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Abstract
Herein, new orthogonal polynomials have been generated from shifted Chebyshev
polynomials that fulfill a given set of homogeneous boundary conditions and the
necessary formulae have been established. Moreover, an integer order derivative oper-
ational matrix has been introduced. Then, the presented novel polynomials are used
together with the two spectral methods, namely, the Galerkin and Tau methods, as
the basis functions. The convergence and error analyses were introduced and proved.
Finally, some even-order boundary value problems (BVPs) have been approximated
using the presented method.
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1 Introduction

BVPs appear in various domains and applications, particularly inmathematical physics
[1, 2]. In [3, 4], they used IBVPs in Nano-fluid mechanics. However, analytic methods
can only solve some of the ordinary differential equations in these applications [5],
especially the even-order BVPs that arise in some problems and applications. Many
authors introduced several approximate methods to solve these problems [6]. The
authors in [7] solve the fourth-order BVPs for the beam equation. The Sinc-collocation
method was applied in [8] to solve the eighth-order BVPs. Other authors solve linear
and nonlinear fourth-order BVPs [9–13, 40].

Spectralmethods have themost notoriety against the other approximatedmethods as
finite difference and finite element methods. Spectral methods have many advantages;
the higher accuracy caused in someBvps, the exact solution can be found [14]. Because
spectral methods converge relatively quickly in space and time, they are very efficient
for solving PDEs [15]. Spectral methods are highly adaptable and can be used to solve
a wide variety of problems, including linear and nonlinear systems with homogeneous
or non-homogeneous boundary conditions. The algorithms of the spectral methods are
easy to apply. They are a family of techniques used in mathematical applications to
generate numerical solutions to a wide range of problems. Spectral methods include
three main kinds of scenarios. The first method, the Galerkin method, has been used
in [16–20]. The Galerkin method’s selected bases function must satisfy the initial and
boundary conditions. While in the second method, the Tau method, this condition
is unnecessary [21–24, 31]. Thirdly, in the collocation method (pseudospectral), the
unknown function’s derivative of the differential equation can be expanded in terms
of itself [25, 26].

The basic principle of using the spectral method is to select a base function.
These basis functions may be orthogonal [27] or not orthogonal [28]. The Cheby-
shev polynomials (CH-Ps) are the most used in spectral methods. The authors used
it in [29] to solve fractional optimal control problems. While the authors solved the
fractional integrodifferential equations by CH-Ps in [30]. Mixed Volterra–Fredholm
Delay Integro-Differential Equations have been solved in [32].

Due to the high accuracy and precision results obtained by CH-Ps, a novel class
of orthogonal polynomials derived from CH-Ps is introduced. We named it enhanced
shifted Chebyshev polynomials (ESCH-Ps). ESCH-Ps are constructed to satisfy the
initial and boundary conditions. These polynomials were used in spectral methods as
basis functions. The suggested methods are the Galerkin and the Tau method to solve
even-order BVPs. As with any residual weighted methods, the proposed techniques
depended on converting IBVPs and their conditions to an algebraic system of equa-
tions. Consequently, this algebraic system will be solved to get the values of spectral
expansion’s constants.

This article consists of six sections; some direct relations and definitions need to
be presented in Sect. 2. Sect. 3, the recurrence relation and the orthogonal relation
with its weight function of ESCH-Ps are generated. Then, the operational matrix has
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been constructed. The two spectral algorithms for solving BVPs and handling non-
homogenous conditions are detailed in Sect. 4. The convergence and error analysis is
investigated in Sect. 5. Finally, we solved even-order boundary value problems and
compared our solutions with other authors.

2 Some important relations

In this section, some essential properties and relations of CH-Ps will be presented.
The recurrence relation of CH-Ps [33–35]:

Tk+2(x) = 2x Tk+1(x) − Tk(x) k = 0, 1, 2, ... (1)

such that its initials T0(x) = 1 and T1(x) = x .

