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Abstract
Moore–Penrose inverse emerges in statistics, neural networks, machine learning,
applied physics, numerical analysis, tensor computations, solving systems of lin-
ear equations and in many other disciplines. Especially after the 2000s, the topic
of Moore–Penrose inverse has started to attract great attention by researchers and has
become a popular subject. In this paper, we investigate the Moore–Penrose inverse of
the conditional matrices via convolution product formula. In order to use convolution
formula effectively, we derive some useful identities by using some properties of the
generalized conditional sequence. Moreover, we express the Moore–Penrose inverse
of the conditional matrices in the form of block matrices. Finally, we not only present
more general results compared to earlier works, but also provide many novel results
using analytical techniques.

Keywords Moore–Penrose inverse · Convolution · Conditional matrix · Generalized
conditional sequence

Mathematics Subject Classification 05A10 · 11B39 · 15A09

1 Introduction

The generalized inverse of an integral operator was introduced by Fredholm [1]. The
generalized inverse of a matrix was described by Moore who proposed a unique gen-
eralized inverse by means of projectors of matrices [2]. Until mid-1950s, there was
few research on this subject. Later on, the use of matrix inverses in the solution of
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the linear equation systems began to increase the interest in this topic. In particular,
R. Penrose proposed a generalization of the inverse of a non-singular matrix, as the
unique solution of a certain set of equations in 1955 [3]. This work inspired new stud-
ies on generalized inverses and began to attract the attention of many researchers. This
inverse is called the Moore–Penrose inverse in honor of the works of E. H. Moore and
R. Penrose.

Let C m×n be the set ofm×n complex matrices. For every A ∈ C m×n , the Moore–
Penrose inverse ofmatrix A is the uniquen×mmatrix A† with the followingproperties:

AA†A = A, A†AA† = A†,
(
AA†

)∗ = AA†,
(
A†A

)∗ = A†A, (1)

where A∗ denotes the conjugate transpose of A.
The Moore–Penrose inverse appears in many fields such as applied mathematics,

statistics, neural networks, machine learning, applied physics, control system analysis,
curve fitting, digital image restoration, numerical analysis, tensor computations and
the solution of system of equations (see [4, 5]). Up until now, there have been several
studies in different areas related to the Moore–Penrose inverse and its applications
(see [1, 6–14]). For example, Courrieu developed an algorithm based on a full rank
Cholesky factorization which allows for fast computation of Moore–Penrose inverse
of the matrices and fast solving of large least square systems, possibly with rank
deficient matrices [8]. Baksalary et al. examined some problems with the Moore–
Penrose inverse of the sum of two matrices, by combining various facts known in the
literature and using some properties of matrix inverses [7]. Sun et al. introduced the
Moore–Penrose inverse of tensors with the Einstein product, and the authors found
explicit formulas of the Moore–Penrose inverse of some block tensors [13]. Ma et
al. examined the perturbation theory for the Moore–Penrose inverse of tensor via
Einstein product by using derived representations of some tensor expressions involving
the Moore-Penrose inverse [14]. Radičić studied the Moore–Penrose inverse and the
group inverse of the k-circulant matrices whose elements are the binomial coefficients
[11]. Zhang et al. proposed the Zhang neural networks (ZNN) models for online time-
varying full-rank matrix Moore–Penrose inversion [12]. The authors presented the
feasibility and effectiveness of ZNN models for online time-varying full-rank matrix
Moore–Penrose inversion with the help of computer simulation results and application
to inverse kinematic control of redundant robot arms.

In recent years, there has been a huge interest of modern science in the application
of the Golden Section and Fibonacci numbers. The Fibonacci numbers, {Fn}∞n=0,
are the terms of the sequence {0, 1, 1, 2, 3, 5, . . .} wherein each term is the sum of
two consecutive terms, starting with the initial conditions F0 = 0 and F1 = 1. As
n → ∞, the ratio between successive Fibonacci numbers is called as golden ratio, τ =
1+√

5
2 = 1.618 . . ., which plays an important role in arts, architecture, engineering,

geometry, music, electrostatics, poetry, stock market trading and trigonometry [15].
Up until now, many researchers have studied the applications, generalizations and
relations with other disciplines of the Fibonacci and related integer sequences [16–
27]. For example, Falcón and Plaza proposed the k-Fibonacci numbers,

{
Fk,n

}∞
n=0,

by studying the recursive application of two geometrical transformations used in the
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well-known 4-triangle longest-edge (4TLE) partition [16]. Yazlik and Taskara defined
the generalized k-Horadam sequence,

