
Journal of Applied Mathematics and Computing (2024) 70:73–102
https://doi.org/10.1007/s12190-023-01934-z

ORIG INAL RESEARCH

Stability analysis of Filippov prey–predator model with fear
effect and prey refuge

Soliman A. A. Hamdallah1 · Ayman A. Arafa2,3

Received: 7 August 2023 / Revised: 10 October 2023 / Accepted: 6 November 2023 /
Published online: 13 December 2023
© The Author(s) 2023

Abstract
Mathematical ecosystems play a crucial role in our comprehension and conservation
of ecology. Within these ecosystems, prey exhibits protective instincts that compel
refuging behaviors to avoid predation risk. When the ratio of prey to predators falls
below a threshold, prey seeks refuge. However, when prey is abundant relative to
predators, these protective instincts are overridden as prey ventures out to forage.
Therefore, this study develops a Filippov prey–predator model with fear effect on prey
and switching of prey refuge behavior based on the ratio of prey to predators.Analytical
and numerical approaches are used to address the dynamic behaviors, bifurcation
sets, existence, and stability of various equilibria in this model. Additionally, the
regions of sliding and crossing segments are analyzed. The bifurcation sets of pseudo-
equilibrium and local and global sliding bifurcations are investigated. The numerical
simulations are conducted to investigate the interplay between fear factor and other
relevant parameters within the Filippov model, such as the threshold ratio and prey
refuge. These investigations shed light on the influence of them in the model. The
results indicate that increasing the fear factor results in a decrease in both prey and
predator densities, thereby changing the behavior of the dynamics from a limit cycle
oscillation to a stable state and vice versa. Notably, despite these population changes,
neither species faces complete extinction.
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1 Introduction

Ecology, in essence, encompasses the scientific exploration and aesthetic examination
of the intricate interplay between organisms and their environments. It encompasses
not only the organisms themselves but also the communities they form and the nonliv-
ing constituents of their environment, all engaged in dynamic interactions. Throughout
history, the relationship between predators and their prey has held a prominent position
within the realm of ecology and mathematical ecology, owing to its universal signif-
icance [1–3]. The interaction between these two entities serves as a pivotal aspect of
population dynamics.

In nearly all vertebrates, the perception of predation risk triggers a range of anti-
predator responses, such as physiological adaptations, foraging behaviors, changes
in habitat usage, and vigilance [4–11]. For instance, birds may abandon their nests
and leave their young unprotected when they sense danger, leading to a temporary
increase in survival probability but potentially causing long-term consequences for the
population [4]. In 2011, Zanette et al. [12] performed a field experiment where they
manipulated predation risk in song sparrow populations by playing predator sounds
near some nesting sites but not others. The researchers ensured that the direct killing of
sparrows was prevented so that any effects were solely from fear. They found that the
perceived threat of predators, even without direct attacks, led song sparrow females
to produce 40% fewer offspring. Specifically, fearful females laid fewer eggs, had
lower hatching rates, and had more baby sparrow deaths in the nests. Scared parent
birds fed their young less, resulting in weaker and more vulnerable baby birds. This
dramatic effect on demography has been supported by correlational evidence in other
hares, birds, dugongs, snowshoe and elk [13–17]. Mathematically, Wang et al. [18]
delved into the intriguing role of fear in predator–prey relationships. They crafted
a model where fear was represented as a decreasing function of fear parameter and
predator biomass. Their analysis revealed that intense fear can stabilize the predator–
prey system by eliminating recurring patterns, while low fear levels can cause periodic
oscillations through a phenomenon called subcritical Hopf bifurcations, leading to
dual stability. This pioneering work has inspired further research into fear’s role in
various ecological systems [19–21]. Thanks to these previous works, we introduce the
following model

FS1(x, y) :

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= r x(t)

(
1

1 + ϕy(t)
− x(t)

k

)

− μx(t)y(t)

αx(t) + β y(t) + γ
,

dy

dt
= ημx(t)y(t)

αx(t) + β y(t) + γ
− δy(t),

(1)

where x(t) denotes the prey population at time t ≥ 0 and y(t) denotes the predator
population at time t ≥ 0. r > 0 is the intrinsic growth rate of the prey,ϕ > 0 represents
the degree of fear level induced by predator, k > 0 is the carrying capacity of the prey,
μ > 0 is the maximum predation rate, α > 0 is the abundance of prey, β > 0 be
interference of predator, γ > 0 is the saturation constant for Beddington–DeAngelis
(BD) type functional response [22–25], η ∈ (0, 1] denotes the conversion predator
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rate and δ > 0 is the death rate of predator. While the expression 1
1+ϕy(t) represents

the cost associated with anti-predator defence triggered by fear and μx(t)y(t)
αx(t)+β y(t)+γ

is
the BD functional response [22, 23].

The fear-induced refuge is a captivating and vital element acquired by prey popula-
tions within an ecological community, exerting a profound influence on the dynamics
of food web systems and playing a pivotal role in maintaining the delicate ecological
balance between prey and predator. The significance of refuge was initially demon-
strated by Gause [26] through his experiments involving the protozoan organisms
Paramecium and Didinium. Recent years have seen numerous researchers delve into
mathematical models that incorporate the impact of prey refuge [27–30]. Wang et al.
[31] conducted a comprehensive investigation, both analytically and numerically, to
explore the impacts of anti-predator behavior arising from fear of predators and prey
refuge. Prey refuges typically come in two forms: either the amount of refuge scales
with prey population size, or there is a fixed maximum capacity [31–37]. For our
model, we consider the first type, specifically, if m (where 0 ≤ m < 1) represents the
fixed maximum refuge availability for prey. Then model (1) can be written to include
this as:

FS2 (x, y) :

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= r x(t)

(
1

1 + ϕy(t)
− x(t)

k

)

− μ(1 − m)x(t)y(t)

α(1 − m)x(t) + βy(t) + γ
− νx(t),

dy

dt
= ημ(1 − m)x(t)y(t)

α(1 − m)x(t) + βy(t) + γ
− δy(t),

(2)

where ν is the migration rate of prey due to fear of predator risk [38].
In these models, the response of prey to fear is a focal point.When prey experiences

fear, it elicits various reactions, including seeking refuge or potentially migrating,
even in the presence of relatively mild fear. However, this response is not constant;
the prey’s inclination to seek refuge is triggered predominantly when the fear factor
reaches significant levels. For instance, in the case of elk, they exhibit this behavior
by seeking refuge in forest cover when wolf packs are numerous. Conversely, when
wolf populations decline, they tend to forage more openly in grasslands [39–41].
These patterns are underpinned by the innate protective instincts of prey, which play
a crucial role in mitigating predation risks. When the prey-to-predator ratio is low,
these protective instincts drive prey to employ refuge-seeking as a defensive strategy.
Conversely, in situations with a high prey-to-predator ratio, these instincts stimulate
active foraging behavior among prey. Inspired by thismotivation,we present a Filippov
model for predator–prey interactions, incorporating the influence of fear on prey and
switching of prey refuge upon the prey-to-predator ratio, denoted as x

y . It is assumed
that prey seek refuge when the ratio falls below a certain threshold, that is x

y < ζ .
However, if the ratio exceeds the threshold, refuge utilization is forbidden, that is
x
y < ζ . By elucidating these dynamics and highlighting the importance of fear and
refuge effects, our research aims to contribute to the broader understanding of the
complexities involved in prey-predator interactions within Filippov systems [35, 36,
42–46]. We consider the following Filippov system:
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Ẋ(t) =
{
FS1(x, y), (x, y)∈ S1,
FS2(x, y), (x, y)∈ S2,