The CH-Ps are orthogonal with respect to w(x) = 1√
1 − x2

as:

∫ 1

−1
Ti (x) Tk(x) w(x) dx =

⎧⎪⎨
⎪⎩
0, i �= k,

π, i = k = 0,
π
2 , i = k > 0.

(2)

Here are some identities and inequality of CH-Ps:

Tk(−1) = (−1)k, Tk(1) = 1, (3)

T ′
k(−1) = (−1)k−1k2, T ′

k(1) = k2, (4)

|Tk(x)| ≤ 1,
∣∣T ′

k(x)
∣∣ ≤ k2. (5)

Also, the series of CH-Ps can be formulated as:

Tk(x) = k
�k/2�∑
j=0

(−1) j
2k−2 j−1(k − j − 1)!

(k − 2 j)!(2 j)! xk−2 j . (6)

While the SCH-Ps (T ∗
k (x); k = 0, 1, ...; x ∈ [a, b]) of degree k can be defined as

T ∗
k (x) = Tk

(
2x − b − a

b − a

)
, k = 0, 1, 2, ... (7)

Also, the polynomials {T ∗
k (x)}Ni=0 are orthogonal with respect to w∗(x)

= 1√
(x − a)(b − x)

as:

∫ b

a
w∗(x)T ∗

i (x)T ∗
k (x)dx =

⎧⎪⎨
⎪⎩
0, i �= k,

π, i = k = 0,
π
2 , i = k > 0.

(8)
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The product of two SCH-Ps is linearized as:

T ∗
i (x)T ∗

j (x) = T ∗
i+ j (x) + T ∗|i− j |(x)

2
. (9)

3 Enhanced shifted Chebyshev polynomials and their derivatives

In this section, we shall define a new class of orthogonal polynomials from SCH-Ps.
Moreover, the operational matrix of the investigated polynomials’ derivatives will be
presented.

3.1 Enhanced shifted Chebyshev polynomials

Firstly, the definition of the ESCH-Ps on [a, b] will be introduced.
Definition 1 The ESCH-Ps

(
φn,k(x); k, n = 0, 1, 2, . . . ; x ∈ [a, b]) of degree (k+

2n) will be formed as:

φn,k(x) = (b − x)n(x − a)nT ∗
k (x), k = 0, 1, 2, . . . . (10)

Therefore, the first three terms of ESCH-Ps will be:

φn,0(x) = (b − x)n(x − a)n, (11)

φn,1(x) = (b − x)n(x − a)n
(
2x − b − a

b − a

)
, (12)

φn,2(x) = (b − x)n(x − a)n
(
8x2 − 8(a + b)x + (a + b)2 + 4ab

(b − a)2

)
. (13)

Also, its recurrence relation can be deduced from Eq. (1) and Definition 1 as:

φn,k+2(x) = 2

(
2x − b − a

b − a

)
φn,k+1(x) − φn,k(x) k = 0, 1, 2, ..., (14)

with the initial Eqs. (11, 12).
In addition, the initials and boundaries are:

φn,k(a) = φn,k(b) = 0, n > 0, (15)

φ′
n,k(a) = φ′

n,k(b) = 0, n > 1. (16)

Since, |x − a| ≤ (b − a) and |b − x | ≤ (b − a), and according to the inequality (5).
The ESCH-Ps satisfy that:

|φn,k(x)| ≤ (b − a)2n, (17)

|φ′
n,k(x)| ≤ (b − a)2nk2. (18)
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The orthogonality relation of polynomials {φn,k(x)}k,n≥0 is expressed in the next equa-

tion concerning theweight function ŵ(x) = 1

(b − x)2n(x − a)2n
√

(x − a)(b − x)
as:

∫ b

a
ŵ(x) φn,k(x)φn,i (x)dx =

⎧⎪⎨
⎪⎩
0, i �= k,

π, i = k = 0,
π
2 , i = k > 0.

(19)

Remark 1 The linearization formula for ESCH-Ps is defined as:

φn,k(x)φn,i (x) =
[
(b − x)n(x − a)n

2

] [
φn,k+i (x) + φn,|k−i |(x)

]
(20)

This relation will be essential during the discussion of the tau method.