{
Hk,n

}∞
n=0, and they obtained several identities

by using determinant [18].With a different perspective, Edson andYayenie introduced
the notable generalization of the Fibonacci sequence, biperiodic Fibonacci sequence,
which is generated by the recurrence relation qn = aqn−1 + qn−2 (when n is even)
or qn = bqn−1 + qn−2 (when n is odd), where a and b are nonzero real numbers
[19]. Moreover, the authors derived the extended Binet’s formula, generating function
and several identities of {qn}∞n=0. In a similar way, Bilgici presented the biperiodic
Lucas numbers which is generated by the recurrence relation ln = bln−1 + ln−2
(when n is even) or ln = aqn−1 + qn−2 (when n is odd), where a and b are nonzero
real numbers [21]. Moreover, he gave generating functions, the Binet formulas and
some special identities of {ln}∞n=0. Yazlık et al. illustrated a new generalization of the
Fibonacci and Lucas p-numbers, biperiodic Fibonacci and Lucas p-numbers [20].
The authors built up the tree diagrams for the biperiodic Fibonacci and Lucas p-
sequences, and they derived the recurrence relations of these sequences by using these
diagrams. Moreover they obtained the Binet formulas of the biperiodic Fibonacci and
Lucas p-sequences by using Vandermonde matrices. Edson et al. defined a further
generalization of the Fibonacci sequence, k-periodic Fibonacci sequence, which is
defined using a non-linear recurrence relation that depends on k real parameters, and
is an extension of the biperiodic Fibonacci sequence [24]. By analogy to the studies
[19, 21, 23] Tan and Leung proposed the generalized biperiodic Horadam sequence
and investigated some congruence properties of the generalized Horadam sequence
[22]. Throughout this paper, we call the generalized biperiodic Horadam sequence as
generalized conditional sequence.

Up to the present, several researchers have studied the Moore–Penrose inverse of
some matrices whose elements are the classical special number sequences (see [10,
28–30]). For example, Miladinovic and Stanimirovic studied the pseudoinverse of the
generalized singular Fibonacci matrix and they derived some combinatorial identities
by using generalized singular Fibonacci matrices [10]. Shen and He proposed the
Moore–Penrose inverse of the matrix whose nonzero entries are the classical Horadam
numbers [28].As a generalization of the studies [10, 28], Shen et al. studied theMoore–
Penrose inverse of the strictly lower triangular Toeplitz matrix and they derived a
convolution formula containing the Horadam numbers. Moreover, the authors derived
various combinatorial identities by using convolution formula [29].

In this paper, drawing inspiration from the previous works on the Moore–Penrose
inverse, we focus on the following topics in order to obtain novel results:

1. Constructing a singular matrix with generalized conditional sequences,
2. Establishing a new convolution formula with the help of generalized conditional

sequences,
3. Proving auxiliary identities in order to use the convolution formula effectively,
4. Obtaining the Moore–Penrose inverse of a singular matrix explicitly by using con-

volution formula,
5. Expressing the Moore–Penrose inverse of a singular matrix in the form of block

matrices,
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6. Providing more general results for different values of the initial conditions and the
coefficients of the generalized conditional sequence.

2 Preliminaries andmain results

In this section, we introduce some definitions and preliminary facts which are used in
this paper.

Definition 1 [22] For any arbitrary numbers s and t and nonzero real numbers a, b
and c, the generalized conditional sequence is defined by the recurrence relation

W (s,t)
n =

{
aW (s,t)

n−1 + cW (s,t)
n−2 , if n is even

bW (s,t)
n−1 + cW (s,t)

n−2 , if n is odd
, W (s,t)

0 = s, W (s,t)
1 = t, n � 2. (2)

It’s not difficult to see from the following table that the generalized conditional
sequence can be reduced infinite special number sequences for the special cases of
a, b, c, s and t .

a b c s t Generalized conditional sequence
a b c 0 1 Generalized conditional Fibonacci sequence
a b c 2 b Generalized conditional Lucas sequence
a b 1 0 1 Biperiodic Fibonacci sequence
a b 1 2 a Biperiodic Lucas sequence
a b 2 0 1 Biperiodic Jacobsthal sequence
a b 2 2 a Biperiodic Jacobsthal–Lucas sequence
k k 1 0 1 k-Fibonacci sequence
k k 1 2 k k-Lucas sequence
k k 2 0 1 k-Jacobsthal sequence
k k 2 2 k k-Jacobsthal–Lucas sequence
2 2 k 0 1 k-Pell sequence
2 2 k 2 2 k-Pell–Lucas sequence
2 2 1 0 1 Pell sequence
2 2 1 2 1 Pell–Lucas sequence
1 1 1 0 1 Fibonacci sequence
1 1 1 2 1 Lucas sequence
1 1 2 0 1 Jacobsthal sequence
1 1 2 2 1 Jacobsthal–Lucas sequence
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

The French mathematician Jacques–Marie Binet found an explicit formula of the
Fibonacci sequence in 1843 and it was called as Binet’s formula after this discovery.

