
Journal of Applied Mathematics and Computing
https://doi.org/10.1007/s12190-024-02029-z

ORIG INAL RESEARCH

New analytical wave structures of the (3+ 1)-dimensional
extendedmodified Ito equation of seventh-order
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Abstract
Partial differential equations are frequently employed to depict issues arising across
various scientific and engineering domains. Efforts have been made to analytically
solve these equations, revealing shortcomings in somewidely utilizedmethods, includ-
ingmodeling deficiencies and intricate solution processes. To address these limitations,
diverse analytical methods have been explored. The Ito equation, introduced in 1980,
underwent development, leading to the formulation of a fifth-order Ito equation. A
seventh-order integrable (3+1)-dimensional extended modified Ito equation emerged
by augmenting this equationwith three additional terms. In this study, novel exact solu-
tions for the equation, absent in existing literature, were derived using the extended
hyperbolic function and modified Kudryashov methods. To scrutinize the dynamic
behavior of these findings, we presented 3D, contour, and 2D visualizations of select
solutions. The results showcase numerous new solutions, underscoring the reliability
and efficacy of the employed methods.
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1 Introduction

Today,many events that affect anddirect our lives can be explained byordinary andpar-
tial differential equations (PDEs). The mathematical modeling of many phenomena in
our lives has beenmodeled and solved by differential equations. The solutions of these
differential equations make a significant contribution to scientists about the nature of
the events beingmodeled. Researching, examining, interpreting, and presenting differ-
ent physical properties of these problems in science and engineering has become one of
many researchers’ primary areas of interest in recent years. PDEswithmore successful
results in describing many different physical problems brought by modern times have
been presented in the literature. Besides, obtaining the solutions to such differential
equations and creating different results have become more critical. Most physics and
engineering problems naturally fall into one of three physical categories: equilibrium,
eigenvalue, and diffusion. The study of differential equations arising from these prob-
lems falls within the field of PDEs. Surface studies in geometry and a diverse array
of mechanical problems marked the initial appearance of PDEs. Subsequent research
demonstrated that a multitude of chemical, physical, and biological phenomena could
be effectively represented using PDEs. Consequently, a majority of scientists directed
their interest towards the challenges posed by these equations.With the development of
computer technology, studies onPDEs have increased. These studies have an important
place in many branches of science. They have become very attractive to scientists in
recent years due to their applications in various fields such as fluid dynamics [1], image
processing [2], physics [3], wave theory [4], mathematical biology [5], viscoelasticity
theory [6] and so on. Therefore, new PDEs find a place in nonlinear phenomena, and
new analytical approaches are regularly proposed in parallel with this. These include,
trial equation method [7, 8], (G ′/G)-expansion method and its modification [9–11],
extended hyperbolic function method [12], sub-equation method [13], the general-
ized Riccati equation mapping method [14], modified Kudryashov method [15, 16],
generalized KudryashovMethod [17, 18], sine-cosinemethod [19, 20], extended tanh-
coth expansion method [21], Hirota bilinear method [22], the extended sinh-Gordon
equation expansion method [23, 24], The unified method [25, 26], ansatz method
[27] Laplace transform method [28], modified extended auxiliary equation mapping
method [29], F-expansion method [30, 31], and the new extended direct algebraic
method [32, 33], Lie symmetry method [34] improved Bernoulli sub-equation func-
tion method [35], etc.
This paper deals with the integrable Ito equation, an essential equation as a general
form of the bilinear KdV equation that has many applications in quantum mechanics
and nonlinear optics. The equation first appeared in 1980 [36] and has been solved by
many numerical and analytical approaches. The earlier version of the equation is
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vt t + 6(vxvt )x + vxxxt = 0. (1)

Then, this equation was developed, and the fifth-order Ito equation was created as [37,
38]:

vt + (6v5 + 10(v2vxx + vv2x ) + vxxxx )x = 0. (2)

Hence, the modified Ito equation Eq. (2) is combined with the Painlevé integrability,
resulting in the seventh-order modified Ito equation. Very recently, this equation is
extended to the following form by adding αvx , βvy, and γ vz terms into it [39].