(3)

where

FS1(x, y) =
(
r x(t)

(
1

1+ϕy(t) − x(t)
k

)
− μx(t)y(t)

αx(t)+β y(t)+γ
ημx(t)y(t)

αx(t)+β y(t)+γ
− δy(t)

)

, (4)

FS2(x, y) =
(
r x(t)

(
1

1+ϕy(t) − x(t)
k

)
− μ(1−m)x(t)y(t)

α(1−m)x(t)+β y(t)+γ
− νx(t)

ημ(1−m)x(t)y(t)
α(1−m)x(t)+β y(t)+γ

− δy(t)

)

. (5)

S1 = {X ∈ R
2+|B(x) > 0}, S2 = {X ∈ R

2+|B(x) < 0}
and 
 = {X ∈ R

2+| B(X) = 0}, with B(X) = x − ζ y.

The non-intersecting areas S1 and S2 are partitioned by a switching line
 in such away
that S1∪
∪S2 = R

2+.By scrutinizing these underlying assumptions and investigating
the dynamics inherent in our proposedmodel, our objective is to elucidate the complex
interplay between various parameters on the dynamics of predator–prey relationships.
This endeavor represents a significant contribution to the comprehension of ecological
systems. Furthermore, we will explore the impact of altering parameter values, such
as the fear factor, prey refuge availability, and the ratio threshold, on the behavior of
the Filippov model (3), elucidating how these changes can potentially shift the model
between stable and unstable states, or vice versa.

The subsequent sections of this paper are structured as follows. In Sect. 2, we delve
into the analysis of the dynamics of the Filippov subsystems, and we also examine
the local stability of the equilibria. Section3 is dedicated to investigating the sliding
region and the sliding mode dynamics on the discontinuity surface 
. For a compre-
hensive understanding for the Filippov model, local and global sliding bifurcations
are investigated through numerical simulations in Sect. 4. Finally in the last section,
we present our concluding remarks.

2 Basic properties and dynamics of the subsystems S1, S2

In this section, we examine the equilibria of the system (3) and identify the parameter
values that guarantee the stability of the subsystems. It is evident that system (3)
possesses two distinct structures, one without a refuge (4) and another with a refuge
that provides protection for the prey (5). An equilibrium E of system (3) that satisfies
FS1(E) = 0, B(E) > 0 or FS2(E) = 0, B(E) < 0 is called a regular equilibrium
[47, 48]. Moreover, it is called virtual equilibrium if FS1(E) = 0, B(E) < 0 or
FS2(E) = 0, B(E) > 0.
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2.1 Dynamics of the subsystem S1

The equilibria of subsystem S1 (4) can be expressed by solving the following equa-
tions:

⎧
⎪⎪⎨

⎪⎪⎩

r x(t)

(
1

1 + ϕy(t)
− x(t)

k

)

− μx(t)y(t)

αx(t) + β y(t) + γ
= 0,

ημx(t)y(t)

αx(t) + β y(t) + γ
− δy(t) = 0,

(6)

then we see that the system has the following equilibria:

(a) The trivial equilibrium E0
S1

(0, 0).

(b) The axil equilibrium E1
S1

(k, 0) and always regular.
(c) The interior equilibria are the intersection points of the system (6) in the interior

of the first quadrant. So, from the second equation of (6), we get:

y∗
S1 = x∗

S1

βδ
(ημ − αδ) − γ

β
.

Moreover, from the first equation of (6), we have

r

(
1

1 + ϕy∗
S1

− x∗
S1

k

)

= μy∗
S1

αx∗
S1

+ β y∗
S1

+ γ
,

then

P0(y
∗
S1)

2 + P1y
∗
S1 + P2 = 0,

y∗
S1 =

−P1 ±
√

P2
1 − 4P0P2

2P0
, (7)

where P0 = (rβx∗
S1

+ kμ)ϕ, P1 = r x∗
S1

(
β + ϕ(αx∗

S1
+ γ )

)
− k(rβ −μ), P2 =

−r(k − x∗
S1

)(αx∗
S1

+ γ ). So, the interior equilibria of the system (6) are the inter-
section points of the following two nullclines.

y∗
S1 = x∗

S1

βδ
(ημ − αδ) − γ

β
, (8)

y∗
S1 =

−P1 +
√

P2
1 − 4P0P2

2P0
. (9)

We take the positive square root in the Eq. (7), because P2
1 − P0P2 is nonnegative,

and if we take the negative root then y∗
S1

< 0, and hence any branch in the positive
quadrant does not appear. The first nullcline (8) is a line and it lies on the first
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quadrant of the x − y plane for ημ − αδ > 0. The second nullcline (9) intersects

the positive x−axis at (k, 0) and positive y−axis at

(

0, rβ−μ+
√

(rβ−μ)2+4rγμϕ

2μϕ

)

.

Therefore we conclude that there is a unique interior point in the first quadrant if
k ≥ k∗,where k∗ = γ δ/(ημ−αδ).Moreover, it is regular if ζ(ημ−αδ) > βδ and
x∗
S1

>
γζδ

ζ(ημ−αδ)−βδ
.Moreover, there are not any interior points in the first quadrant

if k < k∗. This suggests that a low carrying capacity k for the prey population may
result in the extinction of the predator species.

Examining the Jacobian matrix at all the equilibria yields straightforward results:

Theorem 1 1. The trivial equilibrium E0
S1

is a saddle node.

2. The axil equilibrium E1
S1

is stable node if k(ημ − αδ) < γ δ and it is saddle node
if k(ημ − αδ) > γ δ.

3. The interior equilibrium E∗
S1

is locally stable (unstable) if trac(JE∗
S1

) <

0(trac(JE∗
S1

) > 0).

Proof The Jacobian matrix of subsystem S1 (4) can be written as

J =
⎛

⎝
−2r x
k − μy(β y+γ )

(αx+β y+γ )2
+ r

1+ϕy −x
(

μ(αx+γ )

(αx+β y+γ )2
+ rϕ

(1+ϕy)2

)

ημy(β y+γ )

(αx+β y+γ )2
−δ + ημx(αx+γ )

(αx+β y+γ )2

⎞

⎠ . (10)

1. The eigenvalues of the subsystem S1 (4) evaluated at E0
S1

equal λ1 = r > 0 and
λ2 = −δ < 0. Therefore it is a saddle node.

2. The eigenvalues of the subsystem S1 (4) evaluated at E1
S1

equal λ1 = −r < 0

and λ2 = −δ + ημk
αk+γ

. Therefore, if k(ημ − αδ) < γ δ, then λ2 < 0. That means

the axil equilibrium E1
S1

is stable. On the other hand, if k(ημ − αδ) > γ δ, then

λ2 > 0. Therefore, the equilibrium E1
S1

is saddle node.
3. Let H(x, y) = xh(x, y) and G(x, y) = yg(x, y) where

h(x, y) = r

(
1

1 + ϕy
− x

k

)

− μy

αx + β y + γ
,

g(x, y) = ημx

αx + β y + γ
− δ.

