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Abstract
Bivariate Mittag-Leffler (ML) functions are a substantial generalization of the uni-
variate ML functions, which are widely recognized for their significance in fractional
calculus. In the present paper, our initial focus is to investigate the fractional calculus
properties of the integral and derivative operators with kernels including the Bivariate
ML functions. Further, certain fractional Cauchy-type problems including these oper-
ators are considered. Also the numerical approximations of the Caputo type derivative
operator are investigated. The theoretical results are justified by applications on exam-
ples. Furthermore, the theory of applying the same operators with respect to arbitrary
monotonic functions is analyzed in this research.

Keywords Fractional integrals and derivative · Bivariate Mittag Leffler functions ·
Caputo–Prabhakar derivative · Lagrange interpolation

Mathematics Subject Classification 33C50 · 26A33 · 44A20 · 65D05

1 Introduction

Fractional calculus is of great importance in applied mathematics and mathematical
analysis, with substantial connections to ML functions. The function is defined by the
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following series when the real part of α is strictly positive, [1]

Eα(t) =
∞∑

s=0

t s

�(αs + 1)
,

where � is the gamma function. For α = 1 theML function reduces to the exponential
function and ML functions were used to define the solutions to fractional differen-
tial equations. It is well known that fractional differential equations are among the
strongest tools of mathematical modeling and are successfully employed to model
complex physical and biological phenomena. Such as impulsive neutral Hilfer frac-
tional evolation equations [2, 3], fractional order Zika virus model [4] and fractional
Lagevin equation [5].

The bivariate ML function is a generalization of the classical ML function applied
to two variables and has been employed to solve fundamental fractional differential
equations involving two independent fractional orders. Recent studies include but not
limited with the coupled-Laplacian fractional differential equations with nonlinear
boundary conditions [6], singularmulti-order fractional differential equations ofLane–
Emden type [7]. In last quarter century there has been a growing interest in studying
different variants of bivariate ML functions and fractional calculus operators with
these functions in the kernel (see [8–26]).

This work focuses on the bivariate ML functions Eδ
α,β,γ (x, y), introduced in [13]

as a double series:

Eδ
α,β,γ (x, y) =

∞∑

s=0

∞∑

r=0

(δ)s+r xs yr

�(αs + βr + γ )r !s! , (1)

where α, β, γ, δ are complex parameters with Re(α) > 0 and Re(β) > 0, and the
notation (a)s is used for the Pochhammer symbol �(a+s)

�(a)
. The given series converges

absolutely and locally uniformly for Re(α) > 0 and Re(β) > 0. The authers of [13]
gave the proof by using the convergence conditions studied in [27] for the generalised
Lauricella series in two variables. If all parameters are 1 in Eq. (1) we recover the
double exponential function which is the natural analogue of the fact that the ML
function reduces to exponential function.

For x > a the following fractional integral operator was also defined in [13], with
the kernel containing (1)

(
a I δ,w1,w2

α,β,γ ψ
)
(x) =

∫ x

a
(x − t)γ−1Eδ

α,β,γ (w1(x − t)α, w2(x − t)β)ψ(t)dt, (2)

where ψ(x) ∈ L1(a, b), being the space of absolutely integrable functions. As shown
in Theorem 8 of [13], the integral operator is bounded on the space L1(a, b). The extra
restriction Re(γ ) > 0 is to avoid non-integrable singularity at the end point t = x .
In the case γ = 0, the fractional integral operator a I δ,w1,w2

α,β,γ reduces to the Riemann -
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Liouville fractional integral operator which is written as follows:

RL
a I μ

x ψ(x) = 1

�(μ)

∫ x

a
(x − ε)μ−1ψ(ε)dε,

where x > a, Re(μ) > 0.
Additionally the fractional derivatives are given by,

RL
a Dμ

x ψ(x) = dn

dxn

(
RL
a I n−μ

x ψ(x)

)
, n = �Re(μ)� + 1, Re(μ) ≥ 0.

Distinguishing itself from the Riemann–Liouville fractional derivative, the Caputo
fractional derivative is defined based on the Riemann–Liouville fractional integral,

C
a Dμ

x ψ(x) = RL
a I n−μ

x
dn

dxn
ψ(x), n = �Re(μ)� + 1, Re(μ) ≥ 0.

In [13], the function in (1) and the fractional integral operator (2) were introduced
and their properties were studied, including the crucial semigroup property of the
fractional integral operator for any summable function ψ ∈ L1(a, b):

(
a I δ1,w1,w2

α,β,γ1 a I δ2,w1,w2
α,β,γ2

ψ
)
(x) = (

a I δ1+δ2,w1,w2
α,β,γ1+γ2

ψ
)
(x). (3)

By using the semigroup property the corresponding left inverse operator to the frac-
tional integral operator (2) was defined in [13] as follows,

(RL
a Dδ,w1,w2

α,β,γ ψ
)
(x) = RL

a Dγ+σ
x a I −δ,w1,w2

α,β,γ ψ(x) = dn

dxn

(
a I −δ,w1,w2

α,β,n−γ ψ(x)
)
, (4)

and the corresponding Caputo fractional derivative was defined by,

(C
a Dδ,w1,w2

α,β,γ ψ
)
(x) = a I −δ,w1,w2

α,β,n−γ

( dn

dxn
ψ(x)

)
, n = �Re(γ )� + 1. (5)

In the present study, we undertake additional analysis of the integral operator (2)
and derivative operators (4), (5), naturally extending the results [13]. In Sect. 2 we
give Laplace transforms of the operators and the product rule for the operator (2).
In Sect. 3 we investigate the eigenvalue problem for the Caputo version derivative
and the solution of nonhomogenuous Cauchy problem involving Riemann–Liouville
derivative and integral operator (2). Section 4 is devoted to the numerical approxi-
mation of the Caputo type derivative operator through the use of linear and quadratic
univariate Lagrange interpolation. In Sect. 5, we extend and generalize the theory by
using fractional calculus operators with respect to functions. In Sect. 6, we conclude
the paper.
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2 Fractional-calculus of the operators with bivariate ML kernel

In this section, we remember some properties of the fractional calculus operators from
[13] andwe give some new results for these operators. The following theoretical results
are crucial for the derivation of the theoretical findings in the sebsequent sections.