The next definition explains generalized Binet formula of the sequence
{
W (s,t)

n

}∞
n=0

.
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Definition 2 [22] The Binet formula of the generalized conditional sequence is

W (s,t)
n = aξ(n+1)

(ab)� n
2 �
(
Dαn − Eβn) , (3)

where D = W (s,t)
1 − β

a W
(s,t)
0

α−β
, E = W (s,t)

1 − α
a W

(s,t)
0

α−β
, α and β are the zeros of the polynomial

x2 − abx − abc, that is, α = ab+√
a2b2+4abc
2 and β = ab−√

a2b2+4abc
2 . Moreover,

ξ(n) = n − 2
⌊ n
2

⌋
is the parity function, i.e., ξ(n) = 0 when n is even and ξ(n) = 1

when n is odd. Let assume� = a2b2+4abc 	= 0. Also we have α+β = ab, α−β =√
a2b2 + 4abc and αβ = −abc.

The following definition explains a lower triangular and strictly lower triangular
matrixW (r ,k)

n , whose nonzero elements are the generalized conditional sequence satis-
fyingW (s,t)

k+1 	= 0. The non-positive integer r indicates the number of the zero diagonals
including the main diagonal and below.

Definition 3 For any integers r and k satisfying r < 0 and k � 0, and the generalized

conditional sequence
{
W (s,t)

n

}
n∈N withW (s,t)

k+1 	= 0, then×nmatrixW (r ,k)
n =

[
ω

(r ,k)
i, j

]

is defined by

ω
(r ,k)
i, j =

⎧⎨
⎩
(
b
a

) ξ(i− j+k+r)
2 W (s,t)

i− j+r+k+1, if i − j + r � 0

0, if i − j + r < 0
. (4)

Due to the the specific structure of thematrixW (r ,k)
n , we can express it by the following

block matrix form

W
(r ,k)
n =

[
O(−r)×(n+r) O(−r)×(−r)

W
(k)
n+r O(n+r)×(−r)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(−r)×(n+r) O(−r)×(−r)(
b
a

) ξ(k+2)
2 W (s,t)

k+1 0 . . . 0
(
b
a

) ξ(k+3)
2 W (s,t)

k+2

(
b
a

) ξ(k+2)
2 W (s,t)

k+1 . . . 0 O(n+r)×(−r)

.

.

.
.
.
.

(
b
a

) ξ(k+n+r+1)
2 W (s,t)

k+n+r

(
b
a

) ξ(k+n+r)
2 W (s,t)

k+n+r−1 . . .
(
b
a

) ξ(k+2)
2 W (s,t)

k+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

where Op×q denotes the p × q zero matrix.

Example 1 The 5 × 5 generalized conditional matrix for (r , k) = (−2, 2) is equal to

W
(−2,2)
5 =

[
O2×3 O2×2

W
(2)
3 O3×2

]
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0

abt + bcs + ct 0 0 0 0√
b(cs(ab+c)+at(ab+2c))√

a
abt + bcs + ct 0 0 0

a2b2t + abc(bs + 3t) + c2(2bs + t)
√
b(cs(ab+c)+at(ab+2c))√

a
abt + bcs + ct 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The underlying idea in convolution is to combine a kernel list with consecutive sublists
of a list of data. Next definition explains the convolution formula.

Definition 4 [31] For any two arrays x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn},
the convolution of x and y is defined by

x�y =
n∑

i=1

xi yn−i+1. (6)

The next theorem describes a convolution formula which involves the generalized

conditional sequenceswith corresponding powers of

⎛
⎝−c

(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎠, wherem �

0 and W (s,t)
m+1 	= 0.

Throughout this paper, for the sake of simplicity, we will use the following notation

Con(r ,m) =
⎧⎨
⎩
(
b

a

) ξ(m)
2

W (s,t)
m+1, . . . ,

(
b

a

) ξ(m+r−2)
2

W (s,t)
m+r−1

⎫⎬
⎭

×

⎧⎪⎨
⎪⎩
1,

−c
( b
a

) ξ(m−1)
2 W (s,t)

m

( b
a

) ξ(m)
2 W (s,t)

m+1

, . . . ,

⎛
⎝−c

( b
a

) ξ(m−1)
2 W (s,t)

m

( b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎠

r−2
⎫⎪⎬
⎪⎭

.