3.2 The operational matrix of ESCH-Ps for integer order derivative

In this subsection, the first derivative of φn,k(x) will be introduced in terms of itself.
Consequently, the first derivative operational matrix of ESH-ps will be constructed.
Finally, the mth operational matrix will be deduced.

Theorem 1 The first derivative of φn,k(x) can be expressed as:

d

dx
φn,k(x) = 2

b − a

k−1∑
i=o

2λk+i

γi
[i + (2n + 1)(k − i)]φn,i (x) + �k(x), (21)

where

λ j =
{
0 j even,

1 j odd,
(22)

γ j =
{
2 j = 0,

1 j �= 0,
(23)

and

�i =
{

−n((b − x)(x − a))n−1(2x − a − b) i even,

−n((b − x)(x − a))n−1(b − a) i odd.
(24)

Proof By using mathematical induction, we have the following steps:
For k = 0:

φ′
n,0(x) = −n((b − x)(x − a))n−1(2x − a − b), (25)
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Then, using the derivative of Eq. (14) at k = j − 1 and considering the assumption of
Eq. (21) at k = j , and with the aid of (6), we get:

d

dx
φn, j+1(x) = 4

b − a
φn, j (x)

+ 2

(
2x − b − a

b − a

)⎡
⎣

j−1∑
i=o

4λ j+i

(b − a)γi
[i + (2n + 1)( j − i)]φn,i (x) + � j (x)

⎤
⎦

−
⎡
⎣

j−2∑
i=o

4λ j+i−1

(b − a)γi
[i + (2n + 1)( j − i − 1)]φn,i (x) + � j−1(x)

⎤
⎦

(26)
By using some algebraic manipulations on the previous equation, the relation can be
proved. ��

The matrix form of the previous theorem can be written according to the following
corollary.

Corollary 1 Let φ(x) = [φn,0(x), φn,1(x), ..., φn,N (x)]T . Then the first derivative of
φ(x) can be defined as:

φ′(x) = Vφ(x) + δ(x), (27)

whereφ′(x) = [φ′
n,0(x), φ

′
n,1(x), ..., φ

′
n,N (x)]T , δ(x) = [�0(x),�1(x), ...,�N (x)]T ,

and V = (vki )
N
k,i=0 is the square Matrix (N + 1) × (N + 1):

vki = 4λk+i

(b − a)γi
[i + (2n + 1)(k − i)] i, k = 0, .., N . (28)

By differentiating Eq. (27):

φ′′(x) = Vφ′(x) + δ′(x), (29)

Using Corollary (1) to get:

φ′′(x) = V 2φ(x) + V δ(x) + δ′(x). (30)

The mathematical induction can be used to introduce the following Corollary:

Corollary 2 The mth order derivative of φ(x) can be formed as:

φ(m)(x) =

⎧⎪⎨
⎪⎩
Vmφ(x) + ∑m−1

j=0 Vm− j−1δ( j)(x) m = 1, ..., N ,

∑m−1
j=0 Vm− j−1δ( j)(x) m > N ,

(31)

where V 0 is the identity matrix.

In the next section, the structure of the BVPs is presented. Then two methods for
approximating the solutions of those problems will be presented.
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4 Two spectral techniques for solving BVPS

At the being, the problem formulation will be presented. Consider BVP of the even
order l:

U (l)(x) = F(x,U (x),U ′(x), ...,U (l−1)), x ∈ [a, b], (32)

while its homogeneous initial and boundary conditions are:

U (a) = U ′(a) = U ′′(a) = · · · = U ( l
2−1)(a) = 0,

U (b) = U ′(b) = U ′′(b) = · · · = U ( l
2−1)(b) = 0.

(33)

The approximate spectral solution of Eq. (32) is assumed as:

U (x) 
N∑

k=0

ckφn,k(x). (34)

Computing the residual of Eq. (32) is obtained by using Theorem (1) and Corollary
(2) to get:

R(x) =
N∑

k=0

ckφ
(l)
n,k(x) − F

(
x,

N∑
k=0

ckφn,k(x),
N∑

k=0

ckφ
′
n,k(x), ...,

N∑
k=0

ckφ
(l−1)
n,k (x)

)
.