vt +
(
20v7 + 70(v4v2x + 2v3v2x ) + 14(v2v4x + 3vv22x + 4vvxv3x + 5v2xv2x ) + v6x

)
x

+αvx + βvy + γ vz = 0. (3)

This study [39] is devoted to proposing a new seventh-order extended modified
Ito equation in (3 + 1)-dimensions. The classic seventh-order integrable (3 + 1)-
dimensional Ito equation is also established. The extendedmodel’s whole integrability
is tested using Painlevé analysis. For the model, three branches of resonance spots are
obtained. Simplified Hirota’s method and unique ansatz techniques are applied to
obtain multi-soliton and multi-singular soliton solutions and various other solutions.
Extensive research has been conducted on the previously mentioned Ito equations, and
the scientific community has contributed valuable insights. However, to the best of
the authors’ knowledge, the extended modified Ito equation has not been thoroughly
investigated subsequent to the primary publication. This study aims to fill this gap
by obtaining a wealth of new exact solutions for the equation through the application
of a new extended hyperbolic function and modified Kudryashov methods. These
methods have computational efficiency, accuracy in obtaining solutions, and versatility
across different types of problems, and they produce abundant, exact solutions when
compared to the other methods that exist in the literature. Besides, they have the ability
to handle complex scenarios that arise in many problems in mathematics, physics, and
engineering. Both methods have been recently developed and proposed. Therefore,
they produce more accurate solutions than in their previous states. Also, they are
flexible and applicable to a wide range of PDEs, especially nonlinear ones.
The paper is structured as follows: in Sect. 2, the new extended hyperbolic function
and the modified Kudryashov methods are described. Section3 provides the solutions
to the given equation. Lastly, in Sect. 4 presents our concluding remarks.

2 Methodology of the proposedmethods

Analytical methods for solving PDEs have both strengths and limitations. While they
can provide exact solutions for certain types of equations, there are several challenges
and limitations associated with these methods: Analytical methods are often limited
to specific types of PDEs that have well-defined solutions. Many real-world prob-
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lems involve complex geometries and boundary conditions, making it difficult to find
exact solutions. PDEs that describe real-world phenomena can be highly complex
and nonlinear. Finding analytical solutions for such equations is often mathematically
challenging or even impossible. For certain PDEs, analytical solutions may involve
complex mathematical operations, making them computationally intensive. This sit-
uation can limit the feasibility of using these methods for large-scale problems. In
addition, analyticalmethods become increasingly challenging as the problem’s dimen-
sionality and derivative order of the problem increases. While some methods work
well for one or two dimensions, extending them to three or more dimensions can be
impractical.
The presented methods work well in our case, although the equation is (3 + 1)-
dimensional and even seventh order. Besides, both methods start with the balancing
principle and find an M value. However, when confronting equations with non-integer
balance numbers, the methods will not function. Moreover, when addressing certain
higher-order partial differential equations (PDEs), the applicability of these methods
might be limited. Consequently, these case-specific techniques demonstrate efficacy
for certain PDEs while falling short for others.

2.1 New extended hyperbolic functionmethod

In this particular section, we are set to introduce a sophisticated approach known as
the extended hyperbolic function method. By enabling us to create wave solutions
for the associated differential equation and expand the solution functions of a trial
equation into a finite series, this approach has shown to be incredibly effective. It
may be applied with ease to both nonlinear PDEs and nonlinear PDEs with complex
coefficients. Thus, in this investigation, wewill utilize the recently developed extended
hyperbolic function method to explore the wave solutions of a nonlinear PDE. As a
result, we consider a nonlinear PDE given in the general form as:

Q(v, vt , vx , vy, v
2
x , v

2
y, . . . ) = 0, (4)

where v = v(x, . . . , t) and perform the following steps:

step 1: assume the wave transform is in this form

v(x, . . . , t) = v(ξ), ξ = kx + · · · + ct, (5)

where the arbitrary constant values k and c will be determined later.
step 2: substituting the transformation (5) into the Eq. (4), it is converted to the
following ordinary differential equation (ODE):

V (v(ξ), v′(ξ), v′′(ξ), . . .) = 0, (6)

where V is a polynomial in v(ξ) and the superscripts represent the regular deriva-
tives of v(ξ) with regard to ξ.
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step 3: we propose a trial solution v(ξ) to solve the Eq. (6) as a finite series
expansion:

v(ξ) =
M∑

m=0

amϕm(ξ), aM �= 0, (7)

where am, (0 ≤ m ≤ M) represents the arbitrary constants to be found later.