Theorem 1 Let m, r be two integers with m � 0 and r � 2. If c 	= 0, W (s,t)
m+1 	= 0 and

α, β 	= −c
√
ab
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

, then we have

Con(r ,m) =

( b
a

) ξ(m)
2 W (s,t)

m+1 ×

⎛
⎜⎜⎜⎜⎝

(
b

a

) ξ(m−1)
2

W (s,t)
m

(
b

a

) ξ(m+r−1)
2

W (s,t)
m+r

−
(
b

a

) ξ(m)
2

W (s,t)
m+1

(
b

a

) ξ(m+r)
2

W (s,t)
m+r−1

⎞
⎟⎟⎟⎟⎠

( b
a

) ξ(m−1)
2 W (s,t)

m
( b
a

) ξ(m+1)
2 W (s,t)

m+2 −
(( b

a

) ξ(m)
2 W (s,t)

m+1

)2 . (7)
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Proof In a clear way, Eq. (7) hold forW (s,t)
m = 0. Hence, we take into account the case

W (s,t)
m 	= 0. By virtue of the Binet formula (3) and doing simple transformations, we

obtain

Con(r ,m) =
r−2∑
l=0

(
b

a

) ξ(l+m)
2

W (s,t)
l+m+1

⎛
⎜⎜⎝

−c
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎟⎟⎠

r−l−2

=
r−2∑
l=0

(
b

a

) ξ(l+m)
2 aξ(l+m+2)

(ab)�
l+m+1

2 �
(
Dαl+m+1 − Eβl+m+1

)
⎛
⎜⎜⎝

−c
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎟⎟⎠

r−l−2

=
r−2∑
l=0

1

(ab)
l+m
2

(
Dαl+m+1 − Eβl+m+1

)
⎛
⎜⎜⎝

−c
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎟⎟⎠

r−l−2

= Dαm+1

(ab)
m
2

⎛
⎜⎜⎝

−c
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎟⎟⎠

r−2

r−2∑
l=0

⎛
⎜⎜⎝

−α
(
b
a

) ξ(m)
2 W (s,t)

m+1

c
√
ab
(
b
a

) ξ(m−1)
2 W (s,t)

m

⎞
⎟⎟⎠

l

− Eβm+1

(ab)
m
2

⎛
⎜⎜⎝

−c
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎟⎟⎠

r−2

r−2∑
l=0

⎛
⎜⎜⎝

−β
(
b
a

) ξ(m)
2 W (s,t)

m+1

c
√
ab
(
b
a

) ξ(m−1)
2 W (s,t)

m

⎞
⎟⎟⎠

l

= Dαm+1

(ab)
m
2

⎛
⎜⎜⎝

−c
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎟⎟⎠

r−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
⎛
⎜⎝

−α
(
b
a

) ξ(m)
2 W (s,t)

m+1

c
√
ab
(
b
a

) ξ(m−1)
2 W (s,t)

m

⎞
⎟⎠
r−1

1 + α
(
b
a

) ξ(m)
2 W (s,t)

m+1

c
√
ab
(
b
a

) ξ(m−1)
2 W (s,t)

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− Eβm+1

(ab)
m
2

⎛
⎜⎜⎝

−c
(
b
a

) ξ(m−1)
2 W (s,t)

m

(
b
a

) ξ(m)
2 W (s,t)

m+1

⎞
⎟⎟⎠

r−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
⎛
⎜⎝

−β
(
b
a

) ξ(m)
2 W (s,t)

m+1

c
√
ab
(
b
a

) ξ(m−1)
2 W (s,t)

m

⎞
⎟⎠
r−1

1 + β
(
b
a

) ξ(m)
2 W (s,t)

m+1

c
√
ab
(
b
a

) ξ(m−1)
2 W (s,t)

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)r−2Dαm+1√ab

(ab)
m
2

(
c
(
b
a

) ξ(m−1)
2 W (s,t)

m

)r−1

((
b
a

) ξ(m)
2 W (s,t)

m+1

)r−2

+ Dαm+r
√
ab

(ab)
m
2
(√

ab
)r−1

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

c
√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m

+ β

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝c

√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m + α

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

×
⎛
⎝c

√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m + β

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)r−2Eβm+1√ab

(ab)
m
2

(
c
(
b
a

) ξ(m−1)
2 W (s,t)

m

)r−1

((
b
a

) ξ(m)
2 W (s,t)

m+1

)r−2

+ Eβm+r
√
ab

(ab)
m
2
(√

ab
)r−1

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

c
√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m

+ α

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝c

√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m + α

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

×
⎛
⎝c

√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m + β

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By using identities αβ = −abc and α+β = ab, we obtain denumerator ofCon(r ,m)
as

Denum(Con(r ,m)) =
⎛
⎝c

√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m + α

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

×
⎛
⎝c

√
ab

(
b

a

) ξ(m−1)
2

W (s,t)
m + β

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

= abc

⎛
⎜⎝
(
b

a

) ξ(m−1)
2

W (s,t)
m

(
b

a

) ξ(m+1)
2

W (s,t)
m+2 −

⎛
⎝
(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠
2
⎞
⎟⎠ .