For α, β, γ, δ,w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0 and for any
function ψ ∈ L1(a, b), the fractional integral operator (2) can be written as [13,
Theorem 7]

(
a I δ,w1,w2

α,β,γ ψ
)
(x) =

∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
(RL

a I αs+βr+γ
x ψ

)
(x), (6)

where the series on the right hand side is locally uniformly convergent. To demonstrate
the effectiveness of (6)we give the following resulltswhich show the compositon of the
fractional operators RL

a I σ
x and RL

a Dσ
x with the operator (2). The relation [13, Corollary

4]
RL
a I σ

x

(
a I δ,w1,w2

α,β,γ ψ(x)

)
= a I δ,w1,w2

α,β,γ+σ ψ(x) = a I δ,w1,w2
α,β,γ

(
a I σ

x ψ(x)

)
,

holds true for any summable function ψ ∈ L1[a, b] and any α, β, γ, δ,w1, w2 ∈ C,
Re(β) > 0, Re(α) > 0, Re(γ ) > 0. Also the relation

RL
a Dσ

x

(
a I δ,w1,w2

α,β,γ ψ(x)

)
= a I δ,w1,w2

α,β,γ−σ ψ(x),

holds true for any continuous function ψ ∈ C[a, b] and any α, β, γ, δ,w1, w2 ∈ C,
Re(β) > 0, Re(α) > 0, Re(γ ) > 0.

In order to highlight the usefullness of the series formula in (6),wewill now illustrate
a straightforward approach for computing the outcomeof applying the integral operator
(2) to an elementary power function. This method offers a simplified alternative for
using the original definition (2).

Proposition 1 The integral operator a I δ,w1,w2
α,β,γ on a power function is given as:

a I δ,w1,w2
α,β,γ

[
(x −a)σ

] = �(σ +1)(x −a)σ+γ Eδ
α,β,γ+σ [w1(x −a)α, w2(x −a)β ]. (7)

Proof According to Riemann–Liouville the fractional integral of a power function can
be presented as

RL
a I α

x (x − a)δ = �(δ + 1)

�(δ + α + 1)
(x − a)δ+α, Re(δ) > −1, Re(α) > 0.
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By combining this established result with the series formula (6), we derive the follow-
ing relation for Re(δ) > −1

a I δ,w1,w2
α,β,γ

[
(x − a)σ

] =
∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
(RL

a I αs+βr+γ
x (x − a)σ

)

=
∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
�(σ + 1)

�(σ + αs + βr + γ )
(x − a)σ+αs+βr+γ

= �(σ + 1)(x − a)σ+γ
∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

�(σ + αs + βr + γ )r !s! (x − a)αs+βr .

��

Example 1 In this example we calculate the integral operator 0 I δ,w1,w2
α,β,γ [xσ ] given in

(7) for w1 = w2 = 1, over the interval 
 = [0, 1] at the mesh points


ζ =
{

x : x = xi = iζ, ζ = 1

N1
, i = 0, 1, 2, . . . , N1

}
. (8)

For N1 = 64 and α = 0.3, β = 0.9 and δ = σ = −0.7 the integral 0 I −0.7,1,1
0.3,0.9,γ

[
x−0.7

]

is presented in Fig. 1 for various values of γ as 0.1, 0.5, 0.9. Further, the integral
0 I −0.7,1,1

0.3,0.9,0.6 [x
σ ] for σ = 0.5, 0.9, 1.9 is illustrated in Fig. 2.

Proposition 2 The integral operator a I δ,w1,w2
α,β,γ on an exponential function is given as:

−∞ I δ,w1,w2
α,β,γ [eσ x ] = σ−γ eσ x

[
1 − w1

σα
− w2

σβ

]−δ

. (9)

Proof The fractional integral of an exponential function according to Riemann–
Liouville can be presented as

RL−∞ I β
y eσ y = σ−βeσ y, Re(σ ) > 0, Re(β) > 0.

123



1300 İ. O. Elidemir et al.

Fig. 1 The integral 0 I−0.7,1,1
0.3,0.9,γ

[
x−0.7

]
for various values of γ

Fig. 2 The integral 0 I−0.7,1,1
0.3,0.9,0.6

[
xσ

]
for various values of σ
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Using this result with the series formula (6), we establish the following for Re(δ) > 0

−∞ I δ,w1,w2
α,β,γ [eσ x ] =

∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
(RL

a I αs+βr+γ
x eσ x)

= σ−γ eσ x
∞∑

s=0

(δ)s

s!
(

w1

σα

)s ∞∑

r=0

(δ + s)r

r !
(

w2

σβ

)r

= σ−γ eσ x
[
1 − w2

σβ

]−δ ∞∑

s=0

(δ)s

s!
(

w1

σα

)s(
σβ

σβ − w2

)s

= σ−γ eσ x
[
1 − w2

σβ

]−δ[
1 −

(
w1

σα

)(
σβ

σβ − w2

)]−δ

= σ−γ eσ x
[
1 − w1

σα
− w2

σβ

]−δ

.

��
Subsequently, our attention is directed towards the Laplace transform, with specific

reference to [13], which briefly discussed the Laplace transform of the bivariate ML
function (1). Because the gamma function on the denominator involves both s and
r together, the property of formula (1) inables computation of the double Laplace
transform with respect to x and y. Instead of taking the double Laplace transform they
considered the univariate version of (1) and calculated the Laplace transform with
respect to one variable t .

It was obtained in [13] that

L

[
tγ−1Eδ

α,β,γ (w1t, w2t)

]
(p) = 1

pγ

(
1 − w1

pα
− w2

pβ

)−δ

, (10)

where Re(β) > 0, Re(α) > 0, Re(γ ) > 0, Re(p) > 0 and L[ f (x)](p) is the
univariate Laplace transform operator defined by

L[ f (x)](p) =
∫ ∞

0
e−px f (x)dx, Re(p) > 0.

Now, we obtain the Laplace transforms of the fractional integral (2), Riemann–
Liouville type and Caputo type fractional derivatives corresponding to the bivariate
ML functions.

Theorem 3 The Laplace transform of integral operator (2) can be expressed by

L

[
0 I δ,w1,w2

α,β,γ ψ(x)

]
(p) = L

[
ψ(x)

]
(p)

pγ

(
1 − w1

pα
− w2

pβ

)−δ

, (11)

where Re(β) > 0, Re(α) > 0, Re(γ ) > 0 and p is the Laplace transformed param-
eter satisfying Re(p) > 0.
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Proof By using series formula (6) we get,

L

[
0 I δ,w1,w2

α,β,γ ψ(x)

]
(p) = L

[ ∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
(RL
0 I αs+βr+γ

x ψ(x)
)]

(p)

=
∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s! L

[(RL
0 I αs+βr+γ

x ψ(x)
)]

(p).

The series manipulation is same as in the proof of Proposition 2 and by using the fact
[26] that Laplace transforms of Riemann–Liouville integrals,

L

[
y I β

0+ f (x)

]
(p) = 1

pβ
L[ f (x)](p), Re(β) > 0, Re(p) > 0,

we obtain (11). ��

Theorem 4 The Laplace transform of Riemann–Liouville type fractional derivative
operator RL

0 Dδ,w1,w2
α,β,γ can be expressed as below

L
[RL
0 Dδ,w1,w2

α,β,γ ψ(x)
]
(p) = pγ

(
1 − w1

sα
− w2

sβ

)δ

L[ψ(x)](p)

−
∞∑

s=0

∞∑

r=0

(−δ)s+rw
s
1w

r
2

s!r !
n∑

m=0

pm−1 dn−m

dxn−m

(
RL
0 I αs+βr−γ+n

x ψ

)
(0),

where Re(β) > 0, Re(α) > 0, Re(γ ) > 0 and p is the Laplace transform parameter
satisfying Re(p) > 0 and n − 1 	= Re(γ ) < n, n ∈ N.