Family 1. ϕ(ξ) will satisfy the following ODE in the first form, as

ϕ′(ξ) = ϕ(ξ)
√

λ + μϕ(ξ)2, λ, μ ∈ R. (8)

Thus, the solutions of Eq. (8) are given as follows:
Set 1. For λ > 0 and μ > 0,

ϕ(ξ) = −
√

λ

μ
csch

(√
λ(ξ + ξ0)

)
, (9)

Set 2. For λ < 0 and μ > 0,

ϕ(ξ) =
√

−λ

μ
sec

(√−λ(ξ + ξ0)
)

, (10)

Set 3. For λ > 0 and μ < 0,

ϕ(ξ) =
√

λ

−μ
sech

(√
λ(ξ + ξ0)

)
, (11)

Set 4. For λ < 0 and μ > 0,

ϕ(ξ) =
√

−λ

μ
csc

(√−λ(ξ + ξ0)
)

, (12)

Set 5. For λ > 0 and μ = 0,

ϕ(ξ) = exp
(√

λ(ξ + ξ0)
)

, (13)

Set 6. For λ < 0 and μ = 0,

ϕ(ξ) = cos
(√−λ(ξ + ξ0)

)
+ i sin

(√−λ(ξ + ξ0)
)

, (14)
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Set 7. For λ = 0 and μ > 0,

ϕ(ξ) = ± 1(√
μ(ξ + ξ0)

) , (15)

Set 8. For λ = 0 and μ < 0,

ϕ(ξ) = ± i(√−μ(ξ + ξ0)
) . (16)

Family 2. By the established pattern, we suppose that ϕ(ξ) conforms to the ODE in
the following manner:

ϕ′(ξ) = λ + μϕ(ξ)2, λ, μ ∈ R. (17)

The solutions for the Eq. (17) are considered as follows:
Set 1. For λμ > 0,

ϕ(ξ) = sgn(λ)

√
λ

μ
tan

(√
λμ(ξ + ξ0)

)
, (18)

Set 2. For λμ > 0,

ϕ(ξ) = −sgn(λ)

√
λ

μ
cot

(√
λμ(ξ + ξ0)

)
, (19)

Set 3. For λμ < 0,

ϕ(ξ) = sgn(λ)

√
λ

−μ
tanh

(√−λμ(ξ + ξ0)
)

, (20)

Set 4. For λμ < 0,

ϕ(ξ) = sgn(λ)

√
λ

−μ
coth

(√−λμ(ξ + ξ0)
)

, (21)

Set 5. For λ = 0 and μ >, 0

ϕ(ξ) = − 1

μ(ξ + ξ0)
, (22)

Set 6. For λ ∈ R and μ = 0,

ϕ(ξ) = λ(ξ + ξ0), (23)
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where sgn is the sign function.

step 4: Applying the balancing rule to Eq. (6) will provide the balancing constant
M ∈ Z

+. We obtain an algebraic equation in the form of ϕm(ξ) by substituting
Eqs. (7)–(6). We then balance this equation by setting the powers of ϕm(ξ), m =
(0, 1, 2, . . .) equal to zero, resulting in a set of algebraic equations. These equations
provide the necessary inputs and the exact solutions to the provided equation.