(11)

Then we can write the Jacobian matrix (10) as

JE∗
S1

=
(
Hx Hy

Gx Gy

)

=
(
xhx xhy

ygx ygy

)

. (12)

If dy(h)

dx and dy(g)

dx refer to the gradients of the tangents of the two nullclines (11) at
the interior equilibrium E∗

S1
, then using implicit function theorem we get

det(JE∗
S1

) =
[

xyhygy

(
dy(g)

dx
− dy(h)

dx

)]

.
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Fig. 1 Phase portraits of the subsystem S1 (4) with different values of α: a α = 18, b α = 25, c α = 27.6.
Blue curves refer to prey nullcline and pink lines refer to predator nullcline. Black dot denotes E0

S1
, green

dot denotes E1
S1
, yellow dot denotes E∗

S1
and the other parameters are k = 7, r = 1, ϕ = 2.3, μ = 2, β =

2, γ = 3, η = 0.7, and δ = 0.05

At the interior, the Jacobianmatrix can assume one of two possibilities for its sign:

sign(JE∗
S1

) =

⎧
⎪⎪⎨

⎪⎪⎩

(− −
+ −

)

, xhmax < x∗
S1

,
(+ −

+ −
)

, xhmax > x∗
S1

,

where xhmax is the maximum of the curve h(x, y). In the first case, we have
det(JE∗

S1
) > 0 and trac(JE∗

S1
) < 0, then the interior equilibrium E∗

S1
is locally

asymptotically stable. In the second scenario, the slope of the tangent to the
first nullcline is steeper than that of the tangent to the second nullcline, i.e.
dy(h)

dx <
dy(g)

dx . That means det(JE∗
S1

) > 0. Therefore, E∗
S1

is locally stable (unsta-

ble) if trac(JE∗
S1

) < 0(trac(JE∗
S1

) > 0).

�	
Here, we present numerical examples to demonstrate our previously discussed

results. The parameters are set to k = 7, r = 1, ϕ = 2.3, μ = 2, β = 2, γ = 3, η =
0.7, and δ = 0.05, while α is varied. It is important to mention that the majority of
the parameter values used in our study were derived from previous works such as [9,
18, 31]. While the remaining system parameters are assumed. In the first scenario,
with α = 18, the subsystem S1 has one interior equilibrium E∗

S1
, along with the trivial

and axial equilibria. According to Theorem 1, it is unstable because x∗
S1

< xhmax and
the trac(JE∗

S1
) > 0 as shown in Fig. 1a. In the second scenario, with α = 25, the

subsystem S1 has three equilibria and x∗
S1

> xhmax , making it stable as seen in Fig. 1b.
Finally, with α = 27.6, the subsystem S1 only has the trivial (unstable) and axial
(stable) equilibria, as seen in Fig. 1c.

The bifurcation diagram for subsystem S1 can be seen in Fig. 2 using the XPPAUT
software [49]. This diagram provides an understanding of changes in stability of fixed
points as the parameter α varies, offering valuable insight into the behavior of systems
undergoing these transitions. In the diagram, unstable equilibria are represented by
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Fig. 2 Bifurcation diagram of
the subsystem S1 with α. Black
line: unstable equilibria; red
line: stable equilibria; green
circles: stable limit cycle. HB1
and HB2 are Hopf bifurcation
points and TB is transcritical
bifurcation point

black lines and stable equilibria by red lines, while stable limit cycles are shown
as green filled circles. As α increases, three equilibria appear in the model (4): E0

S1
(unstable), E1

S1
(unstable) and E∗

S1
(stable). With further increase in α, the interior

equilibrium E∗
S1
becomes unstable, when α passes through the Hopf bifurcation point

HB1 and a stable periodic solution emerges. However, this E∗
S1

turns into be stable
again as α crosses the Hopf bifurcation point HB2.With the continuation of increasing
α, the interior equilibrium E∗

S1
vanishes and the axial equilibrium E1

S1
becomes stable

through a transcritical bifurcation (TB) at kT B = γ δ
ημ−αδ

.
To better understand the overall behavior of the subsystem S1, a bifurcation diagram

with two parameters (α, ϕ) has been generated and presented in Fig. 3 by using the
XPPAUT software [49]. The red and black curves in the figure correspond to the Hopf
and transcritical bifurcation curves, respectively. The equilibrium point E∗

S1
is stable

in the gray region of the diagram and unstable in the blue region, while both the trivial
and axial equilibria E0

S1
and E1

S1
are unstable. When the value of α passes through

αT P = 27.57, a transcritical bifurcation occurs and the interior equilibrium disappears
in the pink area, while the axial equilibrium becomes stable.

2.2 Dynamics of the subsystem S2

Similarly, the equilibria of subsystem S2 (5) can be expressed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

r x(t)

(
1

1 + ϕy(t)
− x(t)

k

)

− μ(1 − m)x(t)y(t)

α(1 − m)x(t) + β y(t) + γ
− νx(t) = 0,

ημ(1 − m)x(t)y(t)

α(1 − m)x(t) + β y(t) + γ
− δy(t) = 0,

then the subsystem S2 (5) has the following equilibria

(a) The trivial equilibrium E0
S2

(0, 0).

(b) The axil equilibrium E1
S2

(
k(r−ν)

r , 0) with r > ν and always virtual.
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Fig. 3 Bifurcation diagram of the subsystem S1 in the plane (α, ϕ)with fixed parameters k = 7, r = 1, μ =
2, β = 2, γ = 3, η = 0.7, and δ = 0.05

(c) As we did for the subsystem S1 (4), the interior equilibrium for the subsystem S2
(5) can be determined as E∗

S2
(x∗

S2
, y∗

S2
) where

y∗
S2 = (1 − m)

βδ
(ημ − αδ)x∗

S2 − γ

β
, (13)

Q0(y
∗
S2)

2 + Q1y
∗
S2 + Q2 = 0,

y∗
S2 =

−Q1 +
√

Q2
1 − 4Q0Q2

2Q0
(14)

where Q0 = (rβx∗
S2

+ k(1−m)μ + kβν)ϕ, Q1 = ϕ(r x∗
S2

+ kν)(α(1−m)x∗
S2

+
γ )−rβ(k− x∗

S2
)+k((1−m)μ+βν), Q2 = (kν −r(k− x∗

S2
))(αx∗

S2
+γ ). Thus a

unique interior point exists in the first quadrant if k
(
1 − ν

r

)
(1−m)(ημ−αδ) ≥ γ δ

and it is regular if ζ(ημ − αδ)(1 − m) < βδ and x∗
S2

<
γζδ

ζ(1−m)(ημ−αδ)−βδ
.

Analogously to Theorem 1, there is another result that follows, whose proof will
be omitted.

Theorem 2 1. The trivial equilibrium E0
S2

is a saddle node if r > ν.

2. The axil equilibrium E2
S2

is stable node if k(1 − m)(r − ν)(ημ − αδ) < rγ δ.
Moreover, it is saddle node if k(1 − m)(r − ν)(ημ − αδ) > rγ δ.