Proof By using the series representation for the operator RL
0 Dδ,w1,w2

α,β,γ ψ(x), we get

L
[RL
0 Dδ,w1,w2

α,β,γ ψ(x)
]
(p) = L

[
dn

dxn

(
0 I −δ,w1,w2

α,β,γ ψ(x)
)]

(p)

= L

[
dn

dxn

∞∑

s=0

∞∑

r=0

(−δ)s+rw
s
1w

r
2

r !s!
(RL
0 I αs+βr−γ+n

x ψ(x)
)]

(p).

Based on the locally uniformly convergent property of the series and applying the
known formula for the Laplace transform of the n−th derivative of the function, we
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obtain

L
[RL
0 Dδ,w1,w2

α,β,γ ψ(x)
]
(p)

= pn
∞∑

s=0

∞∑

r=0

(−δ)s+rw
s
1w

r
2

r !s! L

[(RL
0 I αs+βr−γ+n

x ψ(x)
)]

(p)

−
∞∑

s=0

∞∑

r=0

(−δ)s+rw
s
1w

r
2

s!r !
n∑

m=0

pm−1 dn−m

dxn−m

(
RL
0 I αs+βr−γ+n

x ψ(x)

)
(0)

= pn
∞∑

s=0

∞∑

r=0

(−δ)s+rw
s
1w

r
2

r !s! p−(αs+βr−γ+n)
L[ψ(x)](p)

−
∞∑

s=0

∞∑

r=0

(−δ)s+rw
s
1w

r
2

s!r !
n∑

m=0

pm−1 dn−m

dxn−m

(
RL
0 I αs+βr−γ+n

x ψ(x)

)
(0)

= pγ

(
1 − w1

sα
− w2

sβ

)δ

L[ψ(x)](p)

−
∞∑

s=0

∞∑

r=0

(−δ)s+rw
s
1w

r
2

s!r !
n∑

m=0

pm−1 dn−m

dxn−m

(
RL
0 I αs+βr−γ+n

x ψ(x)

)
(0).

��
Theorem 5 The Laplace transform of the Caputo type fractional derivative C

0 Dδ,w1,w2
α,β,γ

can be given as follows

L
[C
0 Dδ,w1,w2

α,β,γ ψ(x)
]
(p) = pγ−n

(
1 − w1

sα
− w2

sβ

)δ

[
pn
L[ψ(x)](p) −

n∑

m=1

pn−m dm−1

dxm−1ψ(0)

]
,

where the conditions on the parameters are same as in Theorem 4.

Proof By using Theroem 3 and applying formula for the Laplace transform of the
n−th derivative of the function, we obtain

L
[C
0 Dδ,w1,w2

α,β,γ ψ(x)
]
(p) = L

[
0 I −δ,w1,w2

α,β,γ

( dn

dxn
ψ(x)

)]
(p)

= p−n+γ

(
1 − w1

pα
− w2

pβ

)δ

L

[
ψ(x)

]
(p)

= pγ−n
(
1 − w1

sα
− w2

sβ

)δ[
pn
L[ψ(x)](p) −

n∑

m=1

pn−m dm−1

dxm−1ψ(0)

]
,

which gives the desired result. ��
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In the literature the product rule is extensively studied and generalized to the fractional
scenarios [28]. For the integral operator (2) using the series formula (6) we give a
version of the product rule.

Theorem 6 Let f and g be complex functions such that f ,g and f (x)g(x) are all in
the form xη
(x) with Re(η) > 0 and 
 holomorphic on a complex domain U ⊂ C.
Under the conditions Re(β) > 0, Re(α) > 0, Re(γ ) > 0, the integral operator (2)
satisfies the following product rule

a I δ,w1,w2
α,β,γ

(
f (x)g(x)

)

=
∞∑

n=0

1

n!
dng(x)

dxn

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)�(1 − αs − βr − γ )ws
1w

r
2

�(δ)�(1 − αs − βr − γ − n)s!r !

× x I αs+βr+γ+n
a+ f (x)

]
.

(12)

Proof By using series formula (6) with the known results [29], [30] on the product
rule for Riemann–Liouville fractional differintegrals we get the following

a I δ,w1,w2
α,β,γ

(
f (x)g(x)

) =
∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
[RL

a I αs+βr+γ
x

(
f (x)g(x)

]

=
∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
∞∑

n=0

(−αs − βr − γ

n

)
RL
a I αs+βr+γ+n

x f (x)
dng(x)

dxn

=
∞∑

n=0

dng(x)

dxn

[ ∞∑

s=0

∞∑

r=0

(δ)s+rw
s
1w

r
2

r !s!
(−αs − βr − γ

n

)
RL
a I αs+βr+γ+n

x f (x)

]
,

given (12). ��

Example 2 To verify the results of Theorem 6, we take the functions f (x) = ecx and
g(x) = x and the constant of differintegration a = i∞. Consequently, the outer series

123



On the analysis of fractional calculus operators with… 1305

in (12) has only two non-trivial terms. Thus;

1∑

n=0

1

n!
dn x

dxn

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)�(1 − αs − βr − γ )ws
1w

r
2

�(δ)�(1 − αs − βr − γ − n)s!r ! x I αs+βr+γ+n
a+ ecx

]

=
1∑

n=0

1

n!
dn x

dxn

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)�(1 − αs − βr − γ )ws
1w

r
2

�(δ)�(1 − αs − βr − γ − n)s!r ! cαs+βr+γ+1ecx
]

= x

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)�(1 − αs − βr − γ )(cαw1)
s(cβw2)

r

�(δ)�(1 − αs − βr − γ )s!r ! cγ ecx
]

+
[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)�(1 − αs − βr − γ )(cαw1)
s(cβw2)

r

�(δ)�(−αs − βr − γ )s!r ! cγ+1ecx
]

= x

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)(cαw1)
s(cβw2)

r

�(δ)s!r ! cγ ecx
]

+
[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)(−αs − βr − γ )(cαw1)
s(cβw2)

r

�(δ)s!r ! cγ+1ecx
]

=
∞∑

s=0

∞∑

r=0

�(δ + s + r)(cαw1)
s(cβw2)

r

�(δ)s!r ! cγ ecx (x − c(αs + βr + γ ),

hence we have computed the integral i∞ I δ,w1,w2
α,β,γ

(
xecx

)
.