(35)

4.1 Galerkin spectral method via ESCH-Ps (ESCH-Galerkin)

As the definition of the introduced function (10),we recognized that the function and its
derivatives would be zero, for certain values of n, at the endpoints. So, this assumption
is compatible with the BVP’s homogeneous initial/boundary to useGalerkin. Consider
the collocation points xr ∈ [a, b]; r = 0, 1, . . . , N , the zeros of SCH-Ps of degree
(N + 1), the equidistant points, or any suitable points. Now, Collocating Eq. (35)
to obtain the following algebraic system of N + 1 equations the unknowns ck ; r =
0, 1, . . . , N :

R(xr ) = 0, r = 0, 1, ...N . (36)

It is easy to introduce the approximated solution (34) by solving the algebraic system
Eq. (36).

4.2 Tau spectral method via ESCH-Ps (ESCH-Tau)

The second spectral method will be the Tau method. The trial functions are chosen
to be ESCH-Ps themselves. On the other hand, the weight function will be w̄(x) =
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1

(b − x)n(x − a)n
√

(x − a)(b − x)
. Now, applying the Tau method to get:

∫ b

a
R(x)φn,k(x)w̄(x)dx = 0, k = 0, 1, . . . , N − v, (37)

where v is the number of initial and boundary conditions.
Since the introduced problem’s initial/boundary conditions are homogeneous. Con-

sequently, the Tau’s integration (37) transformed to:

∫ b

a
R(x)φn,k(x)w̄(x)dx = 0, k = 0, 1, . . . , N (38)

The outcomes of Eq. (38) will be an algebraic system of N + 1 equations and
N + 1 unknowns. Solving that system to get the values of spectral contacts of the
approximated solution (34).

Remark 2 The linearity of the algebraic systems (36) and (38) depends on whether the
BVP (32) is linear. The matrix decomposition method will be used to solve the linear
algebraic system. While any numerical method, such as Newton Raphson’s method,
will be used for the nonlinear one.

Remark 3 In many cases, especially in the applications, the homogeneous ini-
tials/boundary conditions can not be guaranteed. Therefore, we need to transform
these conditions into homogeneous conditions. This can be done by the following.
Let:

u(x) = U (x) +
l−1∑
i=0

Ai x
i , (39)

such that

u(a) = u′(a) = u′′(a) = · · · = u

(
l
2−1

)
(a) = 0,

u(b) = u′(b) = u′′(b) = · · · = u

(
l
2−1

)
(b) = 0,

(40)

where, Ai are constants were calculated by solving Eqs. (39, 40). Thus, the BVP (32,
40) will be solved for the unknown function u(x).

It is essential to ensure the convergence of the spectral expansion before applying
the method to the numerical calculation. The following section is devoted to studying
the theoretical convergence, stability, and error analysis.

5 Convergence and error analysis

The convergence analysis of our basic function was covered in this section. Two
fundamental theorems were proposed and verified.

Lemma 1 [36] Let u(x) be a given function such that u(k) = ak. Suppose that the
following assumptions are satisfied:
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1. u(x) is continuous, positive, decreasing function for x ≥ m.
2.

∑
am is convergent, and Rm = ∑∞

k=m+1 ak, then

Rm ≤
∫ ∞

m
u(x)dx .

Definition 2 [14] Let Hr
w(a, b) be a Sobolev space such that

Hr
w(a, b) = {v ∈ L2

w(a, b) : v(k) ∈ L2
w(a, b), k = 0, 1, 2, ..., r} (41)

Let Hr
0,w(a, b) be a Sobolev subspace of Hr

w(a, b) such that

Hr
0,w(a, b) = {v ∈ Hr

w(a, b) : v(k)(a) = v(k)(b) = 0, k = 0, 1, 2, ..., r} (42)