2.2 Modified Kudryashovmethod

Consider the nonlinear PDE as

Q

(
v,

∂v

∂ξ
,
∂2v

∂ξ2
,
∂3v

∂ξ3
· · ·

)
= 0, (24)

where v = v(x, . . . , t). The transformation

ξ = kx + · · · + ct, v(x, . . . , t) = v(ξ), (25)

will transform Eq. (25) in the forms of an ODE:

F (v(ξ), v′(ξ), v′′(ξ), v′′′(ξ), . . .) = 0. (26)

Assume the structure of the solution to Eq. (26) is

v(ξ) =
M∑
j=0

Bjϕ
j (ξ), BM �= 0, (27)

where the function ϕ(ξ) satisfies the ODE:

ϕ′(ξ) = log(a)ϕ(ξ)(ϕ(ξ) − 1). (28)

The solution to the Eq. (28) is provided by

ϕ(ξ) = 1

daξ + 1
, a > 0, d = const. (29)

When (27) and (28) are substituted into Eq. (26), a polynomial in ϕ j (ξ) is obtained
for ( j = 0, 1, 2, . . . , M). Setting all of the coefficients of ϕ j (ξ) to zero [40], results
in a set of algebraic equations in k, c and Bj . One can acquire the variables of the
equation after solving this system. Eventually, by plugging these values into Eqs. (27)
and (29), the wave solutions to Eq. (24) are produced.
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3 Solutions to (3+ 1)dimensional extendedmodified Ito equation of
seventh-order

In this section, we provide analytical solutions to the governing equation

vt +
(
20v7 + 70(v4v2x + 2v3v2x ) + 14(v2v4x + 3vv22x + 4vvxv3x + 5v2xv2x ) + v6x

)
x

+αvx + βvy + γ vz = 0. (30)

For ξ = kx + wy + sz + ct, the transformation v(x, y, z, t) = v(ξ) and integrating
the resulting equation, reduces the above PDE to following ODE:

v(c + αk + γ s + βw) + k7v(6) + 42k5v(v′′)2 + 14k5v2v(4)

+ 56k5vv(3)v′ + 140k3v3(v′)2 + 70k3v′′(k2(v′)2 + v4) + 20kv7 = 0.

(31)

Balancing v(6) = M + 6 with v7 = 7M gives M = 1. Using it in Eqs. (7) and (27),
the analytical solutions to the equation is comes as follows.

3.1 New extended hyperbolic functionmethod solutions

Family 1. According to Eq. (7) for M = 1, we should seek the solutions in the form
of,

v = a0 + a1ϕ(ξ), a1 �= 0, (32)

where a0 and a1 are constants. Substituting Eq. (32) into Eq. (31) and equating the
coefficients polynomials of ϕ(ξ) to zero, produces the following equations together
with Eq. (8).

ϕ0(ξ) : a0c + αa0k + 20a70k + a0γ s + a0βw = 0,

ϕ1(ξ) : a1c + a1λ
3k7 + 14a20a1λ

2k5 + 70a40a1λk
3 + αa1k

+ 140a60a1k + a1γ s + a1βw = 0,

ϕ2(ξ) : 126a0a
2
1λ

2k5 + 420a30a
2
1λk

3 + 420a50a
2
1k = 0,

ϕ3(ξ) : 182a1λ
2k7μ + 182a31λ

2k5 + 280a20a1λk
5μ

+ 840a20a
3
1λk

3 + 140a40a1k
3μ + 700a40a

3
1k = 0,

ϕ4(ξ) : 1120a0a
2
1λk

5μ + 700a0a
4
1λk

3 + 700a30a
2
1k

3μ

+ 700a30a
4
1k = 0,

ϕ5(ξ) : 840a1λk
7μ2 + 1050a31λk

5μ + 336a20a1k
5μ2

+ 210a51λk
3 + 1260a20a

3
1k

3μ + 420a20a
5
1k = 0,

ϕ6(ξ) : 1176a0a
2
1k

5μ2
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+ 980a0a
4
1k

3μ + 140a0a
6
1k = 0,

ϕ7(ξ) : 720a1k
7μ3

+ 980a31k
5μ2 + 280a51k

3μ + 20a71k = 0. (33)

Here, we obtain one set of solutions for a0, a1, and c. case 1.

a0 = 0, a1 = ∓ik
√

μ, c = −λ3k7 − αk − γ s − βw. (34)