The chain rule in classical calculus can be generalized to certain models of frac-
tional calculus. In the following theorem for this particular calculus model we use the
proposed series formula (6) to derive a result of the chain rule.

Theorem 7 Let f and g be complex functions such that g is smooth and f (g(x)) is
a function of the form xη
(x) with Re(η) > 0 and 
 holomorphic on a complex
domain U ⊂ C. Under the conditions Re(β) > 0, Re(α) > 0, Re(κ) > 0, the
integral operator (2) satisfies the following chain rule.

a I δ,w1,w2
α,β,γ

(
f (g(x))

) = (x − a)γ
∞∑

s=0

∞∑

r=0

�(δ + s + r)[w1(x − a)α]s[w2(x − a)β ]r
�(δ)�(αs + βr + γ )s!r !

×
∞∑

n=0

(a − x)n

n!(βr + αs + n)

m∑

r=1

dr f (g(x))

dg(x)r

×
∑

(P1,...,Pm )

n∏

j=1

1

Pj !( j !)Pj

(
d j g(x)

dx j

)Pj

,

(13)
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1306 İ. O. Elidemir et al.

where the summation (P1, . . . , Pm) is over the set

{
(P1, . . . , Pm) ∈ (Z+

0 )m :
∑

j

Pj = r ,
∑

j

j Pj = m

}
.

Proof Applying Theorem 6 to the product of
(

f (g(x))
)
and I (x) = 1, where the

Riemann–Liouville fractional differintegrals of I are well known, yields (12),

a I δ,w1,w2
α,β,γ

(
f (g(x)

)

=
∞∑

n=0

dn f (g(x))

n!dxn

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)�(1 − αs − βr − γ )ws
1w

r
2

�(δ)�(1 − αs − βr − γ − n)s!r ! x I αs+βr+γ+n
a+ (1)

]

= dn f (g(x))

n!dxn

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)�(1 − αs − βr − γ )ws
1w

r
2

�(δ)�(1 − αs − βr − γ − n)s!r !
(x − a)αs+βr+γ+n

�(αs + βr + γ + n + 1)

]
.

We use the reflection formula in order to eliminate some of the gamma functions in
this expression,

�(αs+βr+γ +n+1)�(1−αs−βr−γ −n) = (−1)n(αs+βr+γ +n)�(αs+βr+γ )�(1−αs−βr−γ ).

a I δ,w1,w2
α,β,γ

(
f (g(x)

)

= (x − a)γ
∞∑

n=0

dn f (g(x))

dxn

[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)[w1(x − a)α]s [w2(x − a)β ]r
�(δ)(αs + βr + γ + n)�(αs + βr + γ )s!r !

]
(a − x)n

n!

= (x − a)γ
[ ∞∑

s=0

∞∑

r=0

�(δ + s + r)[w1(x − a)α]s [w2(x − a)β ]r
�(δ)�(αs + βr + γ )s!r !

]

×
∞∑

n=0

dn f (g(x))

dxn

(a − x)n

n!(αs + βr + γ + n)
.

By use of classical Faa di Bruno formula we get the result (13). ��

3 Eigenvalue problem and Cauchy problem for fractional
integro-differential equation

Our focus now shifts to the eigenvalue problem corresponding to the Caputo fractional
derivative (5). To initiate our investigation, we analyze the following Cauchy problem

(C
0 Dδ,w1,w2

α,β,γ ψ
)
(x) = C1ψ(x),

ψ( j)(0) = δ j , ( j = 0, 1, . . . , n − 1) (14)

where α, β, γ, δ ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0 and n − 1 ≤ Re(γ ) < n
(n ∈ N). C1, δ0 . . . , δn−1 ∈ C. Applying Laplace transform to both sides of (14), we

123



On the analysis of fractional calculus operators with… 1307

obtain

L
[C
0 Dδ,w1,w2

α,β,γ ψ
]
(p) = pγ−m

(
1 − w1

sα
− w2

sβ

)δ[
pm

L[ψ(x)](p) −
n−1∑

k=0

pn−kδk

]

= C1L[ψ](p).

This leads to

L[ψ(x)](p) =
∑n−1

k=0 pn−kδk

1 − C1 p−γ

(
1 − w1

sα − w2
sβ

)−δ

=
n−1∑

k=0

p−kδk

∞∑

l=0

Cl
1 p−γ l

(
1 − w1

sα
− w2

sβ

)−δl

=
n−1∑

k=0

δk

∞∑

l=0

Cl
1 p−γ l−k

(
1 − w1

sα
− w2

sβ

)−δl

,

given that

∣∣∣∣C1 p−γ

(
1− w1

sα − w2
sβ

)−δ∣∣∣∣ < 1. After applying inverse Laplace transform

to both sides and making use of Eq. (10), we arrive at

ψ(x) =
n−1∑

k=0

∞∑

l=0

δkCl
1xγ n+k−1Eδn

α,β,γ n+k(w1xα,w2xβ),

which is the eigenfunction of the C
0 Dδ,w1,w2

α,β,γ corresponding to the eigenvalue C1.
Our attention now turns to the following Cauchy-type problem:

x Dσ
a+ψ(x) = a I δ,w1,w2

α,β,γ ψ(x) + f (x), (15)

lim
x→a+

dn

dxn

(
x I k−σ

a+
)
ψ(x) = ηn (n = 0, 1, . . . , k − 1), (16)

where k − 1 < σ ≤ k (k ∈ N) and δ, α, β, γ,w1, w2 ∈ R with α, β > 0.

Theorem 8 The problem (15) and (16) has solution ψ ∈ L1(0,∞) as:

ψ(x) =
k−1∑

n=0

ηn xn+β−k
∞∑

r=0

x (γ+σ)r Eδr
α,β,(γ+σ)r−k+n+1(w1xα,w2xβ)

+
∞∑

r=0

(
a I δr ,w1,w2

α,β,(γ+σ)r+β f
)
(x).

(17)
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Proof Through the application of the Laplace transform to both sides of Eq. (15), we
obtain

sσ
L[ψ(x)](s) −

k−1∑

n=0

ηnsk−n−1 = s−γ

(
1− w1

sα
− w2

sβ

)−γ

L[ψ(x)](s) +L[ f (x)](s).

Consequently,

L[ψ(x)](s) =
∑k−1

n=0 ηnsk−n−1−σ + L[ f (x)](s)
sβ

1 − s−γ−σ

(
1 − w1

sα − w2
sβ

)−γ

=
[ k−1∑

n=0

ηnsk−n−1−σ + L[ f (x)](s)
sβ

] ∞∑

r=0

[
s−γ−σ

(
1 − w1

sα
− w2

sβ

)−γ ]r

=
k−1∑

n=0

∞∑

r=0

ηnsk−n−1−σ−(γ+β)r
(
1 − w1

sα
− w2

sβ

)−γ r

+
∞∑

r=0

s−γ r−βr−σ

(
1 − w1

sα
− w2

sβ

)−γ r

L[ f (x)](s).

