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Abstract
In this paper, a linear singularly perturbed Fredholm integro-differential initial value
problem with integral condition is being considered. On a Shishkin-type mesh, a fitted
finite difference approach is applied using a composite trapezoidal rule in both; in the
integral part of equation and in the initial condition. The proposed technique acquires
a uniform second-order convergence in respect to perturbation parameter. Further
provided the numerical results to support the theoretical estimates.
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1 Introduction

Singularly perturbed differential equations are described by a small parameter ε multi-
plying all or some of the differential equation’s highest order terms, as boundary layers
are generally present in their solutions. These equations are crucial for sophisticated
scientific computations in the twenty-first century. Singularly perturbed problems
(SPPs) are used to express a variety of mathematical models, ranging from chemical
reactions to problems in mathematical engineering, fluid dynamics, electrical net-
works, control theory, aerodynamics, biology and neuroscience. Further information
on SPPs may be found in the works [18, 26, 27, 29] and their references. Numerical
analysis of SPPs has always been difficult because of the solution’s boundary layer
behavior. Within some thin layers at the inside or boundary of the problem domain,
such a problem exhibits fast changes [26, 29]. Standard numerical techniques for
resolving such problems are widely recognized for being unstable and failing to pro-
duce exact results when the perturbation parameter is small. On account of this, it is
critical to design numerical methods for solving problems whose accuracy is inde-
pendent on parameter value. The references [18, 22, 26, 33, 35, 40] cover a variety of
techniques for numerically solving this type differential equations.

Differential equations with integral boundary conditions have also been utilized to
describe a variety of processes in the applied sciences, such as subsurface water flow,
chemical engineering and heat conduction [11, 21, 28]. Therefore, many authors have
studied boundary value problems with integral boundary conditions. Researchers have
considered the singularly perturbed cases of these problems. The authors in [9, 10,
25, 36] investigated first-order convergent finite difference schemes on non-uniform
meshes for various problems with integral boundary conditions.

Integro-differential equations have emerged in most engineering applications and
several fields of sciences. Plasma physics, financial mathematics, epidemic models,
population dynamics, biology, artificial neural networks, fluidmechanics, electromag-
netic theory, financial mathematics, oceanography and physical processes are among
these (see, e.g., [8, 39]). For instance, in [23], the integro-differential equation used
to modelling infectious diseases in optimal control strategies for policy decisions and
applications in COVID-19 has been expressed as follows:

∂t S (t, p) = R0

N0
S (t, p)

t−δI P∫

t−δI P−δCO

∫

P

∫

K
γ̂I (t, p, p̃, κ, t − τ) μ ( p̃, κ) ∂τ S (τ, p̃) dκdp̃dτ ,

S (τ, p) = S0 (τ, p) ,

where

• P ⊂ R
n, n ∈ N is the set of features characterizing dissimilar styles of populations

(e.g. sex, age),
• N0 ∈ N≥1 the aggregate number of people aforethought,
• K ⊂ R

n, n ∈ N represent a parametrization of different courses of diseases and
μ : P × R≥0 the probability of a person with property p̃ ∈ P suffering from
disease (t, p, p̃, τ ) ∈ R>0 × P2 × R>0.
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• R0 the basic breeding number, i.e. the number of people infected by a single
infectious individual in a completely responsive population.

• γ̂I : R>0 × P2 × K × R → R≥0, with ‖γI (t, p, p̃, .)‖L1(0,∞) = 1∀ (t, p, p̃) ∈
R≥0 ×P2, τ → γI (t, p, p̃, t − τ) the probability of an infection event between
a person with property p̃ infected at time τ infecting a person with property p at
time t .

• S : [−δI P − δCO , 0]×P → R, (t, p, τ ) ∈ [0, T ]×P×(−δI P − δCO , 0] and S0
is the initial datum. Further, the Incubation Period has been defined by δI P ∈ R>0,
and the infectious (COntagious) period by δCO ∈ R>0.

That’s why, many researchers have been pondering the Fredholm integro-
differential equations (FIDEs) for a long time. An overview of existence and
uniqueness results for the solution of FIDEs can be found in some references such as
[1, 19] (see also references therein). Furthermore, researchers employed fitted analyt-
ical approaches because of the difficulty of obtaining accurate solutions to these types
of problems. Some of these methods are reproducing kernel Hilbert space method
[7], Nyström method [38], Touchard polynomials method [2], Tau method [20, 32],
Collocation and Kantorovich methods [37], Galerkin method [12, 41, 43], Boole col-
location method [14], parameterization method [17], Legendre collocation matrix
method[44], variational iteration technique [19]. The increasing interest in recent years
is not limited to only FIDEs, but also the numerical solutions of linear and nonlinear
Volterra or Volterra-Fredholm integro-differential equations are increasing in popular-
ity. Recently, Turkyilmazoglu presented an effective technique for solving the linear
FIDEs and nonlinear Volterra-Fredholm-Hammerstein integro-differential equations
based on the Galerkin method [41, 42] (see also references therein).