Substitute Eq. (34) into Eqs. (9)–(16), respectively, we get the following wave the
solutions of Eq. (3):
Set 1. When λ > 0 and μ > 0, we get

v∓
1 = ∓ik

√
λμs

√
λ

μ
coth

(√
λ

(
d + kx + wy + sz +

(
−λ3k7 − αk − γ s − βw

)
t
))

× csch
(√

λ
(
d + kx + wy + sz +

(
−λ3k7 − αk − γ s − βw

)
t
))

. (35)

Set 2. When λ < 0 and μ > 0, we get

v∓
2 = ∓ik

√−λ
√

μs

√
− λ

μ
tan

(√−λ
(
d + kx + wy + sz +

(
−λ3k7 − αk − γ s − βw

)
t
))

× sec
(√−λ

(
d + kx + wy + sz +

(
−λ3k7 − αk − γ s − βw

)
t
))

. (36)

Set 3. When λ > 0 and μ < 0, we get

v∓
3 = ±ik

√
λ
√

μs

√
− λ

μ
tanh

(√
λ

(
d + kx + wy + sz +

(
−λ3k7 − αk − γ s − βw

)
t
))

× sech
(√

λ
(
d + kx + wy + sz +

(
−λ3k7 − αk − γ s − βw

)
t
))

. (37)

Set 4. When λ < 0 and μ > 0, we obtain

v∓
4 = ∓ik

√
μ

√
− λ

μ
csc

(√−λ
(
d + kx + wy + sz +

(
−λ3k7 − αk − γ s − βw

)
t
))

.

(38)

Set 5. When λ > 0 and μ = 0, trivial solutions are encountered.
Set 6. When λ < 0 and μ = 0, trivial solutions are encountered.
Set 7. When λ = 0 and μ > 0, we obtain
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{
v∓
5.1 = ∓ ik

d+kx+wy+sz+(−λ3k7−αk−γ s−βw)t
, ϕ(ξ) = 1√

μ(ξ+ξ0)
.

v∓
5.2 = ± ik

d+kx+wy+sz+(−λ3k7−αk−γ s−βw)t
, ϕ(ξ) = − 1√

μ(ξ+ξ0)
.

(39)

Set 8. When λ = 0 and μ < 0, we obtain

⎧⎨
⎩

v∓
6.1 = ± k

√
μ

d+√−μ(kx+wy+sz+(−λ3k7−αk−γ s−βw)t)
, ϕ(ξ) = i√−μ(ξ+ξ0)

.

v∓
6.2 = ∓ ik

d+kx+wy+sz+(−λ3k7−αk−γ s−βw)t
, ϕ(ξ) = − i√−μ(ξ+ξ0)

.
(40)

Family 2. According to Eq. (7) for N = 1, we should seek the solutions in the form
of

v = a0 + a1ϕ(ξ), (41)

where a0 and a1 are constants. Substituting Eq. (41) into the Eq. (31) and equating the
coefficients polynomials of ϕ(ξ) to zero, we get an algebraic system of equations. By
solving the system via software, one may obtain the value of a0, a1, and c.
case 2.

a0 = 0, a1 = ∓ikμ, c = −20λ3k7μ3 − αk − γ s − βw. (42)

Substitute Eq. (42) into Eqs. (18)–(23), respectively, the solutions of Eq. (3) are
obtained as:
Set 1. When λμ > 0, we get

v∓
7 = ∓ikμ

√
λ

μ
sgn(λ) tan

(√
λμ (d + kx + wy + sz

+
(
−20λ3k7μ3 − αk − γ s − βw

)
t
))

. (43)

Set 2. When λμ > 0, we get

v∓
8 = ±ikμ

√
λ

μ
sgn(λ) cot

(√
λμ (d + kx + wy + sz

+
(
−20λ3k7μ3 − αk − γ s − βw

)
t
))

. (44)

Set 3. When λμ < 0, we obtain

v∓
9 = ∓ − ikμ

√
− λ

μ
sgn(λ) tanh

(√−λμ
(
d + +kx + wy + sz +

(
−20λ3k7μ3 − αk − γ s − βw

)
t
))

.