Applying inverse Laplace transform yields the result (17). ��

Example 3 Consider the following nonhomogenous Cauchy-type problem:

x Dσ
a+ψ(x) = a I δ1,w1,w2

α,β,γ ψ(x) + xμ−1Eδ2
α,β,μ(w1xα,w2xβ),

lim
x→a+

dn

dxn

(
x I k−σ

a+
)
ψ(x) = (−1)n n = 0, 1 . . . , k − 1, (18)

where k − 1 < σ ≤ k (k ∈ N) and δ, α, β, μ, γ,w1, w2 ∈ R with α, β, μ > 0.
Considering (2) and the identity given in Theorem 6 of [13] gives,

∫ x

0
(x − ε)γ r+σr+β−1Eδ1r

α,β,(γ+σ)r+β(w1(x − ε)α,

w2(x − ε)β)εμ−1Eδ2
α,β,μ(w1ε

α,w2ε
β)dε

= xγ r+σr+β+μ−1Eδ1r+δ2
α,β,(γ+σ)r+β+μ(w1xα,w2xβ).
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From Theorem 8 it follows that the problem (18) has solution belonging to L1(0,∞)

given by

ψ(x) =
k−1∑

n=0

(−1)n xn+β−k
∞∑

r=0

x (γ+σ)r Eδr
α,β,(γ+σ)r−k+n+1(w1xα,w2xβ)

+ x+β+μ−1
∞∑

r=0

xγ r+σr Eδ1r+δ2
α,β,(γ+σ)r+β+μ(w1xα,w2xβ).

4 Approximation of Caputo type derivative

Numerical approximations of Caputo–Prabhakar derivative including 3 parameters
ML function was given in [31]. In this section, we give numerical approximations to
Caputo operator containing bivariate ML in the kernel.

For any t ∈ R
+ and μ ∈ C,

∫ t

0
vγ−1Eδ

α,β,γ (μ1v
α, μ2v

β)dv = tγ Eδ
α,β,γ+1(μ1tα, μ2tα). (19)

For any n ∈ N,

dn

dtn

[
tγ−1Eδ

α,β,γ (μ1tα, μ2tβ)

]
= tγ−1−n Eδ

α,γ−n(μ1tα, μ2tβ). (20)

The interval [0, T ] is divided into N1 subintervals, each of length ζ = T
N1

with points
0 = t0 < t1 < t2 < · · · < tN1 = T , where ti = iζ , i = 0, 1, . . . , N1. We approximate
the function g(t) by using first degree Lagrange interpolation function. For two points
(ti−1, g(ti−1)) and (ti , f (ti )) linear interpolation function P1(t) is defined as,

P1(t) = ti − t

ti − ti−1
g(ti−1) + t − ti−1

ti − ti−1
g(ti ). (21)

Also,
d

dt
P1(t) = g(ti ) − g(ti−1)

ζ
(22)

and

g(t) − P1(t) = f ′′(εi )

2
(t − ti )(t − ti−1), (23)

where εi ∈ (ti−1, ti ).
For 0 < γ < 1 and 0 < t < T by choosing n = 1, the Caputo-type derivative (5)

is defined as,

C
0 Dδ,w1,w2

α,β,γ g(t) =
∫ t

0
(t − r)−γ E−δ

α,β,1−γ (w1(t − r)α, w2(t − r)β)g′(r)dr (24)

123
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at points t = tl , l = 1, . . . , N1,

(C
0 Dδ,(1,N1)

α,β,γ,w1,w2
g
)
(tl)

≈
∫ tl

0
(tl − r)−γ E−δ

α,β,1−γ (w1(tl − r)α, w2(tl − r)β)P ′
1(r)dr

=
l∑

i=1

∫ ti

ti−1

(tl − r)−γ E−δ
α,β,1−γ (w1(tl − r)α, w2(tl − r)β)P ′

1(r)dr

=
l∑

i=1

∫ ti

ti−1

(tl − r)−γ E−δ
α,β,1−γ (w1(tl − r)α, w2(tl − r)β)

g(ti ) − g(ti−1)

ζ
dr

= ζ−γ
l∑

i=1

w1,l−i g(ti ) − w1,l−i g(ti−1),

where

w1,l−i = (l − i + 1)1−γ E−δ
α,β,2−γ (w1(tl − ti−1)

α, w2(tl − ti−1)
β)

− (l − i)1−γ E−δ
α,β,2−γ (w1(tl − ti )

α, w2(tl − ti )
β).

In the next theorem, we determine error bound for the given approximation.

Theorem 9 Let g(t) ∈ C2[0, T ] for any 0 < γ < 1, the truncation error R(g, ζ, γ )

satiesfies the following inequality,

R1(g, ζ, γ ) ≤ ζ 2−γ

8
max
0≤t≤tl

∣∣g′′(t)
∣∣K1, (25)

where K1 is a positive constant given as

K1 =
∣∣∣∣(l − i + 1)−γ E−δ

α,β,1−γ (w1(tl − ti−1)
α, w2(tl − ti−1)

β)

− (l − i)−γ E−δ
α,β,1−γ (w1(tl − ti )

α, w2(tl − ti )
β)

∣∣∣∣.
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Proof From (23) it follows that

R1(g, ζ, γ )

=
∣∣∣∣

l∑

i=1

∫ ti

ti−1

(tl − r)−γ E−δ
α,β,1−γ (w1(tl − r)α, w2(tl − r)β)(g(r) − P1(r))′dr

∣∣∣∣

=
∣∣∣∣

l∑

i=1

∫ ti

ti−1

(tl − r)−1−γ E−δ
α,β,−γ (w1(tl − r)α, w2(tl − r)β)(g(r) − P2(r))dr

∣∣∣∣

=
∣∣∣∣

l∑

i=1

g′′(ηi )

2

∫ ti

ti−1

(r − tl)(r − tl−1)(tl − r)−1−γ E−δ
α,β,−γ (w1(tl − r)α, w2(tl − r)β)

∣∣∣∣

≤
∣∣∣∣

l∑

i=1

ζ 2g′′(ηi )

8

[
(tl − ti )

−γ E−δ
α,β,1−γ (w1(tl − ti )

α, w2(tl − ti )
β))

− (tl − ti−1)
−γ E−δ

α,β,1−γ (w1(tl − ti−1)
α, w2(tl − ti−1)

β))
]∣∣∣∣

≤
∣∣∣∣

l∑

i=1

ζ 2−γ g′′(ηi )

8

[
(l − i)−γ E−δ

α,β,1−γ (w1(tl − ti )
α, w2(tl − ti )

β))

− (l − i + 1)−γ E−δ
α,β,1−γ (w1(tl − ti−1)

α, w2(tl − ti−1)
β))

]∣∣∣∣

≤ ζ 2−γ

8
max
0≤t≤tl

∣∣g′′(t)
∣∣K1.