Weconsider a singularly perturbedFredholm integro-differential equation (SPFIDE)
with integral boundary condition as follows:

Lu := εu′ (x) + a(x)u (x) + λ

l∫

0

K (x, s)u(s)ds = f (x), x ∈ 	, (1)

u(0) = μu (l) +
l∫

0

c(s)u(s)ds + A, (2)

where 	 = (0, l]
(
	̄ = 	 ∪ {x = 0}). 0 < ε ≤ 1 is a perturbation parameter. λ, A

and μ ≤ 0 are given constants. We assume that a(x) ≥ α > 0, c (x) ≤ 0, f (x) and
K (x, s) are the sufficiently smooth functions satisfying certain regularity conditions
to be specified. Under these conditions, the solution u(x) of the problem (1)-(2) has
in general initial layer at x = 0 for small values of ε. This means that the derivatives
of the solution become unbounded for small values of perturbation parameter near
x = 0.

The above-mentioned papers, related to FIDEs, were dealt mainly with the regular
cases (i.e., when the boundary layers are absent). Scientists have also given numerical
approaches to singular perturbation situations of FIDEs in recent years. Amiraliyev
et al. [3, 5] proposed an exponentially fitted difference method on a uniform mesh
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for solving first and second-order linear SPFIDEs, demonstrating that the approach is
first-order convergent uniformly in ε. Difference schemes of the fitted homogeneous
type with an accuracy of O(N−2 ln N ) on a piecewise uniform mesh for this type of
problems are given in [4, 15]. It should also be noted that in [30, 31], for the numeri-
cal solution of singularly perturbed Volterra integro-differential equations, first-order
difference schemes on a piecewise uniform mesh are given, followed by Richardson
extrapolation to obtain the second order of accuracy.

The aim of this work is to present a homogeneous (non-hybrid) type difference
scheme for the numerical solution of SPFIDE with an integral condition. A special
technique is necessary to establish the appropriate difference scheme and investigate
the error analysis for the numerical solution of suchproblems.The scheme is built using
the integral identity method and suitable quadrature rules, with the remainder terms
in integral form. The goal is to develop an ε-uniformly second-order homogeneous
finite difference method that produces uniform convergent numerical approximations
in order to solve problem (1)-(2).

The content is arranged as follows: Some properties of the solution of (1)-(2) are
given in Sect. 2. A finite difference scheme and a special piecewise uniform mesh are
presented in Sect. 3. The stability and convergence analysis of this scheme are shown
in Sect. 4. The numerical results of two examples to verify the theoretical estimates
are presented in Sect. 5. Finally, the work ends with a summary of the conclusions in
Sect. 6.

2 Properties of the exact solution

We now present some properties of the solution of (1)-(2), which are needed in later
sections for the analysis of the appropriate numerical solution. Here, we will use the
following notations:

‖g‖∞ ≡ ‖g‖∞,	̄ = max
0≤x≤l

|g (x)| , ‖g‖1 ≡ ‖g‖1,	 =
l∫

0

|g (x)| dx .

Lemma 1 Assume that a, f ∈ C2[0, l] and ∂mK
∂xm ∈ C[0, l]2, (m = 0, 1, 2). Moreover

|λ| <
α

(|μ| + ‖c‖1 + 1) max
0≤x≤l

∫ l

0
|K (x, s)| ds

. (3)

Then the solution u(x) of the problem (1)-(2) satisfies the bounds

∣∣∣u(k)(x)
∣∣∣ ≤ C

{
1 + 1

εk
e− αx

ε

}
, x ∈ [0, l], k = 0, 1, 2. (4)
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Proof From (1) we have the following relation for u (x):

u (x) = u (0) e
− 1

ε

x∫
0
a(τ )dτ

+ 1

ε

x∫

0

f (ξ) e
− 1

ε

x∫
ξ

a(τ )dτ

dξ

−λ

ε

x∫

0

e
− 1

ε

x∫
ξ

a(τ )dτ

⎛
⎝

l∫

0

K (ξ, s) u (s) ds

⎞
⎠ dξ.

By using the boundary condition (2) we get

u (0) =

μ
ε

l∫
0

f (ξ) e
− 1

ε

l∫
ξ

a(τ )dτ

dξ + 1
ε

l∫
0
c (x)

⎡
⎣ x∫

0
f (ξ) e

− 1
ε

x∫
ξ

a(τ )dτ

dξ

⎤
⎦ dx + A

1 − μe
− 1

ε

l∫
0
a(τ )dτ

−
l∫
0
c (x) e

− 1
ε

x∫
0
a(τ )dτ

dx

−
μλ
ε

l∫
0
e
− 1

ε

l∫
ξ

a(τ )dτ
(

l∫
0
K (ξ, s) u (s) ds

)
dξ

1 − μe
− 1

ε

l∫
0
a(τ )dτ

−
l∫
0
c (x) e

− 1
ε

x∫
0
a(τ )dτ

dx

−

λ
ε

l∫
0
c (x)

⎡
⎣ x∫

0
e
− 1

ε

x∫
ξ

a(τ )dτ
(

l∫
0
K (ξ, s) u (s) ds

)
dξ

⎤
⎦ dx

1 − μe
− 1

ε

l∫
0
a(τ )dτ

−
l∫
0
c (x) e

− 1
ε

x∫
0
a(τ )dτ

dx

. (5)

Since μ ≤ 0 and c (x) ≤ 0, the denominator is bounded below by one.
Also, we can write the numerator of (5) as