After some algebraic operations, the numerator of Con(r ,m) can be transformed into
the following form:

Num (Con(r ,m)) =
(−1)r−2ab

(
Dαm+1 − Eβm+1

)

(ab)
m
2

(
c
(
b
a

) ξ(m−1)
2 W (s,t)

m

)r

((
b
a

) ξ(m)
2 W (s,t)

m+1

)r−2
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+ 1

(ab)
m+r−1

2

(
Dαm+r − Eβm+r )

⎛
⎝abc

(
b

a

) ξ(m−1)
2

W (s,t)
m

(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

+ (−1)r−2(−abc)
(
Dαm − Eβm)

(ab)
m−1
2

(
c
(
b
a

) ξ(m−1)
2 W (s,t)

m

)r−1

((
b
a

) ξ(m)
2 W (s,t)

m+1

)r−3

+ (−abc)

(ab)
m+r−2

2

(
Dαm+r−1 − Eβm+r−1

)( b

a

) ξ(m)
2

W (s,t)
m+1.

Taking into account theBinet formula (3), Num (Con(r ,m)) andDenum (Con(r ,m)),
we get

Con(r ,m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)r−2ab

(
b

a

) ξ(m)
2

W (s,t)
m+1

(
c
( b
a

) ξ(m−1)
2 W (s,t)

m

)r

(( b
a

) ξ(m)
2 W (s,t)

m+1

)r−2

+ (−1)r−2(−abc)

(
b

a

) ξ(m−1)
2

W (s,t)
m

(
c
( b
a

) ξ(m−1)
2 W (s,t)

m

)r−1

(( b
a

) ξ(m)
2 W (s,t)

m+1

)r−3

+ abc

(
b

a

) ξ(m−1)
2

W (s,t)
m

(
b

a

) ξ(m)
2

W (s,t)
m+1

(
b

a

) ξ(m+r−1)
2

W (s,t)
m+r

− abc

(
b

a

) ξ(m+r−2)
2

W (s,t)
m+r−1

⎛
⎝
(
b

a

) ξ(m)
2

W (s,t)
m+1

⎞
⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

abc

(( b
a

) ξ(m−1)
2 W (s,t)

m
( b
a

) ξ(m+1)
2 W (s,t)

m+2 −
(( b

a

) ξ(m)
2 W (s,t)

m+1

)2
) .

By simplifying the above equation, we obtain

Con(r ,m) =

( b
a

) ξ(m)
2 W (s,t)

m+1 ×

⎛
⎜⎜⎜⎜⎝

(
b

a

) ξ(m−1)
2

W (s,t)
m

(
b

a

) ξ(m+r−1)
2

W (s,t)
m+r

−
(
b

a

) ξ(m)
2

W (s,t)
m+1

(
b

a

) ξ(m+r)
2

W (s,t)
m+r−1

⎞
⎟⎟⎟⎟⎠

( b
a

) ξ(m−1)
2 W (s,t)

m
( b
a

) ξ(m+1)
2 W (s,t)

m+2 −
(( b

a

) ξ(m)
2 W (s,t)

m+1

)2 .

Therefore, the proof is completed. 
�
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Lemma 1 Let r be an arbitrary positive integer and W (s,t)
k+1 	= 0. If α =

−c
√
ab
(
b
a

) ξ(k−1)
2 W (s,t)

k

(
b
a

) ξ(k)
2 W (s,t)

k+1

or β = −c
√
ab
(
b
a

) ξ(k−1)
2 W (s,t)

k

(
b
a

) ξ(k)
2 W (s,t)

k+1

, then we get

(
b

a

) ξ(k)
2

W (s,t)
k+1

(
b

a

) ξ(k+r)
2

W (s,t)
k+r+1−

(
b

a

) ξ(k+1)
2

W (s,t)
k+2

(
b

a

) ξ(k+r−1)
2

W (s,t)
k+r = 0. (8)

Proof Clearly, equality (8) is valid for c = 0. So, we consider the case c 	= 0. If

α = −c
√
ab
(
b
a

) ξ(k−1)
2 W (s,t)

k

(
b
a

) ξ(k)
2 W (s,t)

k+1

, then we get

ab + √
a2b2 + 4abc

2
= −c

√
ab
( b
a

) ξ(k−1)
2 W (s,t)

k
( b
a

) ξ(k)
2 W (s,t)

k+1

.

After some algebraic operations, we have

1 =
( b
a

) ξ(k−1)
2 W (s,t)

k

(
c
( b
a

) ξ(k−1)
2 W (s,t)

k + √
ab
( b
a

) ξ(k)
2 W (s,t)

k+1

)

(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

=
( b
a

) ξ(k−1)
2 W (s,t)

k

( b
a

) ξ(k+1)
2 W (s,t)

k+2(( b
a

) ξ(k)
2 W (s,t)

k+1

)2 .