��
For the numerical computations we used Matlab and the ML function Eδ

α,β,γ as
defined in (1) is approximated by truncating the series with 50 terms. We define the
absolute error function

(
Er δ,(n,N1)

α,β,γ,w1,w2
f
)
(t) =

∣∣∣
(C
0 Dδ

α,β,γ,w1,w2
f
)
(t) − (C

0 Dδ,(n,N1)
α,β,γ,w1,w2

f
)
(t)

∣∣∣ .

Example 4 We consider the functions f (t) = tμ μ ≥ 1 for t ∈ 
 = [0, 1] and
the approximation of Caputo type derivative

(C
0 Dδ,(1,N1)

α,β,γ,w1,w2
f
)
(t) by using linear

Lagrange interpolation function P1(t) as defined in (21) and the exact derivative(C
0 Dδ

α,β,γ,w1,w2
f
)
(t) are considered. We take the set of mesh points 
ζ as given

in (8), also, w1 = w2 = 1 and α = 0.3, β = 0.9 and γ = 0.6. Figure3, presents(C
0 D−0.5,(1,64)

0.3,0.9,0.6,1,1 f
)
(t) and the exact derivative

(C
0 D−0.5

0.3,0.9,0.6,1,1 f
)
(t) denoted by ap

and ex respectively for μ = 1. Further, Fig. 4, presents
(C
0 D−0.5,(1,64)

0.3,0.9,0.6,1,1 f
)
(t) and the

exact derivative
(C
0 D−0.5

0.3,0.9,0.6,1,1 f
)
(t) forμ = 4. It can be viewed from Fig. 3 that the

approximation is almost exact in double precision for f (t) = t . Furthermore, Fig. 5
shows the error function

(
Er−0.5,(1,64)

0.3,0.9,0.6,1,1 f
)
(t) for f (t) = t4.
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1312 İ. O. Elidemir et al.

Fig. 3
(C
0 D−0.5,(1,64)

0.3,0.9,0.6,1,1 f
)
(t) and the exact derivative

(C
0 D−0.5

0.3,0.9,0.6,1,1 f
)
(t) denoted by ap and ex respec-

tively for f (t) = t .

Now we construct the quadratic Lagrange interpolation polynomial for the nodes
ti−2, ti−1 and ti .

P2(t) = (t − ti−1)(t − ti )(ti − ti−1)

(ti−1 − ti−2)(ti − ti−1)(ti − ti−2)
g(ti−2)

− (t − ti−1)(t − ti )(ti − ti−2)

(ti−1 − ti−2)(ti − ti−1)(ti − ti−2)
g(ti−1)

+ (t − ti−2)(t − ti−1)(ti−1 − ti−2)

(ti−1 − ti−2)(ti − ti−1)(ti − ti−2)
g(ti ).

(26)

Further,

d2

dt2
P2(t) = 2g(ti−2)(ti − ti−1) − 2g(ti−1)(ti − ti−2) + 2g(ti )(ti−1 − ti−2)

(ti−1 − ti−2)(ti − ti−1)(ti − ti−2)
,

and

g(t) − P2(t) = f ′′′(εi )

6
(t − ti )(t − ti−1)(t − ti−2),

where εi ∈ (ti−2, ti ).
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Fig. 4
(C
0 D−0.5,(1,64)

0.3,0.9,0.6,1,1 f
)
(t) and the exact derivative

(C
0 D−0.5

0.3,0.9,0.6,1,1 f
)
(t) denoted by ap and ex respec-

tively for f (t) = t4

Fig. 5 The error function
(
Er−0.5,(1,64)

0.3,0.9,0.6,1,1 f
)
(t) for f (t) = t4
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For 1 < γ < 2 and 0 < t < T by choosing n = 2, the Caputo type derivative (5)
is defined as

C
0 Dδ,w1,w2

α,β,γ g(t) =
∫ t

0
(t − r)1−γ E−δ

α,β,2−γ (w1(t − r)α, w2(t − r)β)
d2

dr2
g(r)dr ,

at points t = tl = l T
N1
, l = 1, . . . , N1,

(C
0 Dδ,(2,N1)

α,β,γ,w1,w2
g
)
(tl)

≈
∫ tl

0
(tl − r)1−γ E−δ

α,β,2−γ (w1(tl − r)α, w2(tl − r)β)P ′′
2 (r)dr

=
l∑

i=1

∫ ti

ti−1

(tl − r)1−γ E−δ
α,β,2−γ (w1(tl − r)α, w2(tl − r)β)P ′′

2 (r)dr

=
∫ t1

t0
(tl − r)1−γ E−δ

α,β,2−γ (w1(tl − r)α, w2(tl − r)β)

×
(

g(t0)(t2 − t1) − g(t1)(t2 − t0) + g(t2)(t1 − t0)

ζ 3

)
dr

+
l∑

i=2

∫ ti

ti−1

(tl − r)1−γ E−δ
α,β,2−γ (w1(tl − r)α, w2(tl − r)β)

×
(

g(ti−2)(ti − ti−1) − g(ti−1)(ti − ti−2) + g(ti )(ti−1 − ti−2)

ζ 3

)
dr

= ζ−γ

[
w̄1,l−1g(t0) − 2w̄1,l−1g(t1) + w̄1,l−1g(t2)

+
l∑

i=2

w̄1,l−i g(ti−2) − 2w̄1,l−i g(ti−1) + w̄1,l−i g(ti )

]
,

where

w̄1,l−i = (l − i + 1)2−γ E−δ
α,β,3−γ (w1(tl − ti−1)

α, w2(tl − ti−1)
β)

− (l − i)2−γ E−δ
α,β,3−γ (w1(tl − ti )

α, w2(tl − ti )
β).

In the next theorem, we determine error bound for the given approximation.

Theorem 10 Let g(t) ∈ C3[0, T ] for any 1 < γ < 2, the truncation error R2(g, ζ, γ )

is given as follows

R2(g, ζ, γ ) ≤ ζ 3−γ

48
max
0≤t≤tl

∣∣g′′′(t)
∣∣K2,

123



On the analysis of fractional calculus operators with… 1315

where K2 is a positive constant

K2 =
∣∣∣∣(l − i + 1)−γ E−δ

α,β,1−γ (w1(tl − ti−1)
α, w2(tl − ti−1)

β)

− (l − i)−γ E−δ
α,β,1−γ (w1(tl − ti )

α, w2(tl − ti )
β)

∣∣∣∣.