3. The interior equilibrium E∗
S2

is locally stable (unstable) if trac(JE∗
S2

) <

0(trac(JE∗
S2

) > 0).

A bifurcation diagram for subsystem S2 (5), generated using XPPAUT, is presented
in Fig. 4. This diagram showcases variations in two parameters, namely (α, ϕ). A
noteworthy observation, when comparing Figs. 4 to3, is the expansion of the stability
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Fig. 4 Bifurcation diagram of the subsystem S2 in the plane (α, ϕ)with fixed parameters k = 7, r = 1, μ =
2, β = 2, γ = 3, η = 0.7, δ = 0.05,m = 0.2 and ν = 0.05

region surrounding the interior equilibrium. Additionally, the figure highlights the
occurrence of a transcritical bifurcation at the critical value of αT P = 27.44.

3 Sliding regions and slidingmode dynamics on the discontinuity
surface 6

Although the right-hand side of (3) is undefined on the switching plane 
, a unique
solution can still be obtained using Filippov’s convex method [47, 48]. To investigate
the dynamics of system (3) on the switching plane 
, it is crucial to analyze the
existence of sliding regions and the sliding mode dynamics inherent in the Filippov
model (3).

Assume that

σ(X) = 〈∇B(X), FS1(X)〉〈∇B(X), FS2(X)〉, (15)

where 〈·, ·〉 represents the scalar product. The sliding segments 
S and crossing
segments 
C on the discontinuity surface 
 are exist if σ(X) ≤ 0, σ (X) > 0,
respectively. The sliding mode domain 
S can be characterized as the union of the
following two regions:

• Attracting region if
S
A = {X ∈ 
S |〈∇B(X), FS1(X)〉 < 0 and 〈∇B(X), FS2(X)〉 >

0}.
• Repulsive region if
S

R = {X ∈ 
S |〈∇B(X), FS1(X)〉 > 0 and 〈∇B(X), FS2(X)〉 <

0}.
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To identify the sliding regions, we assume

σ(X) = σ1(X)σ2(X) = (G(y) − GS1(y))(G(y) − GS2(y)), (16)

where

σ1(X) = G(y) − GS1(y),

σ2(X) = G(y) − GS2(y),

and

G(y) = rζ y

(
1

1 + ϕy
− ζ y

k

)

,

GS1(y) = μζ y2

αζ y + β y + γ
(1 + ηζ ) − ζ δy,

GS2(y) = μ(1 − m)ζ y2

α(1 − m)ζ y + β y + γ
(1 + ζη) + νζ − ζ δy).

(17)

Since there are two types of sliding mode domain 
S which are defined as 
S
A, 
S

R,

then the Filippov system (3) has attracting region if σ1(X) < 0, σ2(X) > 0 i.e.
GS2(y) < G(y) < GS1(y), and it has repulsive region if σ1(X) > 0, σ2(X) < 0 i.e.
GS1(y) < G(y) < GS2(y).
The endpoints of attracting and repulsive sliding segments are called tangent points
of subsystem S1 and S2 and they are given as the following:

• The tangent point of subsystems S1 is given as ET
S1

= {X ∈ 
S |σ1(X) = 0},
• The tangent point of subsystems S2 is given as ET

S2
= {X ∈ 
S |σ2(X) = 0}.

As we are unable to solve the two algebra inequalities analytically, we can get the
solution numerically. The refuge parameter m is chosen as the bifurcation parameter,
while other parameters are fixed r = 1, ϕ = 2.3, k = 3.6, μ = 2, α = 3.0937, β =
2, γ = 3, η = 0.385, ν = 0.17, δ = 0.05, ζ = 0.5. As a result, we have three cases
as follows:

Case 1: when m = 0.2, then the Filippov system has one attracting sliding region
given as:


S
A = {y ∈ 
S |ET

S1 < y < ET
S2},

and two crossing region sets given as the following:


C
1 = {y ∈ 
C |0 < y < ET

S1},

C

2 = {y ∈ 
C |ET
S2 < y < ∞},

as shown in Fig. 5a.
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Fig. 5 Visualizing the presence of sliding and crossing regions for the Filippov system (3)

Case 2:whenm = 0.5958, then the Filippov systemdoes not have attracting regions
and has two crossing regions, which are defined as:


C
3 = {y ∈ 
C |0 < y < ET

S1},

C

4 = {y ∈ 
C |ET
S1 < y < ∞},

as shown in Fig. 5b.
Case 3: if m = 0.9, then the Filippov system has one repulsive region given as:


S
R = {y ∈ 
S |ET

S2 < y < ET
S1},

and two crossing region sets given as the following:


C
5 = {y ∈ 
C |0 < y < ET

S2},

C

6 = {y ∈ 
C |ET
S1 < y < ∞},

as shown in Fig. 5c.
Filippov’s convex method [47, 50] suggests extending the system’s vector field by

defining the sliding vector field FS(X) on 
S . This can be achieved by combining the
two vector fields through the following:

F
S (X) = (1 − αS(X))FS1(X) + αS(X)FS2(X), (18)

where

αS(X) = 〈∇B(X), FS1(X)〉
〈∇B(X), FS1(X) − FS2(X)〉 .

Therefore,

αS(X) = A

B
,
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where,

A = r x

(
1

1 + ϕy
− x

k

)

− μxy

αx + β y + γ
(1 + ηζ ) + ζ δy,

B = mμxy((1 − α)x − β y − γ )

α(1 − m)x + β y + γ
(1 + ηζ ) + νx .

Hence, the sliding mode differential equation can be written as:

( dx
dt
dy
dt

)

=
( −ζCy

k(yφ+1)(α2mνx2+m(γ+β y)(ανx+y(ημψ+μ))−ν(γ+αx+β y)2)−Cy
k(yφ+1)(α2mνx2+m(γ+β y)(ανx+y(ημψ+μ))−ν(γ+αx+β y)2)

)

= F
S (X),

(19)

where, x = ζ y, y ∈ 
S , and

C = ημmrx2(yφ + 1)(γ + β y) − kν(yφ + 1)(γ + αx + β y)(δ(γ + αx + β y) − ημx)

+km
(
x(αν(γ δ + αδx − ημx) − γ ημr) + δy2(γμφ + β(μ + ανxφ))

)

+km
(
y(γ δμ − βημr x + αβδνx + ανxφ(γ δ + αδx − ημx)) + βδμy3φ

)
.

As known, Filippov systems have various types of equilibria, including regular (or
virtual) equilibria, tangent points, boundary equilibria, and pseudo equilibria [48].
Until now, we have discussed the first two types and we will investigate the existence
of the others. An equilibriumpoint EP (ζ yP , yP ) that satisfies F
S (X) = 0 and lies on
the slidingmode
S is called a pseudo equilibrium of the Filippov system (3) [48]. The
point E ∈ 
S is a called singular sliding point if 〈∇B(E), FS1(E)−FS2(E)〉 = 0 [48].