Thus, we obtain
( b
a

) ξ(k−1)
2 W (s,t)

k

( b
a

) ξ(k+1)
2 W (s,t)

k+2 =
(( b

a

) ξ(k)
2 W (s,t)

k+1

)2

. On the other

hand, by virtue of the Binet formula (3), we have

(
b

a

) ξ(k−1)
2

W (s,t)
k

(
b

a

) ξ(k+1)
2

W (s,t)
k+2 −

⎛
⎝
(
b

a

) ξ(k)
2

W (s,t)
k+1

⎞
⎠

2

= (−c)k
(−at2 + bs(at + cs)

)

a
. (9)

Furthermore, with the help of (9), we obtain

(
b

a

) ξ(k)
2

W (s,t)
k+1

(
b

a

) ξ(k+r)
2

W (s,t)
k+r+1 −

(
b

a

) ξ(k+1)
2

W (s,t)
k+2

(
b

a

) ξ(k+r−1)
2

W (s,t)
k+r
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= DE (−c)k abc (α − β)
(
αr−1 − βr−1

)

(ab)
r
2

= (−c)k+1 (−at2 + bs (cs + at)
)

√
a2b2 + 4abc

αr−1 − βr−1

(ab)
r
2

= 0.

In a similarway,wecanverify that the equality (8) is valid forβ = −c
√
ab
(
b
a

) ξ(k−1)
2 W (s,t)

k

(
b
a

) ξ(k)
2 W (s,t)

k+1

.

Hence, the proof is completed. 
�

Lemma 2 Let
{
W (s,t)

n

}∞
n=0

be thegeneralized conditional sequence satisfyingW (s,t)
k+1 	=

0. Then the inverse of the matrix W (k)
n , 	n = [

φi j
]
n×n, is defined by

φi, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)kck+1
(−at2+bs(at+cs)

)

a

((
b
a

) ξ(k)
2 W (s,t)

k+1

)3

⎛
⎝−c

(
b
a

) ξ(k−1)
2 W (s,t)

k

(
b
a

) ξ(k)
2 W (s,t)

k+1

⎞
⎠

i− j−2

, i > j + 1,

−
(
b
a

) ξ(k+1)
2 W (s,t)

k+2((
b
a

) ξ(k)
2 W (s,t)

k+1

)2 , i = j + 1,

1
(
b
a

) ξ(k)
2 W (s,t)

k+1

, i = j

0, otherwise

, (10)

where k is an arbitrary integer satisfying 0 � k < n.

Proof Let us denote the matrices W (k)
n = [

ωi j
]
n×n and Xn = [

xi j
]
n×n = W (k)

n 	n .
Due to the structure of the matrices, we can observe that xi, j = 0 for i < j .

For i = j , we obtain

xi, j = ωi,iφi,i =
(
b

a

) ξ(k)
2

W (s,t)
k+1

1
( b
a

) ξ(k)
2 W (s,t)

k+1

= 1.


�
For i = j + 1, we obtain

xi, j=ω j+1, jφ j, j + ω j+1, j+1φ j+1, j

=
(
b

a

) ξ(k+1)
2

W (s,t)
k+2

1
( b
a

) ξ(k)
2 W (s,t)

k+1

−
(
b

a

) ξ(k)
2

W (s,t)
k+1

⎛
⎜⎜⎜⎝

( b
a

) ξ(k+1)
2 W (s,t)

k+2(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

⎞
⎟⎟⎟⎠=0.
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For the last case, i > j , we obtain

xi, j = ωi, jφ j, j + ωi, j+1φ j+1, j +
i− j∑
l=2

ωi,i−l+2φi−l+2, j

= ωi, j

( b
a

) ξ(k)
2 W (s,t)

k+1

−
( b
a

) ξ(k+1)
2 W (s,t)

k+2(( b
a

) ξ(k)
2 W (s,t)

k+1

)2ωi, j+1

+ (−1)kck+1
(−at2 + bs(at + cs)

)

a

(( b
a

) ξ(k)
2 W (s,t)

k+1

)3

⎡
⎢⎣

i− j∑
l=2

ωi,i−l+2

⎛
⎝−c

( b
a

) ξ(k−1)
2 W (s,t)

k
( b
a

) ξ(k)
2 W (s,t)

k+1

⎞
⎠

i− j−l
⎤
⎥⎦ .