Theorem 2 Consider that U (x) can be defined as U (x) = (x − a)n(b − x)nŪ (x) ∈
Hn
0,w(a, b), with |Ū (m)(x)| ≤ Lm,m ≥ 1, for some positive real number constants

Lm. Therefore, the following assumption is verified by expansion’s coefficients:

|ck | � (b − a)mLm

2mkm
, ∀k > 1. (43)

Proof Suppose the approximation of function U (x) as:

U (x)  UN (x) =
N∑

k=0

ckφn,k(x), (44)

Using the relation of orthogonality, Eq. (19), and the definition of φn,k(x), Eq. (10),
to get the coefficient ck as:

ck = 1

�k

∫ b

a

Ū (x)T ∗
k (x)√

(x − a)(b − x)
dx, (45)

where

�k =
{

π, k = 0,
π
2 , k > 0.

Use the substitution x = 1
2 [b + a + (b − a) cos θ ] = ζ , ck expressed as:

ck = 1

�k

∫ π

0
Ū (ζ ) cos kθdθ. (46)

By applying the integration by parts:

ck = b − a

2k�k

∫ π

0
Ū ′(ζ )α1(θ)dθ, (47)
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where
α1(θ) = sin θ sin kθ. (48)

It is clear that |α1(θ)| ≤ 1. Thus,

|ck | � (b − a)L1

2k
(49)

Similarly, by applying the integration for the second time:

ck = (b − a)2

22k(k2 − 1)�k

∫ π

0
U ′(ζ )α2(θ)dθ, (50)

whereα2(θ) = sin kθ cos θ sin θ−k cos kθ sin2 θ with |α2(θ)| ≤ k+1. Consequently:

|ck | � (b − a)2L2

22k2
(51)

Repeating the steps m − 2 to complete the proof. ��
Theorem 3 If U (x) verifies the assumptions of Theorem (2) and Lemma (1), then the
absolute error is observed as:

|u − uN | � O

(
1

Nm−1

)
(52)

Proof Eq.(44), as stated, shows that

|U −UN | = |
∞∑

k=N+1

ckφn,k(x)|. (53)

From the inequalities Eqs. (17) and (43), we have:

|U −UN | � (b − a)m+2n Lm

2m

∣∣∣∣∣
∞∑

k=N+1

1

km

∣∣∣∣∣ . (54)

Applying Lemma (1) to get:

|u − uN | � (b − a)m+2n Lm

2mNm−1 . (55)

��
In the forthcoming section, the theoretical convergenceswill be verified numerically

by solving several BVPs.
In the next section, some numerical examples will be solved and approximated via

the introduced polynomials. The examples include applications for beam models and
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Table 1 The MAE for Example 1

N ESCH-Galerkin ESCH-Tau O
(

1
Nm−1

)
MTA[37] GSEM[38]

MAE Time (mins) MAE Time (mins)

2 3.34 × 10−7 0.024 7.53 × 10−7 0.623 1.25 × 10−1 – –

4 1.11 × 10−9 0.026 1.18 × 10−9 1.787 1.56 × 10−2 – –

8 1.23 × 10−14 0.031 5.59 × 10−15 5.334 1.95 × 10−3 5.83 × 10−7 8.65 × 10−4

12 3.93 × 10−17 0.048 5.05 × 10−17 13.524 5.78 × 10−4 4.11 × 10−10 4.90 × 10−6

Emden-Flower-type equations. All the simulations have been executed by Mathemat-
ica 13.2 via Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz 2.80 GHz, 8.00 GB
RAM.

6 Solving even-order boundary value problems

Through this section, the introduced methods, ESCH-Galerkin and ESCH-Tau, via
our novel basis functions, will be used to approximate the solution of BVPs of even
order. In addition, the model of the beam model of its two cases, clamped-clamped
and pinned-pinned, in addition to the Emden-Flower type, was studied. Finally, the
obtained results are compared with the methods of others.

Example 1 Consider the fourth-order boundary value problem, which describes the
model of bending of a beam hinged from both sides:

U (4)(x) + 4U (x) = 1, x ∈ [−1, 1], U (±1) = U ′′(±1) = 0, (56)

and its exact solution

U (x) = 1
4

[
1 − 2(sin 2 sinh 1 sin x sinh x + cos 1 cosh 1 cos x cosh x)

cos 2 + cosh 2

]
.