Define

g(y) = (A1y
4 + A2y

3 + A3y
2 + A4y + A5)y = 0, (20)

where

A1 = βζ 2ηmμrϕ,

A2 = βζ 2ηmμr − β2νδkϕ + βk(ανδζ(m − 2)(νζη + δm)μ)ϕ

+ ζ 2(ανk(m − 1)(αδ − ημ) + ηγmμr)ϕ,

A3 = −β2νδk + ζ 2(ανk(m − 1)(αδ − ημ) + ηγmμr) + γ k(ανδζ(m − 2)

+ βk(ανδζ(m − 2) + νζημ + (νζη + δm)μ)ϕ + δmμ − ζηmμr − 2νδγ ϕ),

A4 = γ k(−2βνδ + ανδζ(m − 2) + νζημ + δmμ − ζηmμr − νδγ ϕ),

A5 = −νδγ 2k.

We seek to find all roots of g(y) = 0. Obviously, y = 0 is one of the roots of
g(y) = 0. To get the other roots of (20), we assume that ε1 = A2

A1
, ε2 = A3

A1
, ε3 = A4

A1
,

and ε4 = A5
A1

, thus Eq. (20) can be written as
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g1(y) = y4 + ε1y
3 + ε2y

2 + ε3y + ε4 = 0. (21)

Based on the findings in [51], the following lemma holds.

Lemma 1 For equation (21), we have the followings:

1. If ε4 < 0, equation (21) has at least one positive root
2. If ε4 ≥ 0, equation (21) has no positive root if one of the following conditions

holds:

(a) � > 0 and y∗
1 ≤ 0;

(b) � = 0 and y∗
2 ≤ 0;

(c) � < 0 and y∗
3 ≤ 0,

where � = (
8ε2−3ε21

48 )3 + (
4ε1ε2−8ε3−ε31

64 )2, and y∗
i = max (y∗

1 , y
∗
2 , y

∗
3 ), i = 1, 2, 3

and y∗
i are the real roots of g′(y) = 4y3 + 3ε1y2 + 2ε2y + ε3.

3. If ε4 ≥ 0, equation (21) has one positive root if one of the following conditions
holds:

(a) � > 0, y∗
1 > 0 and g(y∗

1 ) < 0;
(b) � = 0, y∗

2 > 0 and g(y∗
2 ) < 0;

(c) � < 0, y∗
3 > 0 and g(y∗

3 ) < 0.

According to the above lemma then the sliding vector filed F
S (X) has at least one
positive equilibrium and it is pseudo equilibrium if yP ∈ 
S .

By using the Routh-Hurwitz stability criterion, the pseudo equilibrium EP is stable
if ε1 > 0, ε2 > 0, ε3 > 0, and 3ε1ε2 > 2ε3.

On the other hand, the equilibrium EB of (19) is called a boundary equilibrium
if FSi (E

B) = 0, i = 1, 2 [48]. Clearly, the trivial equilibrium (0, 0) is a boundary
equilibrium and always exists.

To highlight the significance of the critical threshold ζ in the Filippov system (3)
and its equilibria, a bifurcation diagram is presented in Fig. 6. The diagram shows the
existence of pseudo-equilibria, boundary equilibria, and tangent points with respect to
the threshold ζ . The green and blue curves represent the tangent points of subsystems
S1 and S2, respectively, while the brown lines refer to the interior equilibria of the two
subsystems S1 and S2. The black curve represents the roots of Eq. (21) (i.e. g1(y) = 0).
The diagram reveals that the sliding segment
S decreases as the threshold ζ increases
and is bounded by the two tangent curves ET

S1
and ET

S2
. Additionally, the boundary

equilibrium EB
S2

appears when the interior equilibrium E∗
S2

intersects with the curve

g1(y) = 0 at ζ = 0.23, leading to the appearance of the pseudo-equilibrium yP in
the sliding mode. As the threshold ζ increases further, the boundary equilibrium EB

S1
manifests at ζ = 0.62, when the interior equilibrium E∗

S1
intersects with the curve

g1(y) = 0, and the pseudo-equilibrium yP disappears.
For further investigations about the existence of these equilibria of the Filippov

system (3), we employ the bifurcation diagram of them in the (ζ, α) plane in Fig. 7. In
this figure, we see that the interior equilibria being regular or virtual are determined
by their position relative to the boundary curves EB

Si
, (i = 1, 2). We observe that
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Fig. 6 Bifurcation diagram of Filippov system’s (3) equilibria with respect to ζ . The other parameters are
r = 1, k = 7, ϕ = 3, μ = 2, α = 1, β = 2, γ = 3, η = 0.7, ν = 0.05, δ = 0.05,m = 0.7

Fig. 7 Sliding mode bifurcation of the Filippov system (3) in the plane (ζ, α)

the equilibrium E∗
S1

is regular above the boundary curve EB
S1

and virtual below it.

On the other hand, the equilibrium E∗
S2

is regular below the boundary curve EB
S2

and
virtual above it and it does not exist for α > 26.497. However, when both equilibria
are virtual, the pseudo equilibrium appears between the two boundary curves EB

Si
,

(i = 1, 2).
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4 Numerical simulation

In this section, we present a numerical simulation to study the different types of
bifurcation that can exhibit for the Filippov system (3). To perform the numerical
simulations, we carefully selected values for the attributes in the suggested systems.
Many of the system parameters were obtained from reputable sources, specifically
referenced in our study as [9, 18, 31]. These sources provided established values that
are widely accepted in the field. Due to the importance of parameters ϕ,m and ζ which
represent the rate of fear, the constant rate of refuge, and the density rate of the prey
and predator, we will choose them as the bifurcation parameters, and fixed all the other
parameters.

4.1 Local sliding bifurcation of Filippov system (3)

The local sliding bifurcation is a result of the collision of many equilibria at the
discontinuity surface when one parameter hits a critical value [48]. The Filippov
system (3) has three types of local bifurcations which are given as the following.

4.1.1 Boundary node and boundary focus bifurcations

The Filippov system (3) undergoes boundary node bifurcation when ϕ is chosen as the
bifurcation parameter while fixing all other parameters as r = 1, k = 10, μ = 2, α =
5, β = 2, γ = 3, η = 0.7, ν = 0.05, δ = 0.05,m = 0.51, ζ = 0.3. The closed circle
means that the equilibrium is regular while the open circle means that the equilibrium
is virtual. When ϕ = 0.6, the Filippov system has regular stable node E∗

S2
and the

tangent point ET
S2
is visible as shown in Fig. 8a. If ϕ = 0.842747, then the equilibrium

E∗
S2
, ET

S2
and the pseudo equilibrium EP collect together at the boundary as seen in

Fig. 8b. While when ϕ = 1.6, the E∗
S2
convert to virtual and EP is a visible and stable

node as shown in Fig. 8c. Furthermore if we continue increasing ϕ the boundary focus
bifurcation occurs as shown in Figs. 8d–f. When ϕ = 4, we observe that EP becomes
a visible and stable node. While when ϕ = 4.73537, then the EP and a visible tangent
point ET

S1
collect together at the boundary and the equilibrium E∗

S1
is invisible. If

ϕ = 6, then the Filippov system has regular stable focus E∗
S1

and the tangent point

ET
S1

is visible.

