Kc,d into copies
of the complete bipartite graph Ka,b can be formalized as an instance of the exact cover
problem. Formally, given a set X and a collection S of subsets of X , the exact cover
problem aims to find a subset S∗ of S such that every element of X is included in exactly
one subset of S∗. The exact cover problem can effectively be addressed using Knuth’s
Algorithm X which employs a straightforward recursive, nondeterministic, depth-first,
backtracking approach to find all possible exact covers for a given collection of sets [8].
The problem is formulated as a binary matrix in Algorithm X. Then the objective is
to identify a subset of the rows in such a way that the number 1 appears exactly once
in each column.

Next, we will demonstrate how this partitioning can provide an infinite family of
FR codes where we can apply enumeration algorithms. Let 
(V ,W ) be the complete
bipartite graph. Let i ∈ V , j ∈ W and X be the set of all pairs (i, j) such that (i, j) is
an edge in the complete bipartite graph. Let K be the set of all s-element subsets of V .
Let S = {(v|w) : v ∈ K , w ∈ W }. We will define a matrix M whose rows are indexed
by the elements of S and columns are indexed by the elements of X as follows:

M(v|w),(i, j) =
{
1; if i ∈ v and w = j,
0; otherwise.

Let’s apply the Algorithm X to the matrix M to construct FR codes.

Example 4 Consider the complete bipartite graph K4,2 given in Fig. 2. Suppose we
want to partition the edges of K4,2 into the copies of K2,1. Let us index the columns
of M with the pairs (1, a), (2, a), (3, a), (4, a), (1, b), (2, b), (3, b), (4, b) and the
rows of M with the blocks (12 | a), (13 | a), (14 | a), (23 | a), (24 | a), (34 | a), (12 | b),
(13 | b), (14 | b), (23 | b), (24 | b), (34 | b). Both the rows and columns are indexed in
the given order. Then the binary matrix M has the form M = [

N 0
0 N

]
where

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrix N has 3 exact covers. Specifically, the first and sixth, second and fifth,
as well as the third and fourth rows all provide exact covers. Since M has a block
diagonal structure with repeated blocks of N , it has 32 = 9 exact covers. Therefore,
by extending the exact covers of N or applying Algorithm X to the matrix M , we can
find all 9 distinct solutions to the exact cover problem. These solutions correspond to
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the following FR codes:

{12a, 34a, 13b, 24b}, {12a, 34a, 14b, 23b}, {13a, 24a, 12b, 34b},
{13a, 24a, 14b, 23b}, {14a, 23a, 12b, 34b}, {14a, 23a, 13b, 24b},
{12a, 34a, 12b, 34b}, {13a, 24a, 13b, 24b}, {14a, 23a, 14b, 23b}.

Note that the codes in the first two rows have the property M2(C) = 5. The remaining
codes have M2(C) = 4.

We can perform similar calculations for larger complete bipartite graphs. For
instance, we can obtain FR codes with parameters (n = 9, θ = 9, α = 3, ρ = 3) by
partitioning the edges of K6,3 into copies of K2,1. This case has a total of 153 = 3375
solutions. Out of these solutions, 375 of them have the property Mk(C) = 5, while
the remaining 3000 solutions have Mk(C) = 6 for k = 3. The table below provides a
summary of the enumeration results for larger values of k.

k Mk(C) = 5 Mk(C) = 6 Mk(C) = 7 Mk(C) = 8
4 0 2895 480 0
5 0 0 2895 480
6 0 0 375 3000

5 Conclusion

Addressing multiple node failures in DSSs is crucial for ensuring data integrity and
availability. FRcodes have emerged as powerful tools offering efficient solutions to this
challenge, finding applications in diverse fields such as cloud storage, network coding,
and data center architectures. Recognizing their importance in modern information
systems, this paper presented extension-based constructions of new FR codes, and
studied their characteristics. In this framework,we derived an infinite family of optimal
FR codes based on the proposedmethod related to affine and projective planes.We then
constructed locally recoverable FRcodes that can achieve aSingleton-like upper bound
with equality. In addition, we provided another construction of FR codes, realized as
an extension of FR codes, by partitioning the edges of complete bipartite graphs. After
presenting the necessary and sufficient conditions for the existence of such partitions,
we applied Algorithm X to investigate two specific cases and obtained comprehensive
enumeration results.
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