∣∣∣∣∣∣∣
μ

ε

l∫

0

f (ξ) e
− 1

ε

l∫
ξ

a(τ )dτ

dξ + 1

ε

l∫

0

c (x)

⎡
⎣

x∫

0

f (ξ) e
− 1

ε

x∫
ξ

a(τ )dτ

dξ

⎤
⎦ dx

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
μλ

ε

l∫

0

e
− 1

ε

l∫
ξ

a(τ )dτ

⎛
⎝

l∫

0

K (ξ, s) u (s) ds

⎞
⎠ dξ

∣∣∣∣∣∣∣

+
∣∣∣∣∣∣A − λ

ε

l∫

0

c (x)

⎡
⎣

x∫

0

e
− 1

ε

x∫
ξ

a(τ )dτ

⎛
⎝

l∫

0

K (ξ, s) u (s) ds

⎞
⎠ dξ

⎤
⎦ dx

∣∣∣∣∣∣
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≤ |A| + |μ| α−1 ‖ f ‖∞
(
1 − e− αl

ε

)
+ α−1 ‖ f ‖∞

l∫

0

|c (x)|
(
1 − e− αx

ε

)
dx

+ |μ| |λ|α−1 ‖u‖∞
(
1 − e− αl

ε

)
max
0≤ξ≤l

l∫

0

|K (ξ, s)| ds

+ |λ|α−1 ‖u‖∞

l∫

0

|c (x)|
(
1 − e− αl

ε

)
dx max

0≤ξ≤l

l∫

0

|K (ξ, s)| ds. (6)

Considering (5) and (6) together, we obtain

|u (0)| ≤ |A| + (|μ| + ‖c‖1) α−1 ‖ f ‖∞

+ (|μ| + ‖c‖1) |λ| α−1 ‖u‖∞ max
0≤ξ≤l

l∫

0

|K (ξ, s)| ds. (7)

Later on, according to the maximum principle for L1u = εu′ (x) + a (x) u (x) from
(1), we have

‖u‖∞ ≤ |u (0)| + α−1 ‖ f ‖∞ + α−1 |λ| ‖u‖∞ max
0≤x≤l

l∫

0

|K (x, s)| ds.

Now, considering the estimate of (7) instead of u (0) in the above inequality by virtue
of (3), we acquire

‖u‖∞ ≤ |A| + (|μ| + ‖c‖1 + 1) α−1 ‖ f ‖∞

1 − (|μ| + ‖c‖1 + 1) |λ|α−1 max
0≤x≤l

l∫

0

|K (x, s)| ds
,

which implies the validity of (4) for k = 0. The proof of (4) for k = 1, 2 can be proved
in a similar way as in [3, 4]. �

3 Designing of the numerical method

Let ωN be any non-uniform mesh on [0, l] :

ωN = {0 < x1 < ... < xN = l, hi = xi − xi−1}

and

ωN = ωN ∪ {x0 = 0} , �i = hi + hi+1

2
.
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Prior to describing our numerical technique, we present certain notations for the mesh
functions. To any mesh function v(x) described on ωN , we utilize

vi = v(xi ), v_
x,i

= vi − vi−1

hi
, ‖v‖1 ≡ ‖v‖1,ωN

=
N∑
i=1

�i |vi | . (8)

We construct the numerical method using the identity

χ−1
i h−1

i

xi∫

xi−1

Luϕi (x)dx = χ−1
i h−1

i

xi∫

xi−1

f (x)ϕi (x)dx, 1 ≤ i ≤ N , (9)

with the basis functions
ϕi (x) = e− ai (xi−x)

ε

and

χi = h−1
i

xi∫

xi−1

ϕi (x)dx = 1 − e−aiρi

aiρi
, ρi = hi

ε
.

We note that the function ϕi (x) is the solution of the problem

−εϕ′(x) + aiϕ(x) = 0, ϕ(xi ) = 1, xi−1 < x < xi .

Using the method of exact difference schemes [6, 13, 24, 45] (see also [34], pp. 207-
214), for the differential part from (9), we obtain

χ−1
i h−1

i

xi∫

xi−1

[
εu′(x) + a(x)u(x)

]
ϕi (x)dx = εθi u_

x,i
+ aiui

+ χ−1
i h−1

i

xi∫

xi−1

[a(x) − a(xi )] u(x)ϕi (x)dx (10)

with
θi = aiρi

1 − e−aiρi
e−aiρi . (11)

By Newton interpolation formula with respect to mesh point (xi−1, xi ) we have

a(x) − a(xi ) = (x − xi )a_
x,i

+ a′′(ξi (x))
2

(x − xi−1)(x − xi ).

Therefore we get
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512 M. E. Durmaz et al.