(45)
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Set 4. When λμ < 0, we obtain

v∓
10 = ∓ − ikμ

√
− λ

μ
sgn(λ) coth

(√−λμ
(
d + kx + wy + sz +

(
−20λ3k7μ3 − αk − γ s − βw

)
t
))

.

(46)

Set 5. When λ = 0 and μ > 0, we get

v∓
11 = ± ik

d + kx + wy + sz + (α(−k) − γ s − βw)t
. (47)

Set 6. When λ ∈ R and μ = 0, trivial solutions are encountered.

3.2 Modified Kudryashovmethod solutions

According to Eq. (27) for M = 1, we should seek the solutions in the form of,

v = B0 + B1ϕ(ξ), B1 �= 0. (48)

When associated with Eq. (28), the following set of equations emerges.

B1k
7 log6(a) + 14B2

0 B1k
5 log4(a) + 70B4

0 B1k
3 log2(a) + B1c + αB1k

+ 140B6
0 B1k + B1γ s + βB1w = 0, − 63B1k

7 log6(a) + 126B0B
2
1k

5 log4(a)

−210B2
0 B1k

5 log4(a) + 420B3
0 B

2
1k

3 log2(a)

− 210B4
0 B1k

3 log2(a) + 420B5
0 B

2
1k = 0,

602B1k
7 log6(a) + 182B3

1k
5 log4(a) − 1120B0B

2
1k

5 log4(a) + 700B2
0 B1k

5 log4(a)

+ 840B2
0 B

3
1k

3 log2(a) − 1120B3
0 B

2
1k

3 log2(a) + 140B4
0 B1k

3 log2(a) + 700B4
0 B

3
1k = 0,

− 2100B1k
7 log6(a) − 1260B3

1k
5 log4(a) + 3010B0B

2
1k

5 log4(a) − 840B2
0 B1k

5 log4(a)

+ 700B0B
4
1k

3 log2(a) − 2100B2
0 B

3
1k

3 log2(a) + 700B3
0 B

2
1k

3 log2(a) + 700B3
0 B

4
1k = 0,

3360B1k
7 log6(a) + 2940B3

1k
5 log4(a) − 3192B0B

2
1k

5 log4(a) + 336B2
0 B1k

5 log4(a)

+ 210B5
1k

3 log2(a) − 1680B0B
4
1k

3 log2(a) + 1260B2
0 B

3
1k

3 log2(a) + 420B2
0 B

5
1k = 0,

− 2520B1k
7 log6(a) − 2842B3

1k
5 log4(a) + 1176B0B

2
1k

5 log4(a) − 490B5
1k

3 log2(a)

+ 980B0B
4
1k

3 log2(a) + 140B0B
6
1k = 0,

720B1k
7 log6(a) + 980B3

1k
5 log4(a) + 280B5

1k
3 log2(a) + 20B7

1k = 0. (49)

For B0, B1, and c, we get two cases and sets of solutions in this instance.
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M. Şenol et al.

Fig. 1 Graphical illustration of Im[v1] of Eq. (35)

Case 3.

B0 = −1

2
ik log(a), B1 = ik log(a),

c = 5

16
k7 log6(a) − αk − γ s − βw. (50)

Inserting these values into Eq. (48), using Eq. (29), we have the solution as:
Set1.

v12 = ik log(a)

da
t
(

5
16 k

7 log6(a)−αk−γ s−βw
)
+kx+sz+wy + 1

− 1

2
ik log(a). (51)

Case 4.