By taking r = i − j , we can obtain ωi, j = ( b
a

) ξ(k+r)
2 W (s,t)

k+r+1 and ωi, j+1 =
( b
a

) ξ(k+r−1)
2 W (s,t)

k+r . Therefore, we get

xi, j =
( b
a

) ξ(k+r)
2 W (s,t)

k+r+1
( b
a

) ξ(k)
2 W (s,t)

k+1

−
( b
a

) ξ(k+1)
2 W (s,t)

k+2(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

(
b

a

) ξ(k+r−1)
2

W (s,t)
k+r

+ (−1)kck+1
(−at2 + bs(at + cs)

)

a

(( b
a

) ξ(k)
2 W (s,t)

k+1

)3

⎡
⎢⎣

r∑
l=2

(
b

a

) ξ(l+k−2)
2

W (s,t)
l+k−1

⎛
⎝−c

( b
a

) ξ(k−1)
2 W (s,t)

k
( b
a

) ξ(k)
2 W (s,t)

k+1

⎞
⎠

r−l
⎤
⎥⎦

=
( b
a

) ξ(k)
2 W (s,t)

k+1

( b
a

) ξ(k+r)
2 W (s,t)

k+r+1 − ( b
a

) ξ(k+1)
2 W (s,t)

k+2

( b
a

) ξ(k+r−1)
2 W (s,t)

k+r(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

+ (−1)kck+1
(−at2 + bs(at + cs)

)

a

(( b
a

) ξ(k)
2 W (s,t)

k+1

)3 Con(r , k).
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By virtue of Theorem 1, we obtain

xi, j =
( b
a

) ξ(k)
2 W (s,t)

k+1

( b
a

) ξ(k+r)
2 W (s,t)

k+r+1 − ( b
a

) ξ(k+1)
2 W (s,t)

k+2

( b
a

) ξ(k+r−1)
2 W (s,t)

k+r(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

+ (−1)kck+1
(−at2 + bs(at + cs)

)

a

(( b
a

) ξ(k)
2 W (s,t)

k+1

)3

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( b
a

) ξ(k)
2 W (s,t)

k+1 ×

⎛
⎜⎜⎜⎜⎝

(
b

a

) ξ(k−1)
2

W (s,t)
k

(
b

a

) ξ(k+r−1)
2

W (s,t)
k+r

−
(
b

a

) ξ(k)
2

W (s,t)
k+1

(
b

a

) ξ(k+r)
2

W (s,t)
k+r−1

⎞
⎟⎟⎟⎟⎠

( b
a

) ξ(k−1)
2 W (s,t)

k

( b
a

) ξ(k+1)
2 W (s,t)

k+2 −
(( b

a

) ξ(k)
2 W (s,t)

k+1

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
( b
a

) ξ(k)
2 W (s,t)

k+1

( b
a

) ξ(k+r)
2 W (s,t)

k+r+1 − ( b
a

) ξ(k+1)
2 W (s,t)

k+2

( b
a

) ξ(k+r−1)
2 W (s,t)

k+r(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

+
c

(( b
a

) ξ(k−1)
2 W (s,t)

k

( b
a

) ξ(k+r−1)
2 W (s,t)

k+r − ( b
a

) ξ(k)
2 W (s,t)

k+1

( b
a

) ξ(k+r−2)
2 W (s,t)

k+r−1

)

(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

=

(
b

a

) ξ(k)
2

W (s,t)
k+1

⎛
⎝
(
b

a

) ξ(k+r)
2 (

W (s,t)
k+r+1 − cW (s,t)

k+r−1

)⎞⎠

−
(
b

a

) ξ(k+r−1)
2

W (s,t)
k+r

⎛
⎝
(
b

a

) ξ(k+1)
2 (

W (s,t)
k+2 − cW (s,t)

k

)
⎞
⎠

(( b
a

) ξ(k)
2 W (s,t)

k+1

)2
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=

(
b

a

) ξ(k)
2
(
b

a

) ξ(k+r)
2

(
b

a

)ξ(k+r+1)

aW (s,t)
k+1 W

(s,t)
k+r

−
(
b

a

)ξ(k) (b

a

) ξ(k+r−1)
2

(
b

a

) ξ(k+1)
2

aW (s,t)
k+1 W

(s,t)
k+r

(( b
a

) ξ(k)
2 W (s,t)

k+1

)2

= 0.

Therefore, we prove that Xn is the n × n identity matrix. In a similar way, we can
verify that 	nW

(k)
n = Xn . So, the proof is completed.

Example 2 For n = 5 and k = 0, we get

W (0)
5 	5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t 0 0 0 0√
b(at+cs)√

a
t 0 0 0

abt + bcs + ct
√
b(at+cs)√

a
t 0 0√

b(cs(ab+c)+at(ab+2c))√
a

abt + bcs + ct
√
b(at+cs)√

a
t 0

a2b2t + abc(bs + 3t) + c2(2bs + t)
√
b(cs(ab+c)+at(ab+2c))√

a
abt + bcs + ct

√
b(at+cs)√

a
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
t 0 0 0 0

−
√
b(at+cs)√

at2
1
t 0 0 0

c
(
bs(at+cs)−at2

)
at3

−
√
b(at+cs)√

at2
1
t 0 0

−
√
bc2s

(
bs(at+cs)−at2

)
a3/2 t4

c
(
bs(at+cs)−at2

)
at3

−
√
b(at+cs)√

at2
1
t 0

bc3s2
(
bs(at+cs)−at2

)
a2 t5

−
√
bc2s

(
bs(at+cs)−at2

)
a3/2 t4

c
(
bs(at+cs)−at2

)
at3

−
√
b(at+cs)√

at2
1
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

= X5.