To satisfy the homogeneous conditions, the value of nwill be chosen as n = 3. Table
1 compares ESCH-Galerkin and ESCG-Tau methods with two other methods in [37,
38] for various values of N . The two techniques achieved high accuracy and efficiency.
The authors in [37] used the Lucas polynomials as the polynomials function. While
some quasi-orthogonal approximations were used in [38]. The log error is displayed
in Fig. 1 for different values of N using the ESCH-Galerkin method. That proved the
stability of our method.

Example 2 Consider the nonlinear fourth-order equation:

U (4)(x) = e−xU 2(x), x ∈ [0, 1],
U (0) = 1,U (1) = e,U ′′(0) = 1,U ′′(1) = e, (57)

and its exact solution U (x) = ex .
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Fig. 1 Log error for Example 1 using ESCH-Galerkin

Table 2 The MAE of Example 2 via ESCH-Galerkin

N MAE Time (mins) O
(

1
Nm−1

)
[39]

1 1.16 × 10−7 0.022 1.00 × 100 5.19 × 10−6

2 8.99 × 10−10 0.023 1.25 × 10−1 1.40 × 10−7

4 4.33 × 10−13 0.023 1.56 × 10−2 1.25 × 10−10

6 9.01 × 10−16 0.024 4.62 × 10−3 6.48 × 10−14

Before solving this example, we converted the conditions to homogeneous using
relation (39) to get U (x) + ∑5

i=0 Ai xi where A0 = −1, A1 = −1, A2 = −1
2 ,

A3 = 1
2 (35− 13e), A4 = 1

2 (−49+ 18e), and A5 = 1
2 (19− 7e). For n = 3, the MAE

of the two techniques and another method are presented in Table 2. Bernstein and
Bernoulli polynomials were applied as basis functions in [39]. The double precision
at N = 6 has been achieved by using the ESCH-Galerkin method. In contrast, Fig. 2
shows the stability of the ESCH-Galerkin and ESCH-Tau methods.

Example 3 Consider the nonlinear Emden–Flower-type Equation [41]:

U (4)(x) + 8

x
U (3)(x) + 12

x2
U (2)(x) +Um(x) = 0, x ∈ (0, 1), m ∈ N, (58)

with the initial conditions U (0) = 1 and U ′(0) = U ′′(0) = U ′′′(0) = 0.
While the exact solution for m = 0 is U (x) = 1 − x4

360 .
For n = 2, the transformation, according to Eq. (39), will be A0 = −1, A1 = 0,

A2 = −1
360 , and A3 = 1

180 . The application of the two proposed methods for N =
0, 1, 2, . . ., we found this approximate solution: uN (x) = ∑N

k=0 ckφn,k(x), where
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Fig. 2 Log error for Example 2

c0 = −1
360 , ck = 0; k = 1, 2, 3 · · · i.e. uN (x) = −x2

360 + x3
180 − x4

360 , which is the exact
solution.

Example 4 Consider the eight-orde IBVP:

U (8)(x) + 1

x4
U (4)(x) + 1

1 − x
U (x) = f (x), x ∈ [0, 1]

U (r)(0) = U (r)(1) = 0 r = 0, 1, 2, 3.
(59)

While its exact solution U (x) = x4(1 − x)4. the f (x) can be obtained.
By applying the two techniques directly at n = 4, we achieved the exact solution

at a small iteration N = 2. While the author [8] reached 2.6 × 10−12 as a MAE at
N = 32.