χ−1
i h−1

i

xi∫

xi−1

[a(x) − a(xi )] u(x)ϕi (x)dx = a_
x,i

χ−1
i h−1

i

xi∫

xi−1

(x − xi )u(x)ϕi (x)dx

+ 1

2
χ−1
i h−1

i

xi∫

xi−1

a′′(ξi (x))(x − xi−1)(x − xi )u(x)ϕi (x)dx . (12)

Also using

u(x) = u(xi ) −
xi∫

x

u′(s)ds

in the first term at the right side of (12), we have

χ−1
i h−1

i

xi∫

xi−1

[a(x) − a(xi )] u(x)ϕi (x)dx =
⎛
⎝a_

x,i
χ−1
i h−1

i

xi∫

xi−1

(x − xi )ϕi (x)dx

⎞
⎠ ui

+ R(1)
i ,

where

R(1)
i = 1

2
χ−1
i h−1

i

xi∫

xi−1

a′′(ξi (x))(x − xi−1)(x − xi )u(x)ϕi (x)dx

− a_
x,i

χ−1
i h−1

i

xi∫

xi−1

(x − xi )ϕi (x)

( xi∫

x

u′(s)ds
)
dx . (13)

Simple calculation gives

χ−1
i h−1

i

xi∫

xi−1

(x − xi )ϕi (x)dx = hiδi ,

with

δi = e−aiρ

1 − e−aiρ
− 1

aiρ
. (14)

It is easy to see that −1 ≤ δi ≤ 0. So, the identity (10) degrades to

χ−1
i h−1

i

xi∫

xi−1

[
εu′(x) + a(x)u(x)

]
ϕi (x)dx = εθi u_

x,i
+ āi ui + R(1)

i , (15)

where
āi = ai + a_

x,i
hiδi (16)
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and δi is given by (14). Analogously we derive

χ−1
i h−1

i

xi∫

xi−1

f (x)ϕi (x)dx = f̄i + R(2)
i , (17)

where

f̄i = fi + f_
x,i
hiδi , (18)

R(2)
i = 1

2
χ−1
i h−1

i

xi∫

xi−1

f ′′(ηi (x))(x − xi−1)(x − xi )ϕi (x)dx . (19)

It remains to obtain an approximation for integral term from (1). Using the Taylor
expansion

K (x, s) = K (xi , s) + (x − xi )
∂

∂x
K (xi , s) + (x − xi )2

2

∂2

∂x2
K
(
ξi (x), s

)
,

we get

χ−1
i h−1

i λ

xi∫

xi−1

ϕi (x)

⎛
⎝

l∫

0

K (x, s)u(s)ds

⎞
⎠dx = λ

l∫

0

K (xi , s)u(s)ds

+ hiδiλ

l∫

0

∂

∂x
K (xi , s)u(s)ds + R(3)

i

≡ λ

l∫

0

K(xi , s)u(s)ds + R(3)
i , (20)

where

K(xi , s) = K (xi , s) + hiδi
∂

∂x
K (xi , s), (21)

R(3)
i = 1

2
λχ−1

i h−1
i

xi∫

xi−1

(x − xi )
2ϕi (x)

⎛
⎝

l∫

0

∂2

∂x2
K
(
ξi (x), s

)
u(s)ds

⎞
⎠ dx . (22)

Next, if the first term at the right side of (20) is operated by applying the composite
trapezoidal integration rule with the remainder term in the integral form [4], we get

λ

l∫

0

K(xi , s)u(s)ds = λ

N∑
j=0

� jKi j u j + R(4)
i , (23)
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514 M. E. Durmaz et al.

where

R(4)
i = 1

2
λ

N∑
j=1

x j∫

x j−1

(x j − ξ)(x j−1 − ξ)
d2

dξ2

(K(xi , ξ)u(ξ)
)
dξ (24)

and

�i = hi + hi+1

2
, (1 ≤ i ≤ N − 1) , �0 = h1

2
, �N = hN

2
.

To approximate the boundary condition (2), using again the composite trapezoidal
integration rule, we have

u0 = μuN +
N∑
j=0

� j c j u j + A + ri , (25)

where

ri = 1

2

N∑
j=1

x j∫

x j−1

(x j − ξ)(x j−1 − ξ)
d2

dξ2

(
c(ξ)u(ξ)

)
dξ. (26)

After taking into consideration (15), (17), (20) and (23) in (9) we obtain the following
discrete identity for u(x):

εθi u_
x,i

+ āi ui + λ

N∑
j=0

� jKi j u j + Ri = f̄i (27)

with remainder term
Ri = R(1)

i − R(2)
i + R(3)

i + R(4)
i , (28)

where R(1)
i , R(2)

i , R(3)
i , R(4)

i and ri are defined by (13), (19), (22), (24) and (26) respec-
tively.

Based on (27) we propose the following difference scheme for approximating (1)-
(2):

LN yi := εθi y_x,i + āi yi + λ

N∑
j=0

� jKi j y j = f̄i , 1 ≤ i ≤ N , (29)

y0 = μyN +
N∑
j=0

� j c j y j + A, (30)

where θi , āi , f̄i and Ki j are given by (11), (16), (18) and (21) respectively.
To discretize the interval [0, l], we will use the piecewise-uniform Shishkin type

mesh. As the problem (1)-(2) has an exponential initial layer in the neighborhood at
x = 0, we divide [0, l] into two subinterval [0, σ ] and [σ, l] . For an even N , a uniform
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mesh with N/2 intervals is placed on each subinterval, where the transition point σ,

which separates the fine and coarse portions of ωN , that is defined as

σ = min

{
l

2
, α−1ε ln N

}
.