If we take a = b = A, c = B, s = a and t = b in Lemma 2, we obtain the inverse
of the matrix U (k)

n whose elements are the classical Horadam numbers.

Corollary 1 [29] Let
{
U (a,b)
n

}
n∈N be the Horadam sequence satisfying U (a,b)

k+1 	= 0.

Then the inverse of the matrix U (k)
n is the matrixRn = [

ri, j
]
n×n defined by

ri, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k Bk+1
(
a2B+abA−b2

)
(
U (a,b)
k+1

)3
(

−BU (a,b)
k

U (a,b)
k+1

)i− j−2

, if i > j + 1,

− U (a,b)
k+2(

U (a,b)
k+1

)2 , if i = j + 1,

1
U (a,b)
k+1 ,

if i = j,

0, otherwise,
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where k is an arbitrary integer satisfying 0 � k < n.

Theorem 2 For any integers r and k satisfying r < 0 and k � 0, and the generalized

conditional sequence
{
W (s,t)

n

}
n∈N with W (s,t)

k+1 	= 0, the Moore–Penrose inverse of the

matrix W (r ,k)
n is given by the following block matrix form

(
W (r ,k)

n

)† =
[
O(n+r)×(−r)

(
W (k)

n+r

)−1

O(−r)×(−r) O(−r)×(n+r)

]
.

Proof As the blocks are null or invertible, by virtue of the Lemma 2, the proof is
obvious so we omit it. 
�
Example 3 The Moore–Penrose inverse of the 5 × 5 generalized conditional matrix
for (r , k) = (−2, 2) is equal to

(
W (−2,2)

5

)† =
[
O3×2

(
W (2)

3

)−1

O2×2 O2×3

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
abt+bcs+ct 0 0

0 0 −
√
b(cs(ab+c)+at(ab+2c))√

a(abt+bcs+ct)2
1

abt+bcs+ct 0

0 0
c3
(
bs(at+cs)−at2

)
a(abt+bcs+ct)3

−
√
b(cs(ab+c)+at(ab+2c))√

a(abt+bcs+ct)2
1

abt+bcs+ct

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

If we take a = b = A, c = B, s = a and t = b in Theorem 2, we obtain
the Moore–Penrose inverse of the matrix U (s,k)

n whose elements are the classical
Horadam numbers.

Corollary 2 [29] Let s < 0, k � 0 be arbitrary integers, and
{
U (a,b)
n

}
n∈N be the

Horadam sequence satisfying U (a,b)
k+1 	= 0. Then the Moore–Penrose inverse of the

matrix U (s,k)
n is the n × n block matrixQn given by

Qn =
(
O(n+s)×(−s) Rn+s

O(−s)×(−s) O(−s)×(n+s)

)
,

where Rn+s = [
ri, j

]
is an (n + s) × (n + s) matrix given by

ri, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k Bk+1
(
a2B+abA−b2

)
(
U (a,b)
k+1

)3
(

−BU (a,b)
k

U (a,b)
k+1

)i− j−2

if i > j + 1,

− U (a,b)
k+2(

U (a,b)
k+1

)2 , if i = j + 1,

1
U (a,b)
k+1 ,

if i = j,

0, otherwise.
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3 Conclusion and discussions

The topic of generalized inverses has become one of the most important and the most
interesting research fields of applied and computational mathematics in recent years.
One of the most important inversion method is the Moore–Penrose inverse, which has
been actively studied by researchers for years [4, 5, 7, 8, 10, 11, 13, 14, 28, 29, 31].
Although there are many methods for calculating the Moore–Penrose inverse, it is
commonly used for Singular Value Decomposition (SVD) when performing compu-
tations. Despite this method is robust, it cannot compute the results faster when the
matrix size is large. In this paper, we obtain the Moore–Penrose inverse of a singular
matrix whose elements are the generalized conditional sequence by using convolution
formula. Since the results are obtained with analytical methods, it reduces the compu-
tational costs compared to othermethods.Moreover, we give some important identities
in order to find the Moore–Penrose inverse of the matrix W (r ,k)

n . For special values
of a, b, c, s and t , our results can be reduced into the works [29, 31]. Thus we pro-
vide more general results compared to the previous studies. To sum up, the results we
have presented have eliminated the difficulties in computation of the Moore–Penrose
inverse of the singular matrices.

Funding Open access funding provided by the Scientific and Technological Research Council of Türkiye
(TÜBİTAK).
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