B0 = 1

2
ik log(a), B1 = −ik log(a),

c = 5

16
k7 log6(a) − αk − γ s − βw. (52)

Inserting these values into Eq. (48), using Eq. (29), we have the solution as:
Set2.

v13 = 1

2
ik log(a) − ik log(a)

da
t
(

5
16 k

7 log6(a)−αk−γ s−βw
)
+kx+sz+wy + 1

. (53)

3.3 Graphical overview and interpretation

In this section, we aim to bridge the gap between theoretical solutions and practical
applications by providing graphical representations. To enhance the reader’s compre-
hension, we present 3D graphics, contour plot and 2D graphics denoted by figures
(a)–(c), respectively.
In this study, a variety of graphs made with Mathematica are displayed in order to
investigate the behavior of solitons and assess the physical significance of the solutions
obtained by selecting suitable values for unknown parameters.
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Fig. 2 Graphical illustration of Im[v2] of Eq. (36)

Fig. 3 Graphical illustration of Re[v3] of Eq. (37)

Fig. 4 Graphical illustration of Im[v4] of Eq. (38)

Fig. 5 Graphical illustration of Im[v7] of Eq. (43)
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Fig. 6 Graphical illustration of Re[v15] and Im[v15] of Eq. (51)

Fig. 7 Graphical illustration of Re[v16] and Im[v16] of Eq. (53)

• In Fig. 1 with (a), (b) for λ = 0.15, μ = 0.7, k = −0.15, y = 0.01, s = 0.16, z =
0.02, w = 0.7, ξ0 = 0.1, α = 0.1, β = 0.2, γ = 0.3, singular soliton is observed.

• In Fig. 2 with (a), (b) for λ = −0.15, μ = 0.7, k = −0.15, y = 0.01, s =
0.16, z = 0.02, w = 0.7, ξ0 = 0.1, α = 0.1, β = 0.2, γ = 0.3, periodic solution
is observed.

• In Fig. 3 with (a), (b) for λ = 0.15, μ = −0.7, k = −0.15, y = 0.01, s =
0.16, z = 0.02, w = 0.7, ξ0 = 0.1, α = 0.1, β = 0.2, γ = 0.3, dark-bright
soliton is observed.
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• In Fig. 4 with (a), (b) for λ = −0.15, μ = 0.7, k = −0.15, y = 0.01, s =
0.16, z = 0.02, w = 0.7, ξ0 = 0.1, α = 0.1, β = 0.2, γ = 0.3, periodic solution
is observed.

• In Fig. 5 with (a), (b) for λ = 0.15, μ = 0.7, k = −0.15, y = 0.1, s = 0.16, z =
0.1, w = 0.7, ξ0 = 0.1, α = 0.1, β = 0.2, γ = 0.3, periodic solution is observed.

• In Fig. 6 with (a), (b), (d), (e) for a = −0.64, k = 0.15, y = 0.05, s = 0.9, z =
0.03, w = 0.6, d = 0.01, α = 0.01, β = 0.25, γ = 0.36, lump soliton is
observed.

• In Fig. 7 with (a), (b), (d), (e) for a = −0.16, k = −0.5, y = −0.01, s =
−0.16, z = −0.02, w = 0.8, d = −0.1, α = 0.1, β = 0.2, γ = 0.3, lump
soliton is observed.

The graphical results reveal that the proposed approaches will assist the other related
strong nonlinear models, leading to some novel soliton solutions. As a result, the
findings in this study provide new knowledge to the existing literature because of their
significance in the areas mentioned.

4 Conclusion

In this study, we examined the soliton properties of the integrable seventh-order
extended modified Ito equation in (3+1)-dimensions, a generalized form of the bilin-
ear KdV equation. The investigation employed the new extended hyperbolic function
and modified Kudryashov methods. Subsequently, we presented 3D, contour, and
2D plots to visually convey certain solutions with their corresponding values. The
accuracy of these approaches was affirmed through analytical results and graphical
representations. Notably, the obtained solutions exhibited distinct physical charac-
teristics highlighted in previous research. All solutions presented are novel and not
documented in existing literature. Consequently, these methodologies offer potential
applications for addressing and resolving various highly nonlinear PDEs. Some real-
world scenarios or specific fields, such as quantum mechanics and nonlinear optics,
may profit from the obtained solutions. In conclusion, this work has the potential to
advance knowledge in the aforementioned areas and provide informative data for both
theoretical and practical applications. As a future study, the authors might consider
studying the fractional form of the equation.
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