4.1.2 Collisions of two invisible tangencies bifurcation

The collisions of two invisible tangencies bifurcation is one of the double tangency
bifurcations and it occurs when the quadratic tangent points ET

S1
and ET

S2
delimit a

single sliding segment [48]. This segment converts from an attractive sliding segment
to a repulsive sliding segment when the bifurcation parameter changes. Moreover, the
attractive sliding segment contains a pseudo-node EP , and a repulsive sliding segment
contains an unstable pseudo. The Filippov system (3) has two invisible tangencies
bifurcation if we choose m as the bifurcation parameter and fixed all other parameters
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Fig. 8 Boundary bifurcation for the Filippov system (3) with r = 1, k = 10, μ = 2, α = 5, β = 2, γ =
3, η = 0.7, ν = 0.05,m = 0.51, δ = 0.05, ζ = 0.3

Fig. 9 Collisions of two invisible tangencies bifurcation for the Filippov system (3) with r = 1, k =
5.6, ϕ = 3, μ = 2, α = 3.0937, β = 2, γ = 3, η = 0.358, ν = 0.05, δ = 0.17, ζ = 0.8

as r = 1, k = 5.6, ϕ = 3, μ = 2, α = 3.0937, β = 2, γ = 3, η = 0.358, ν =
0.05, δ = 0.17, ζ = 0.8, as shown in Fig. 9. When m = 0.4, the Filippov system
(3) has a repulsive sliding segment with unstable pseudo equilibrium EP . While if
m = 0.66728, the tangent points ET

S1
, ET

S2
and EP collect together and become a

singular point [48], as seen in Fig. 9b. If m = 0.8, then the Filippov system (3) has
attractive sliding segment with stable node pseudo equilibrium EP .
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Fig. 10 Touching bifurcation for the Filippov system (3) with r = 1, k = 10, ϕ = 2, μ = 2, α = 1, β =
0.001, γ = 1, η = 0.7, ν = 0.05, δ = 0.05, ζ = 1

4.2 Global sliding bifurcation

In this section, we investigate the global sliding bifurcationswhich result fromperiodic
solutions of the Filippov system (3) with the discontinuity surface including sliding
and crossing regions. The bifurcation diagram 3 and 4 of subsystems S1 and S2,
respectively, shows that the Filippov model (3) has standard periodic solutions. Due
to existing of discontinuity surface in the Filippov systems, our model (3) may have
other kinds of periodic solutions which lie in S1 or (and) S2 including the pieces of
sliding or crossing segments.

4.2.1 Touching bifurcations

The touching sliding bifurcation takes place when a limit cycle comes into contact
with the boundary of the sliding segment at a critical value of the bifurcation parameter
[48]. The Filippov system (3) has touching bifurcation as shown in Fig. 10 where we
choosem as the bifurcation parameter and the other parameters are fixed. At the critical
value of the bifurcation parameter, m∗ = 0.7051, the Filippov system exhibits a limit
cycle that touches a tangent point, as seen in Fig. 10b. While ifm > m∗, then the limit
cycle lies entirely in regions S1, and the limit cycle has piece of the sliding segment
when m < m∗.

4.2.2 Buckling bifurcations

Figure 11 illustrates that the Filippov system (3) has buckling bifurcations when we
choose ζ as the bifurcation and fixed all other parameters as r = 1, k = 10, ϕ =
2, μ = 2, α = 1, β = 0.001, γ = 1, η = 0.7, δ = 0.05,m = 0.3, ν = 0.05. At the
critical value ζ = 0.35, the Filippov system has a limit cycle with a full piece of the
sliding segment, as depicted in Fig. 11b. While for ζ = 0.28, the limit cycle has a
piece of the sliding segment, as shown in Fig. 11a. While the Filippov system (3) has
a sliding crossing limit cycle when ζ = 0.5, as seen in Fig. 11c.
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Fig. 11 Buckling bifurcation for the Filippov system (3)

Fig. 12 Sliding crossing bifurcation for the Filippov system (3) with r = 1, k = 10, ϕ = 2, μ = 2, α =
1, β = 0.001, γ = 1, η = 0.7, ν = 0.05, δ = 0.05,m = 0.2

4.2.3 Sliding crossing bifurcation

In Filippov systems, a sliding crossing bifurcation takes place when a stable crossing
limit cycle becomes tangent to the sliding segment at a single point [48]. The behavior
of the stable limit cycle depends on the value of the bifurcation parameter relative to
its critical value. When the parameter equals its critical value at the bifurcation point,
the stable limit cycle just touches the sliding segment tangentially. The stable limit
cycle includes a portion of the sliding segment for parameter values below the critical
value.

Therefore, if ζ is used as the bifurcation parameter and ζ has a critical value of
ζ ∗ = 0.3272, the Filippov system (3) has sliding crossing bifurcation as seen in
Fig. 12. If ζ > ζ ∗, then therefore the Filippov system (3) has a stable crossing limit
cycle as seen in Fig. 12c. When ζ = ζ ∗, the stable crossing limit cycle passes through
a tangent point, as illustrated in Fig. 12b. If ζ < ζ ∗, the stable crossing limit cycle has
a piece of the sliding segment, as shown in Fig. 12a.
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Fig. 13 Bifurcation diagram of system (3) with the fear factor ϕ. a The variation of x/y with ϕ; b the
variation of x with ϕ; c the variation of y with ϕ

4.3 Impact of fear factor on the Filippovmodel (3)

In this subsection, we present a bifurcation diagram exploring the dynamical changes
in the Filippov model (3). The fear factor ϕ is the parameter of interest, while other
parameters are held constant at r = 1, k = 10, μ = 2, α = 4, β = 2, γ = 3, η =
0.7, ν = 0.05, δ = 0.05, ζ = 0.33 and m = 0.5 (Fig. 13). The bifurcation diagram
depicts unstable equilibria as black lines and stable equilibria as red lines. Figure13a
illustrates that for small values of ϕ, the Filippov model (3) approaches the stable
equilibrium E∗

S2
, indicating that the prey find refuge. This behavior occurs because

the number of prey caught per predator is small, and the fear level is low. However,
as the fear factor increases, the number of prey caught per predator also increases.
With the further increase of ϕ, the Filippov model (3) reaches the sliding segment 
S ,
where the number of caught prey per predator becomes fixed, with a ratio of x

y = ζ.

Continuing to increase ϕ, the Filippov model (3) approaches the unstable equilibrium
E∗
S1
, indicating that the prey come out of their refuge to seek food, leading to an

increase in the number of prey caught per predator. Finally, as ϕ further increases, the
model approaches the stable equilibrium E∗

S1
, signifying a state where the prey and

predators coexist in a stable manner under the influence of fear. Upon examining the
Fig. 13b, c, it becomes evident that a rise in the fear factor leads to a decline in the
density of both species x and y. This decrease in prey density can be attributed to
the increase in fear levels, consequently causing a reduction in the predator’s density
as well. Nevertheless, it is essential to note that despite this decline in densities, the
interaction between the two species does not result in their complete annihilation.