Example 5 Consider the following eighth-order BVP:

U (8)(x) −U (x) = −8(2x cos x + 7 sin x), x ∈ [−1, 1]
U (−1) = 0, U ′(−1) = 2 sin(1), U ′′(−1) = −4 cos(1) − 2 sin(1),

U ′′′(−1) = 6 cos(1) − 6 sin(1),

U (1) = 0, U ′(1) = 2 sin(1), U ′′(1) = 4 cos(1) + 2 sin(1),

U ′′′(1) = 6 cos(1) − 6 sin(1). (60)

While its exact solution U (x) = (x2 − 1) sin x . Cause of the non-homogeneous
conditions, The unknown function will be converted to u(x) = U (x) + ∑7

i=0, where
A0 = 0, A1 = 1

8 (−7)(cos 1− 2 sin 1), A2 = 0, A3 = 1
8 (17 cos 1− 22 sin 1), A4 = 0,

A5 = 1
8 (10 sin 1−13 cos 1), A6 = 0, and A7 = 1

8 (3 cos 1−2 sin 1). Table 3 compares
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Table 3 The MAE for Example 5 at various N

N ESCH-Galerkin ESCH-Tau O
(

1
Nm−1

)
[42]

MAE Time (mins) MAE Time (mins)

1 1.13 × 10−6 0.024 5.13 × 10−6 0.227 1.00 × 100 3.73 × 10−6

3 1.79 × 10−9 0.027 7.47 × 10−8 0.658 4.57 × 10−4 4.45 × 10−8

5 8.47 × 10−12 0.032 2.69 × 10−10 1.342 1.28 × 10−5 1.29 × 10−10

7 2.45 × 10−14 0.041 2.95 × 10−13 2.381 1.21 × 10−6 1.11 × 10−13

9 1.30 × 10−16 0.061 2.18 × 10−15 3.809 2.09 × 10−7 5.01 × 10−14

Table 4 The AE of different methods for Example 6

x ESCH-Galerkin N = 2 ESCH-Tau N = 2 [43] N = 11

0.1 1.39 × 10−14 5.66 × 10−11 8.57 × 10−11

0.2 3.87 × 10−13 5.80 × 10−10 5.75 × 10−10

0.3 1.37 × 10−12 1.75 × 10−10 8.60 × 10−10

0.4 1.18 × 10−12 3.04 × 10−10 8.45 × 10−12

0.5 8.37 × 10−13 3.62 × 10−9 1.78 × 10−9

0.6 2.53 × 10−12 3.09 × 10−9 3.05 × 10−9

0.7 2.01 × 10−12 1.82 × 10−9 2.70 × 10−9

0.8 5.06 × 10−13 6.12 × 10−10 1.22 × 10−9

0.9 1.42 × 10−14 6.09 × 10−11 1.55 × 10−10

the results of the two proposed methods and the method in [42], which used the
generalized Jacobi polynomials as basis functions.

Example 6 Consider the nonlinear eight-order equation:

U (8)(x) = e−xU 2(x), x ∈ [0, 1],
U (0) = U ′(0) = U ′′(0) = U ′′′(0) = 1,

U (1) = U ′(1) = U ′′(1) =,U ′′′(1) = e,

(61)

and its exact solution U (x) = ex .
Using similar procedures for the non-homogenous conditions, Table 4 has presented

the AE between the proposed methods for n = 4 and the method in [43]. The authors

in [43] used the non-orthogonal Vieta–Lucas Polynomials. In addition, the O
(

1
Nm−1

)
of this example is 7.8×10−3, and the computational time is 0.025mins. Fig. 3 presents
the log error of ESCH-Galerkin.
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Fig. 3 Log error for Example 6 by using ESCH-Galerkin

7 Conclusion

Neworthogonal polynomials are generated from shiftedCheyshev polynomials. These
polynomials have been called ESCH-Ps throughout this paper. Some of the essential
relations of ESCH-Ps are investigated and proved. Then, the operational matrix of the
mth derivative has been formed. This matrix has been applied via Galerkin and Tau
method for solving even-order BVPS. In addition, the expansion’s error analysis and
convergence are discussed in depth. Finally, some even-order BVPs have been solved
by the two proposed techniques. Comparing the obtained results and other methods
confirms the effectiveness and efficiency of the presented matrices and methods. We
aim to extend the presented numerical schemes to handle partial differential equations
in one temporal space and one/two spatial variables in the near future.
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