Hence, if we denote by h(1) and h(2) the stepsizes in [0, σ ] and [σ, l] respectively, our
piecewise-uniform mesh can be expressed as

ωN =
{
xi = ih(1), i = 0, 1, ..., N

2 ; h(1) = 2σ
N ;

xi = σ + (i − N
2

)
h(2), i = N

2 + 1, ..., N ; h(2) = 2(l−σ)
N .

4 The convergence

We proceed to estimate the error of the approximate solution zi = yi − ui ,
(0 ≤ i ≤ N ) . From (27) and (29) we have

LN zi := εθi z_x,i + āi zi + λ

N∑
j=0

� jKi j z j = Ri , 1 ≤ i ≤ N , (31)

z0 = μzN +
N∑
j=0

� j c j z j − ri , (32)

where the truncation error functions ri and Ri is given by (26) and (28).
It should be noted that since a ∈ C2[0, l] and |δi | ≤ 1, then exist a number ᾱ such

that for sufficiently large values of N will be āi ≥ ᾱ > 0 (δi is defined by (14)).

Lemma 2 Assume that a, f , c ∈ C2[0, l] and ∂mK
∂xm , ∂m+1K

∂x∂sm ∈ C2[0, l]2, (m = 0, 1, 2).
Then the truncation error functions Ri and ri satisfy the estimates

‖R‖∞,ωN
≤ CN−2 ln N , (33)

|r | ≤ CN−2 ln N . (34)

Proof First, we estimate the remainder term ri . From the explicit expression (26),
under the condition of Lemma 1, we obtain

|ri | ≤ C
N∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)(1 + ∣∣u′(ξ)
∣∣+ ∣∣u′′(ξ)

∣∣)dξ

≤ C

⎛
⎜⎝

N∑
j=1

h3j +
N∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε
e− αξ

ε

⎞
⎟⎠ dξ
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+ C
N∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e− αξ

ε dξ

≤ C

⎛
⎜⎝

N∑
j=1

h3j +
N∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e− αξ

ε

⎞
⎟⎠ dξ. (35)

Now we find a convergence error estimate for the first term in the right-side of (35) in
our special piecewise-uniform mesh

N∑
j=1

h3j = N

2

∣∣∣h(1)
∣∣∣3 + N

2

∣∣∣h(2)
∣∣∣3 = 4σ 3N−2 + 4(l − σ)3N−2

≤ CN−2. (36)

Note that the above estimate is valid for values both σ = l
2 and σ = α−1ε ln N .

For the second two term in the right-side of (35), we find the estimate for the case
σ = l

2 . Then it has the form l
2 < α−1ε ln N and h(1) = h(2) = lN−1. Thus we get

N∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e

−αξ
ε dξ ≤

∣∣h(1)
∣∣2

ε2

l∫

0

e
−αξ

ε dξ

≤
∣∣h(1)
∣∣2

ε
α−1
(
1 − e

−αl
ε

)

≤ 2α−2lN−2 ln N

≤ CN−2 ln N , 1 ≤ i ≤ N . (37)

For two term in the right-side of (35), we find the estimate for the case
σ = α−1ε ln N < l

2 . From this inequality, we can write

N∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e

−αξ
ε dξ =

N/2∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e

−αξ
ε dξ

+
N∑

j= N
2 +1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e

−αξ
ε dξ. (38)

For the first term in the right-side of (38), we have
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N/2∑
j=1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e

−αξ
ε dξ =

∣∣∣h(1)
∣∣∣2

σ∫

0

1

ε2
e

−αξ
ε dξ

≤
∣∣h(1)
∣∣2

ε
α−1

≤ 2lα−2N−2 ln N

≤ CN−2 ln N . (39)

For the second term in the right-side of (38), we obtain

N∑
j= N

2 +1

x j∫

x j−1

(x j − ξ)(ξ − x j−1)
1

ε2
e

−αξ
ε dξ = 2α−1

N∑
j= N

2 +1

x j∫

x j−1

(
x j − x − h(2)

2

)
1

ε
e

−αx
ε dx

≤ 2α−1h(2)

l∫

σ

1

ε
e

−αx
ε dx

= 2α−2h(2)
(
e

−ασ
ε − e

−αl
ε

)

≤ 2α−2h(2)N−1

≤ CN−2. (40)

Therefore, the estimates (36), (37), (39) and (40) along with (35) yield (34).
Further, to confirm (33), we will estimate the remainder terms R(1)

i , R(2)
i , R(3)

i and

R(4)
i separately. For R(4)

i , taking into account the boundedness of ∂2K
∂x2

, from (24)
similar to above, we get

∣∣∣R(4)
i

∣∣∣ ≤ CN−2 ln N . (41)

Next, we will estimate R(1)
i . Since a ∈ C2[0, l], |x − xi−1| ≤ hi and |x − xi | ≤ hi ,

by using Lemma 1, it follows that

∣∣∣R(1)
i

∣∣∣ ≤ Ch2i + ∣∣ax,iδi ∣∣ hi
xi∫

xi−1

∣∣u′(x)
∣∣ dx

≤ Ch2i + Chi

xi∫

xi−1

∣∣u′(x)
∣∣ dx

≤ C

⎛
⎝h2i + hi

xi∫

xi−1

1

ε
e

−αx
ε dx

⎞
⎠ . (42)
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Wefind the estimate for the caseσ = l
2 .Then

l
2 < α−1ε ln N and h(1) = h(2) = lN−1.