To further explore the dynamics of the Filippov model (3), we have examined the
presence and stability regions of different equilibrium points within the ζ − ϕ plane.
These regions are depicted in Figs. 14 and 15, showcasing varying values of the prey
refuge parameter m, Fig. 14 corresponds to m = 0.1, and Fig. 15 to m = 0.5. The
threshold parameter ζ spans from 0 to 2, while the fear factor varies between 0 and 15,
with the remaining parameter values outlined in Fig. 13. Different colors are employed
to delineate stability regions for distinct equilibrium points, maintaining consistency
in color representation across both figures. Moreover, phase portrait diagrams corre-
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Fig. 14 a Depiction of the existence and stability regions for various equilibrium points of the Filippov
model (3) within the (ζ, ϕ) plane, featuring a prey refuge value of m = 0.5. In region R1: E

∗
S1

exhibits

regularity and stability,while E∗
S2

is virtual, and EP is non-existent.Within region R2: E
∗
S1

retains regularity

but becomes unstable, E∗
S2

is virtual, and EP remains non-existent. Region R3 showcases both E∗
S1

and

E∗
S2

as virtual, with EP in existence and stable. Finally, in region R4: E
∗
S2

stands as regular and stable,

E∗
S1

is virtual, and EP is absent. b–e Depiction of phase portraits for the Filippov model (3), illustrating
the bifurcation regions Ri , i = 1, 2, 3, 4, across diverse combinations of ζ and ϕ values
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Fig. 15 a Representation of existence and stability regions for various equilibrium points of the Filippov
model (3) in the (ζ, ϕ) plane, with a prey refuge value of m = 0.1. The descriptions for regions R1, R2,
R3, and R4 are the same as those in Fig. 14. In region R5, E

P exists but is unstable, and both E∗
S1

and E∗
S2

are virtual. In region R6, E
∗
S2

is regular but unstable, E∗
S1

is virtual, and EP does not exist. b, c Depiction
of phase portraits for the Filippov model (3), illustrating the bifurcation regions R5 and R6, for various
combinations of ζ and ϕ values

sponding to each region are thoughtfully included alongside their respective figures
for visual clarity.

In Fig. 14a, for the case when m = 0.5, the bifurcation diagram is divided into four
colored regions: R1, R2, R3, and R4. In region R1, the Filippov model (3) possesses a
stable equilibrium point E∗

S1
, which is a regular point, while the equilibrium point E∗

S2
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is a virtual point. The corresponding phase portrait for region R1 in Fig. 14b shows the
solution trajectories of the Filippov model (3) converge towards the stable equilibrium
E∗
S1
. Therefore, the Filippov model (3) is stable in region R1. Moving on to region R2,

the Filippov model (3) has an unstable equilibrium point E∗
S1
, which is a regular point,

while the equilibrium point E∗
S2

is virtual. The phase portrait for region R2 reveals
that the solution trajectories of the Filippov model (3) has a limit cycle around the
coexisting equilibrium point E∗

S1
, as shown in Fig. 14c. In region R3, both interior

equilibria E∗
S1

and E∗
S2

are virtual, and there exists a pseudo equilibrium point EP

that is stable. As seen in Fig. 14d, the trajectories starting from initial points converge
to the stable pseudo equilibrium EP on the x − y plane. Lastly, in region R4, the
Filippov model (3) has a stable equilibrium point E∗

S2
, which is a regular point, while

the equilibrium point E∗
S1
is virtual. Hence, the trajectories starting from various initial

points converge to the stable equilibrium E∗
S2
, which lies on the S2 region, as depicted

in Fig. 14e. It is worth noting that the axial equilibrium E1
S1

exists in all regions, but

it is a saddle-node according to Theorem 1. Also, the pseudo equilibrium point EP

does not exist in the regions R1, R2 and R4.

Figure 15a in the plane (ζ, ϕ) shows the existence and stability regions, as well as
the corresponding phase diagram, when the value of the prey refuge m is reduced to
0.1. Comparing Figs. 14a and 15a, we observe that there is no change in the regions
R1 and R2. However, regions R3 and R4 have decreased. This suggests that reducing
the value of the prey refuge m leads to a reduction in the stability region for both
E∗
S2

and EP . Additionally, two new regions, R5 and R6, emerge, as seen in Fig. 15a.
In region R5, the Filippov model (3) has a stable limit cycle oscillation around the
unstable pseudo equilibrium EP , while the interior equilibria E∗

S1
and E∗

S2
are virtual.

The phase portrait for region R5 in Fig. 15b shows that starting from various initial
points, the the Filippov model (3) has a limit cycle solution that oscillates around EP ,
indicating instability in this region. In region R6, the Filippov model (3) also has a
stable limit cycle, but this time around the unstable equilibrium E∗

S2
. The equilibrium

E∗
S1

is virtual, and EP does not exist in this region. Starting from initial points, the
solution of the Filippov model (3) demonstrates limit cycle oscillations around the
coexisting equilibrium E∗

S2
, as depicted in Fig. 15c. The phase portrait figures for

regions R1, R2, R3, and R4 are omitted since they are the same as in Fig. 14.

4.4 Impact of prey refuge on the Filippovmodel (3)

We still need to generate a bifurcation diagram to examine how the prey refuge m, in
combination with the fear factor ϕ, influences the dynamics of prey x(t) and predators
y(t) within the Filippov model (3). In Fig. 16, we present the bifurcation diagram
in the (ϕ,m) plane, considering two distinct threshold values, specifically ζ = 0.5
(indicating that prey density is half that of the predators) and ζ = 1 (indicating equal
prey and predator densities). Subsequently, Fig. 16 provides phase portraits that depict
each bifurcation region.

In the first scenario, where ζ = 0.5, the transition between the two subsystems (4)
and (5) occurs when the predator density y becomes half that of the prey density x . In
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Fig. 16 Representation of existence and stability regions for various equilibrium points of the Filippov
model (3) in the (ϕ,m) plane, with different values of ζ . a ζ = 0.5, b ζ = 1. The other parameters are
r = 1, k = 10, μ = 2, α = 10, β = 2, γ = 3, η = 0.7, ν = 0.05, δ = 0.05. In region R1, E

∗
S2

is regular

and unstable, while E∗
S1

is virtual, and EP is non-existent. Within region R2, E
∗
S2

retains regularity but

becomes stable, E∗
S1

is virtual, and EP remains non-existent. Region R3 showcases both E∗
S1

and E∗
S2

as

virtual, with EP in existence and stable. In region R4: EP exists and stable, E∗
S1

is virtual, E∗
S2

is absent. In

region R5, E
P exists and unstable and both E∗

S1
and E∗

S2
are virtual. In region R6: E

∗
S1

exhibits regularity

and stability, while E∗
S2

is virtual, and EP is non-existent. In region R7, E
∗
S1

exhibits regularity and stability,

while both E∗
S2

and EP are non-existent. The phase diagrams illustrating the bifurcation regions R1 − R7
are depicted in Fig. 17

region R1 of Fig. 16a, as the refuge levelm increases, the prey density x rises alongwith
a corresponding increase in predator density y. However, this increase in both densities
causes the prey to predator ratio to remain less than 0.5. Consequently, the Filippov
model (3) oscillates around the unstable equilibrium E∗

S2
, as evident when m = 0.1

and ϕ = 1 in Fig. 17a. As the prey refuge m continues to increase, the previously
unstable equilibrium E∗

S2
becomes stable within region R2. Thus, the Filippov model

(3) tends toward the stable equilibrium E∗
S2
, as shown in Fig. 17b for m = 0.5 and