Proof

R2(g, ζ, γ )

=
∣∣∣∣

l∑

i=1

∫ ti

ti−1

(tl − r)1−γ E−δ
α,β,2−γ (w1(tl − r)α, w2(tl − r)β)(g(r) − P2(r))′′dr

∣∣∣∣

=
∣∣∣∣

l∑

i=1

∫ ti

ti−1

(tl − r)−1−γ E−δ
α,β,−γ (w1(tl − r)α, w2(tl − r)β)(g(r) − P2(r))dr

∣∣∣∣

=
∣∣∣∣

l∑

i=1

g′′′(ηi )

6

∫ ti

ti−1

(r − tl)(r − tl−1)(r − tl−2)(tl − r)−1−γ

× E−δ
α,β,−γ (w1(tl − r)α, w2(tl − r)β)

∣∣∣∣

≤
∣∣∣∣

l∑

i=1

ζ 3g′′(ηi )

48

[
(tl − ti )

−γ E−δ
α,β,1−γ (w1(tl − ti )

α, w2(tl − ti )
β))

− (tl − ti−1)
−γ E−δ

α,β,1−γ (w1(tl − ti−1)
α, w2(tl − ti−1)

β))
]∣∣∣∣

≤
∣∣∣∣

l∑

i=1

ζ 3−γ g′′′(ηi )

48

[
(l − i)−γ E−δ

α,β,1−γ (w1(tl − ti )
α, w2(tl − ti )

β))

− (l − i + 1)−γ E−δ
α,β,1−γ (w1(tl − ti−1)

α, w2(tl − ti−1)
β))

]∣∣∣∣

≤ ζ 3−γ

48
max
0≤t≤tl

∣∣g′′′(t)
∣∣K2.

��
Example 5 We take the function f (t) = t4 for t ∈ 
 = [0, 1] and the approximation
of Caputo type derivative

(C
0 Dδ,(2,N1)

α,β,γ,w1,w2
f
)
(t) by using quadratic Lagrange interpo-

lation polynomial P2(t) given in (26) and the exact derivative
(C
0 Dδ

α,β,γ,w1,w2
f
)
(t) are

considered. We take the set of mesh points 
ζ as given in (8), also, w1 = w2 = 1 and
α = 0.3, β = 0.9 andγ = 1.7. Figure6 shows the error function

(
Er−0.5,(2,128)

0.3,0.9,1.7,1,1 f
)
(t)

for f (t) = t4.
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Fig. 6 The error function
(
Er−0.5,(2,128)

0.3,0.9,1.7,1,1 f
)
(t) for f (t) = t4

5 Considering the operators with respect to functions

The concept of applying fractional integration and differentiation operators to function
ψ(x) with respect to a monotonic function h(x) was studied [32, 33] and Osler’s
1970 paper marked the introduction of the complete generality of Riemann–Liouville
fractional calculus with respect to functions. Within this section, we aim to generalize
the operators with bivariateML kernel with respect to an arbitrarymonotonic function.

Definition 1 Let ψ ∈ L1[a, b] and h ∈ C1[a, b] be two functions defined on a
real interval [a, b] additionally let h be positive and monotonically increasing. For
α, β, γ, δ,w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0 the fractional integral
operator with bivariate ML kernel of the function ψ with respect to the function h is
defined by

a I δ,w1,w2
α,β,γ ;h(x)

ψ(x)

=
∫ x

a

(
h(x) − h(t)

)γ−1
Eδ

α,β,γ

(
w1(h(x) − h(t))α, w2(h(x) − h(t))β

)
ψ(t)h′(t)dt .

(27)

Definition 2 Let h ∈ C1[a, b] be a positive and monotonically increasing function on
a real interval [a, b]. For α, β, γ, δ,w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0
and let n be a natural number satisfying the condition n − 1 < Re(γ ) < n. The
fractional derivative operator with bivariate ML kernel of the function ψ ∈ Cn[a, b]
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with respect to the function h is defined by

a Dδ,w1,w2
α,β,γ ;h(x)

ψ(x) =
(

1

h′(x)
.

d

dx

)n(
a I −δ,w1,w2

α,β,n−γ ;h(x)
ψ(x)

)
. (28)

Theorem 11 The operators (27) and (28) can be expressed as conjugates of the oper-
ators with respect to x

a I δ,w1,w2
α,β,γ ;h(x)

= Qh ◦ h(a) I δ,w1,w2
α,β,γ ◦ Q−1

h , (29)

a Dδ,w1,w2
α,β,γ ;h(x)

= Qh ◦ h(a)Dδ,w1,w2
α,β,γ ◦ Q−1

h , (30)

where the operator Qh is defined as,

(
Qh(g)

)
(x) = (g ◦ h)(x) = g

(
h(x)

)
.

Proof The proof can be given in a similar manner as the classical Riemann–Liouville
fractional calculus with respect to functions. It is well established that the classical
derivative satisfies the corresponding operational identity

RL D1
h(x) = 1

h′(x)

d

dx
= Qh ◦ RL D1 ◦ Q−1

h . (31)

We first select a function g ∈ L1[a, b] and then follow the subsequent steps:

g : x �→ g(x),

Q−1
h g : x �→ g

(
h−1(x)

)
,

h(a) I δ,w1,w2
α,β,γ ◦ Q−1

h g : x �→ h(a) I δ,w1,w2
α,β,γ

(
g ◦ h−1)(x),

Qh ◦ h(a) I δ,w1,w2
α,β,γ ◦ Q−1

h g : x �→ (
h(a) I δ,w1,w2

α,β,γ

(
g ◦ h−1))(h(x)).

Based on definition (2), we have

h(a) I δ,w1,w2
α,β,γ

(
g ◦ h−1)(x)

=
∫ x

h(a)

(x − s)γ−1Eδ
α,β,γ (w1(x − s)α, w2(x − s)β)g(h−1(s))ds

=
∫ h−1(x)

a
(x − h(v))Eδ

α,β,γ (w1(x − h(v))α, w2(x − h(v))β)g(v)h′(v)dv,
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where we perform the substitution of v = h−1(s) into the integral. Finally, by substi-
tuting x with h(x) throughout this expression, we obtain

Qh ◦ h(a) I δ,w1,w2
α,β,γ ◦ Q−1

h g(x)

=
∫ x

a
(h(x) − h(v))Eδ

α,β,γ (w1(h(x) − h(v))α, w2(h(x) − h(v))β)g(v)h′(v)dv

= h(a) I δ,w1,w2
α,β,γ g(x),

this establishes (29). The result in (30) for fractional derivatives directly follows from
the composition of (29) with (31) repeated n times. ��
Theorem 12 The following relation holds true for the operators (27)

RL
h(x) I μ

a

(
a I δ,w1,w2

α,β,γ ;h(x)
ψ(x)

)
= a I δ,w1,w2

α,β,γ+μ;h(x)
= a I δ,w1,w2

α,β,γ ;h(x)

(
RL
h(x) I μ

a ψ(x)

)
,

for any function ψ ∈ L1[a, b] and for any monotonic function h ∈ C1[a, b] where
α, β, γ, δ,w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0, Re(μ) > 0.