Hence we have

hi

xi∫

xi−1

1

ε
e

−αx
ε dx ≤

∣∣h(1)
∣∣2

ε

≤ CN−2, 1 ≤ i ≤ N . (43)

We now consider the case σ = α−1ε ln N < l
2 in (42) on ωN . The inequalities

hi

xi∫

xi−1

1

ε
e

−αx
ε dx ≤

∣∣h(1)
∣∣2

ε
=
(
2σ

N

)2 1
ε

=
(
2α−1ε ln N

N

)2 1
ε

= 4α−2εN−2 ln2 N

≤ l

2
4α−1N−2 ln N

≤ CN−2 ln N , 1 ≤ i ≤ N

2
,

hi

xi∫

xi−1

1

ε
e

−αx
ε dx ≤ h(2)α−1

(
e

−αxi−1
ε − e

−αxi
ε

)
= h(2)α−1e

−αxi−1
ε

(
1 − e

−αh(2)
ε

)

≤ h(2)α−1e
−αxi−1

ε

≤ h(2)α−1N−1

≤ CN−2,
N

2
+ 1 ≤ i ≤ N

imply that

hi

xi∫

xi−1

1

ε
e

−αx
ε dx ≤ CN−2 ln N , 1 ≤ i ≤ N . (44)

Therefore, from (43) and (44), we deduce that

∣∣∣R(1)
i

∣∣∣ ≤ CN−2 ln N , 1 ≤ i ≤ N . (45)

Third, we will estimate R(2)
i . Since f ∈ C2[0, l], |x − xi−1| ≤ hi and |x − xi | ≤ hi ,

by using Lemma 1, it follows that

∣∣∣R(2)
i

∣∣∣ = 1

2
χ−1
i h−1

i

∣∣∣∣∣∣
xi∫

xi−1

f ′′(ηi (x))(x − xi−1)(x − xi )ϕi (x)dx

∣∣∣∣∣∣
≤ Ch2i

≤ CN−2. (46)
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Note that the above estimate is valid for values both σ = l
2 and σ = α−1ε ln N .

Fourth, we will estimate R(3)
i . By taking into account the boundedness of ∂2K

∂x2
, from

(22) it follows that

∣∣∣R(3)
i

∣∣∣ ≤ 1

2
χ−1
i h−1

i

∣∣∣∣∣∣
xi∫

xi−1

(x − xi )
2ϕi (x)

⎛
⎝

l∫

0

∂2

∂x2
K
(
ξi (x), s

)
u(s)ds

⎞
⎠ dx

∣∣∣∣∣∣
≤ Ch2i

≤ CN−2. (47)

Note that the above estimate is valid for values both σ = l
2 and σ = α−1ε ln N . The

inequalities (41), (45), (46) and (47) finish the proof of (33). �
Theorem 1 Let a, c and K satisfy the assumptions from Lemma 2. Moreover

|λ| <
ᾱ

(|μ| + ‖c‖1 + 1) max
0≤i≤N

N∑
j=1

� j
∣∣Ki, j
∣∣
. (48)

Then for the solution z of the difference problem (31)-(32) holds the estimate

‖z‖∞,ωN
≤ CN−2 ln N .

Proof Equation (31) may be rewritten as

εθi zx̄,i + āi zi = Fi , 1 ≤ i ≤ N − 1, (49)

where

Fi = Ri − |λ|
N∑
j=0

� jKi j z j .

From (49) we get

zi = εθi

εθi + āi hi
zi−1 + hi Fi

εθi + āi hi
.

The solution to the above first-order difference equation will be as follows:

zi = z0Qi +
i∑

k=1

φk Qi−k, (50)
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where

Qi−k =
⎧⎨
⎩
1, k = i,

i∏
l=k+1

εθl
εθl+āl hl

, 0 ≤ k ≤ i − 1,
φk = hi Fi

εθi + āi hi
.

Then, from (32) and (50), we obtain

z0 =
μ

N∑
k=1

hk Fk
εθk+ākhk

QN−k +
N∑
i=1

�i ci

(
i∑

k=1

hk Fk
εθk+ākhk

Qi−k

)
− r

1 − μQN −
N∑

k=1
�kck Qk

. (51)

Since, the denominator is bounded below by one and the equality (51) reduces to

∣∣∣∣∣μ
N∑

k=1

hk Fk
εθk + ākhk

QN−k +
N∑
i=1

�i ci

(
i∑

k=1

hk Fk
εθk + ākhk

Qi−k

)
− r

∣∣∣∣∣
≤ C
(|μ| ‖F‖∞,ωN

+ ‖c‖1 ‖F‖∞,ωN
+ |r |) . (52)

Considering (51) and (52) together, we have

|z (0)| ≤ C (|μ| + ‖c‖1) ‖R‖∞,ωN

+C

⎛
⎝(|μ| + ‖c‖1) ᾱ−1 |λ| max

1≤i≤N

N∑
j=1

� j
∣∣Ki j
∣∣ ‖z‖∞,ωN

+ |r |
⎞
⎠ . (53)

Now, applying discrete maximum principle for (49), we get

‖z‖∞,ω̄N
≤ |z (0)| + ᾱ−1 ‖R‖∞,ωN

+ |λ| α−1 max
1≤i≤N

N∑
j=1

� j
∣∣Ki j
∣∣ ‖z‖∞,ω̄N

.