ϕ = 1. As the prey refuge m continues to increase, the prey density increases to half
that of the predators. Consequently, the Filippov model (3) approaches the threshold
and gravitates toward the stable equilibrium EP in region R3, as illustrated in Fig. 17c
for m = 0.8 and ϕ = 1. In this case, solution trajectories converge to the pseudo
equilibrium EP on the x − y plane. In region R5, characterized by a large fear factor,
increasing the refuge m once again results in prey density approaching half that of
the predators. However, in this scenario, the Filippov model (3) oscillates around the
unstable equilibrium EP , as seen in Fig. 17e for m = 0.1 and ϕ = 10. Then the
Filippov model (3) reaches stability when the prey refuge increases sufficiently to
re-enter region R3. It is noteworthy that for substantial fear factors (ϕ > 13.82),
when the double density of prey exceeds that of predators in region R6, it remains
fixed with respect to the prey refuge m. In this case, the Filippov model (3) oscillates
around the unstable equilibrium E∗

S1
, as demonstrated in Fig. 17f for m = 0.5 and

ϕ = 14.5. Moreover, as the prey refuge m closes to 1, in region R4, equilibrium E∗
S2
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Fig. 17 Phase portraits illustrating bifurcation regions Ri , i = 1, 2, . . . , 7 for the Filippov model (3), as
depicted in Fig. 16 with different values of the prey refuge m and fear factor ϕ
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becomes virtual for ϕ < 13.82 and disappears in region R7, as evident in Fig. 17g, d,
respectively.

In the second scenario, characterized by ζ = 1, the transition between the two sub-
systems (4) and (5) occurs when the prey density x equals that of the predator density
y. Contrasting this with the previous scenario, illustrated in Fig. 16b, we observe the
disappearance of regions R5, R6, and R7, accompanied by an expansion of areas Ri ,
where i = 1, 2, 3, 4. In region R1, marked by lower refuge levels m, the prey popula-
tion remains smaller than that of the predators. Within this context, both species can
coexist, exhibiting a limit cycle pattern centered around the unstable equilibrium E∗

S2
.

Moving to region R2, achieved by increasing the prey refuge, results in a reduction
of interaction between prey and predators. This shift causes the previously unstable
equilibrium E∗

S2
to stabilize. Consequently, they coexist in a stable state. As the prey

refuge continues to rise into region R3, the prey density increases, eventually equaling
that of the predators. In this region, both populations can coexist at the pseudo equi-
librium EP . Notably, as the prey refuge m closes to 1, in region R4, equilibrium E∗

S2
becomes virtual, and the Filippov model (3) approaches EP .

5 Conclusion

The preservation of our natural environment depends on our ability to comprehend
the complexities of ecology. The ecology system gives us a comprehensive under-
standing of the interactions between living things and their environment, enabling us
to appreciate the delicate balance and interdependence of varied ecosystems. Also,
sustainability is promoted, and long-term viability is promoted, enabling us to satisfy
our needs today without jeopardizing the ability of future generations to do the same.
Bymathematical models, we can grasp the complex web of interactions among plants,
animals, and their habitats, recognizing the vital roles each species plays [10, 11, 25].
This understanding enables us to identify potential threats to ecological stability, such
as species extinction, habitat destruction, pollution, and climate change, and develop
effective conservation strategies tomitigate these challenges. In earlier studies [27–29,
31], the influence of fear and the availability of prey refuges on prey-predator systems
was explored, typically assuming that refuges are consistently accessible to prey due
to their fear of predators. However, this scenario does not always hold, as prey tend to
seek refuge when they perceive themselves or their population as significantly smaller
in comparison to the predator population. Thus, in this paper, we introduced a Filippov
prey-predator model with fear effect on prey and prey refuge. For the scenario where
the ratio of prey to predators is low, the natural instincts of prey organisms compel
them to adopt refuge-seeking as a defensive tactic. Conversely, when the ratio of prey
to predators is high, these instincts trigger proactive foraging behavior among the prey
population. The incorporation of switching of prey refuge, along with the inclusion of
predator-induced fear, in the Filippov system has proven to be effective. This system
description has resulted in the establishment of stability and coexistence between the
prey and predator populations, thereby ensuring ecosystem stability and preventing
species extinction.
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Using qualitative analysis methods of non-smooth Filippov dynamic systems and
numerical techniques, the dynamics of the proposed Filippov prey–predator model
with fear effect on prey ans prey refuge have been studied in detail. The existence and
stability of several types of equilibria have been discussed, including the equilibria
of subsystems S1, S2, and pseudo equilibria of Filippov system (3). In the discussion
about sliding and crossing regions and sliding mode dynamics, there is a connection
between the presence of pseudo-equilibria and the bifurcation parameter ζ , as depicted
in Fig. 6. The results obtained in Sect. 5 indicate that the Filippov system (3) can give
rise to three types of local sliding bifurcation as boundary node and boundary focus
bifurcations as seen in Fig. 8 and collisions of two invisible tangencies bifurcation
as seen in Fig. 9. As well three types of global sliding bifurcation such as touching
bifurcations, as seen in Fig. 10, buckling bifurcations, as seen in Fig. 11 and sliding
crossing bifurcation as shown in Fig. 12.

We conducted numerical simulations to explore the potential impact of factors such
as fear, prey refuge, and threshold ratio on the Filippov model (3). Our investigation
revealed that an increase in the fear factor resulted in a decrease in both prey and
predator densities, causing a transition from a limit cycle oscillation to a steady state
(as illustrated in Fig. 13). To further investigate this phenomenon, we constructed a
bifurcation diagram in the ζ −ϕ plane, considering different values of the prey refuge
parameterm as depicted in Figs. 14 and 15. The diagramdisplayed four distinct regions
R1, R2, R3 and R4, illustrating the influence of the fear factor on the equilibria of the
Filippov model (3) and their respective stability. Notably, when we reduced the prey
refuge parameter m to 0.1 in Fig. 15a, we observed changes in the stability regions.
Specifically, regions R3 and R4 decreased in size, while two new regions R5 and R6
emerged. These findings suggest that the prey refuge parameter also plays a role in
determining the stability of equilibrium points within the Filippov model.

Moreover, we explored the interplay between prey refuge m and the fear factor ϕ

within the Filippov model (3), considering two different threshold values ζ . Our find-
ings, as depicted in Figs. 16 and 17, revealed that changes in prey refuge significantly
influenced the dynamics of the Filippov model. Specifically, as the prey refuge m
increased, the model transitioned from oscillatory behavior to a stable state. Notably,
for the case when ζ was set to 0.5, we observed that at higher fear factor values,
the Filippov system exhibited oscillations around the equilibrium E∗

S1
, indicating that

prey ventured out from refuge to forage. This behavior emerges because increasing
fear reduces prey and predator densities. Thus, at sufficiently high fear levels, predator
density becomes much smaller than prey density, prompting prey to leave refuge in
search of sustenance to avoid extinction.

In summary, our findings highlight the intricate ecological dynamics that arisewhen
considering adaptive prey behavior in the face of predation risk. The incorporation
of prey-refuging strategy switching based on the prey-to-predator density ratio in
the proposed Filippov model offers a more realistic ecological representation. These
results underscore the importance of threshold-based refuge seeking for preserving
species and maintaining ecosystem stability.
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