Proof This is a result of Corollary 4 [13], utilizing the conjugation expressions for all
operators. These expressions are provided by Theorem 11 for operators with bivariate
ML kernels and by the classical result for Riemann–Liouville integrals

RL
h(x) I μ

a = Qh ◦ RL I μ

h(a) ◦ Q−1
h .

��
Theorem 13 The following relation holds true for the operators (27)

RL
h(x) Dμ

a

(
a I δ,w1,w2

α,β,γ ;h(x)
ψ(x)

)
=

(
a I δ,w1,w2

α,β,γ−μ;h(x)
ψ(x)

)
,

for any function ψ ∈ Ck[a, b], k = �μ�, any monotonic function h ∈ C1[a, b] and
α, β, γ, δ,w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0, Re(μ) > 0.

Proof This is a result of Corollary 4 [13], using results of Theorem 11 and

RL
h(x) Dμ

a = Qh ◦ RL Dμ

h(a) ◦ Q−1
h .

��
Theorem 14 The operator (27) satisfies the following semigroup property given by

a I δ1,w1,w2
α,β,γ1;h(x)

(
a I δ2,w1,w2

α,β,γ2;h(x)
ψ(x)

)
= a I δ1+δ2,w1,w2

α,β,γ1+γ2;h(x)
,

for any function ψ ∈ L1[a, b] and for any monotonic function h ∈ C1[a, b], where
α, β, γ1, γ2, δ1, δ2, w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ1) > 0, Re(γ2) > 0.
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Proof This is a result of Theorem 9 [13], in combination with results of Theorem 11.
��

Theorem 15 The application of the bivariate ML integral operator to another power
function can be demonstrated in the following manner

a I δ,w1,w2
α,β,γ ;(x−a)μ

(x−a)ζ = �(
ζ

μ
+1)(x−a)γμ+ζ Eδ

α,β,γ+ ζ
μ

(w1(x−a)αμ,w2(x−a)βμ),

(32)
where α, β, γ, δ,w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0, μ > 0, ζ > 0.

Proof From the assumption μ > 0 the function h(x) = (x − a)μ is a monotonically
increasing function on any interval [a, c]. Further, the function to which we apply the
operator (27) is (x − a)ζ = h(x)

ζ
μ . Thus, utilizing the result of Proposition 1 we have

ψ : x �→ (x − a)ζ ,

Q−1
h ψ : x �→ x

ζ
μ ,

0 I δ,w1,w2
α,β,γ ◦ Q−1

h ψ : x �→ (
0 I δ,w1,w2

α,β,γ

)
x

ζ
μ = �(

ζ

μ
+ 1)xγ+ ζ

μ Eδ

α,β,γ+ ζ
μ

(w1xα,w2xβ),

Qh ◦ 0 I δ,w1,w2
α,β,γ ◦ Q−1

h ψ : x �→ (
0 I δ,w1,w2

α,β,γ

)
(x − a)ζ

= �(
ζ

μ
+ 1)(x − a)γμ+ζ Eδ

α,β,γ+ ζ
μ

(w1(x − a)αμ,w2(x − a)βμ),

thus (32) is established. ��
Theorem 16 The application of the bivariate ML integral operator with respect to a
logarithm function to a power function can be given as

a I δ,w1,w2
α,β,γ ;log(x−a)

(x − a)ζ = ζ−γ

(
1 − w1

ζ α
− w2

ζ β

)−δ

(x − a)ζ , (33)

where α, β, γ, δ,w1, w2 ∈ C, Re(β) > 0, Re(α) > 0, Re(γ ) > 0, ζ > 0.

Proof The function h(x) = log(x − a) is monotonically increasing function on any
interval (a, c] with h(x) → −∞ as x → a+, and we apply the operator (27) to
(x − a)ζ = eζh(x). Using the Proposition 2 it follows that

ψ : x �→ (x − a)ζ ,

Q−1
h ψ : x �→ eζ x ,

−∞ I δ,w1,w2
α,β,γ ◦ Q−1

h ψ : x �→ (
0 I δ,w1,w2

α,β,γ

)
eζ x = ζ−γ

(
1 − w1

ζ α
− w2

ζ β

)−δ

eζ x ,

Qh ◦ 0 I δ,w1,w2
α,β,γ ◦ Q−1

h ψ : x �→ (
0 I δ,w1,w2

α,β,γ

)
(x − a)ζ = ζ−γ

(
1 − w1

ζ α
− w2

ζ β

)−δ

(x − a)ζ ,

hence we get (33). ��
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Fig. 7 The integral 0 I
δ,w1,w2
α,β,γ ;xμ

[
xζ

]
for various values of ζ and μ

Example 6 In this example we consider the integral operators given in ( 32) and (33)
over the interval 
 = [0, 1] at the mesh points (8) for N1 = 64. Taking α = 0.3, β =
0.9, γ = 0.6 and δ = 0.7 the integral 0 I 0.7,1,10.3,0.9,0.6;xμ

[
xζ

]
is presented in Fig. 7 for

various values of ζ as 0.5, 0.9, 1.9 when μ = 1.2 is fixed and for various values
of μ as 0.5, 0.9, 1.9 when ζ = 0.8 is fixed. Further, Taking α = 0.3, β = 0.9 and
δ = 0.7 the integral 0 I 0.7,1,10.3,0.9,0.8;log(x)

[
xζ

]
is presented in Fig. 8 for various values of

ζ as 0.5, 0.9, 1.9 when γ = 0.8 is fixed and for various values of γ as 0.5, 0.9, 1.9
for ζ = 0.8.

6 Conclusion

In this paper, we have extended thework of [13] by developing a fully formed theory of
fractional calculus from integral operators with bivariate ML kernels. Our approach
naturally leads to many important results concerning these integral operators, such
as the Laplace transform, product rule, and chain rule. We have also extended this
model of fractional calculus to a higher level of generality by applying the operators
with respect to functions as well as with respect to the independent variable. The
composition, semigroup, and inverse properties extend naturally into thismore general
setting.

As applications of thework in this paper,we considered the solution of an eigenvalue
problem involving Caputo type derivative operators with bivariate ML kernels, as well
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Fig. 8 The integral 0 I
δ,w1,w2
α,β,γ ;log(x)

[
xζ

]
for various values of γ and ζ

as a Cauchy problem involving both Riemann–Liouville derivatives and the fractional
integrals with bivariateML kernels.We discussed linear and quadratic approximations
to approximate the Caputo type derivative operators with bivariate ML kernels.

As a futureworkwe are intending to give numerical approximations for the bivariate
and multivariate franctional calculus operators (see [24, 34]) by considering different
approaches. Another direction of research will be to give new approximation methods
for the solution of fractional differential equations.
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