Finally, instead of z (0) in the above inequality, considering the estimate of (53), we
get

‖z‖∞ ≤ C (|μ| + ‖c‖1 + 1) α−1 ‖R‖∞,ωN
+ C |r |

1 − (|μ| + ‖c‖1 + 1) |λ|α−1 max
1≤i≤N

N∑
j=1

� j
∣∣Ki j
∣∣
.

Therefore

‖z‖∞ ≤ C
(‖R‖∞,ωN

+ |r |) .
This inequality together with (33) and (34) produces the desired result. �
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5 Numerical results

Here, we have considered two specific problems to demonstrate the feasibility of the
proposed approach. The following iterative technique will be used.

y(n)
i =

f̄i + εθi
hi

y(n)
i−1 − λ

i−1∑
j=0

� jKi j y
(n)
j − λ

N∑
j=i+1

� jKi j y
(n−1)
j

εθi
hi

+ āi + λ�iKi i
, i = 1, 2, ..., N ,

y(n)
0 = μy(n−1)

N +
N∑
j=0

� j c j y
(n−1)
j + A, n = 1, 2, ...,

where y(0)
1 , y(0)

2 , ..., y(0)
N are the given initial iterations.

Example 1 We consider the test problem

εu′ (x) + u (x) + 1

20

1∫

0

xu (s) ds = − ε

(1 + x)2
+ 1

1 + x
+ xε

(
1 − e− x

ε

)

+x ln (1 + x) − 19

20
x
[
ε
(
1 − e− x

ε

)
+ ln (1 + x)

]

+ 1

20
x

[
ε
(
e− x

ε − e− 1
ε

)
+ ln

(
2

1 + x

)]
, 0 < x ≤ 1,

u (0) + 2u (1) +
1∫

0

su (s) ds = 4 + ε2 + (2 − ε (1 + ε)) e− 1
ε − ln 2.

The exact solution of test problem is given by

u (x) = e− x
ε + 1

1 + x
.

We define the exact errors as follows:

eNε = ‖y − u‖∞,ω̄N
.

The results of the problem obtained by using different ε and N values for both the
present method and solving exact of SPFIDE are given in the following tables 1-6.
In addition, in tables, exact errors are shown according to the exact solutions and
approximate solutions.

Figs. 1 and 2 represent the solution plots for different values of ε and N in Example
1, according to the table values. The figures clearly show that the exact solution and
the approximated solution for Example 1 overlap, thereby showing the aptness of the
proposed techniques.
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Table 1 The numerical results
of Example 1 for ε = 2−4 and
N = 64

xi ui yi e64i

0.0081 1.8704 1.8701 0.0003

0.0162 1.7557 1.6543 0.1014

0.0243 1.6541 1.4174 0.2367

0.0486 1.4132 0.9774 0.4358

0.0729 1.2435 0.8890 0.3545

0.1377 0.9894 0.8380 0.1514

0.2187 0.8508 0.7877 0.0631

0.4447 0.6930 0.6778 0.0152

0.6757 0.5968 0.5989 0.0021

0.8605 0.5375 0.5509 0.0134

Table 2 The numerical results
of Example 1 for ε = 2−4 and
N = 128

xi ui yi e128i

0.0047 1.9229 1.9223 0.0006

0.0094 1.8511 1.7829 0.0682

0.0235 1.6636 1.2688 0.3948

0.0376 1.5117 0.9836 0.5281

0.0799 1.2045 0.8777 0.3268

0.1363 0.9930 0.8375 0.1555

0.2162 0.8537 0.7879 0.0658

0.4450 0.6929 0.6776 0.0153

0.6630 0.6013 0.6028 0.0015

0.8592 0.5379 0.5515 0.0136

Table 3 The numerical results
of Example 1 for ε = 2−4 and
N = 256

xi ui yi e256i

0.0027 1.9550 1.9549 0.0001

0.0108 1.8306 1.6244 0.2062

0.0162 1.7557 1.3597 0.3960

0.0297 1.5929 0.9796 0.6133

0.0864 1.1714 0.8720 0.2994

0.1620 0.9355 0.8208 0.1147

0.2565 0.8124 0.7659 0.0465

0.4486 0.6911 0.6757 0.0154

0.6730 0.5977 0.5995 0.0018

0.8566 0.5386 0.5518 0.0132
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Table 4 The numerical results
of Example 1 for ε = 2−8 and
N = 128

xi ui yi e128i

0.0006 1.8587 1.7957 0.0630

0.0012 1.7372 1.4661 0.2711

0.0024 1.5429 1.0599 0.4830

0.0056 1.2312 0.9909 0.2403

0.0649 0.9391 0.9379 0.0012

0.1108 0.9003 0.9009 0.0006

0.3097 0.7635 0.7718 0.0083

0.5086 0.6629 0.6785 0.0156

0.7075 0.5857 0.6086 0.0229

0.9064 0.5245 0.5547 0.0302

Table 5 The numerical results
of Example 1 for ε = 2−8 and
N = 256

xi ui yi e256i

0.0003 1.9167 1.8776 0.0391

0.0010 1.7701 1.3999 0.3702

0.0019 1.6191 1.0523 0.5668

0.0054 1.2446 0.9911 0.2535

0.0100 1.0677 0.9867 0.0810

0.0977 0.9110 0.9109 0.0001

0.3029 0.7675 0.7749 0.0074

0.5005 0.6664 0.6811 0.0147

0.7057 0.5863 0.6083 0.0220

0.9033 0.5254 0.5546 0.0292

Table 6 The numerical results
of Example 1 for ε = 2−8 and
N = 512

xi ui yi e512i

0.0002 1.9522 1.9292 0.0230

0.0010 1.7638 1.1965 0.5673

0.0014 1.6924 1.0489 0.6435

0.0061 1.2042 0.9904 0.2138

0.0100 1.0675 0.9867 0.0808

0.1004 0.9088 0.9089 0.0001

0.3018 0.7682 0.7760 0.0078

0.5032 0.6652 0.6805 0.0153

0.7008 0.5880 0.6104 0.0224

0.9022 0.5257 0.5555 0.0298
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Numerical results of Example 1 for =2-4.

Exact solution
Approximate solution for N=64
Approximate solution for N=128
Approximate solution for N=256

Fig. 1 Numerical results of Example 1 for ε = 2−4 and N = 64, 128, 256
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Numerical results of Example 1 for =2-8.

Exact solution
Approximate solution for N=128
Approximate solution for N=256
Approximate solution for N=512

Fig. 2 Numerical results of Example 1 for ε = 2−8 and N = 128, 256, 512

Example 2 Consider the other problem:

εu′ (x) + 4

1 + x2
u (x) + 1

10

1∫

0

e1−xsu (s) ds = 2x + 1, 0 < x ≤ 1,

u (0) + 2u (1) +
1∫

0

sin
(πs
2

)
u (s) ds = −2.
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Table 7 Maximum point-wise errors and the rates of convergence for different vales of ε and N

ε N = 64 N = 128 N = 256 N = 512 N = 1024

20 0.05368 0.01607 0.00452 0.00117 0.00029

1.74 1.83 1.95 2.01

2−4 0.05558 0.01687 0.00481 0.00127 0.00032

1.72 1.81 1.92 1.99

2−8 0.05610 0.01703 0.00496 0.00132 0.00034

1.72 1.78 1.91 1.96

2−12 0.05544 0.01683 0.00497 0.00135 0.00035

1.72 1.76 1.88 1.95

2−16 0.05680 0.01736 0.00516 0.00142 0.00037

1.71 1.75 1.86 1.94

eN 0.05680 0.01736 0.00516 0.00142 0.00037

pN 1.66 1.74 1.86 1.93

The exact solution to this problem is unknown. For this reason, we estimate errors
and calculate solutions using the double-mesh method, which compares the obtained
solution to a solution computed on a mesh that is twice as fine. We introduce the
maximum point-wise errors and the computed as

eNε = max
i

|yε,N
i − ỹε,2N

2i |∞,ωN , eN = max
ε

eNε ,

where ỹε,2N
i is the approximate solution of the respective method on the mesh

ω̃2N = {xi/2 : i = 0, 1, ..., 2N }

with

xi+1/2 = xi + xi+1

2
for i = 0, 1, ..., N − 1.

Wealso describe the rates of convergence and computed ε-uniform rate of convergence
of the form

pNε = ln
(
eNε /e2Nε

)
ln 2

, pN = ln
(
eN/e2N

)
ln 2

.

The values of ε and N for which we resolve the Example 2 are ε =
20, 2−4, 2−8, 2−12, 2−16 and N = 64, 128, 256, 512, 1024. From Table 7, we observe
that the ε-uniform rate of convergence pN is monotonically increasing towards two,
therefore in agreement with the theoretical rate given by Theorem 1.
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6 Conclusion

This article comprises a numerical method employed to solve a linear SPFIDE of
the form (1)-(2). On a special piecewise uniform mesh, the differential equation is
discretized by using a fitted finite difference operator. The composite trapezoidal inte-
gration rule with the remainder term in integral form has been used for the integral part
in (1) and initial condition (2), yielding uniform second-order convergence. Specific
test problems have been performed to assess and test the performance of the numerical
scheme. The obtained results can be presented to more complicated FIDEs.

References

1. Abdulghani, M., Hamoud, A., Ghandle, K.: The effective modification of some analytical techniques
for Fredholm integro-differential equations. Bulletin of the InternationalMathematical Virtual Institute
9, 345–353 (2019)

2. Abdullah, J.T.: Numerical solution for linear Fredholm integro-differential equation using Touchard
polynomials. Baghdad Sci. J. 18(2), 330–337 (2021)

3. Amiraliyev, G.M., Durmaz, M.E., Kudu, M.: Uniform convergence results for singularly perturbed
Fredholm integro-differential equation. J. Math. Anal. 9(6), 55–64 (2018)

4. Amiraliyev, G.M., Durmaz, M.E., Kudu, M.: Fitted second order numerical method for a singularly
perturbed Fredholm integro-differential equation Bull. Belg. Math. Soc. - Simon Stevin 27(1), 71–88
(2020)

5. Amiraliyev, G.M., Durmaz, M.E., Kudu, M.: A numerical method for a second order singularly per-
turbed Fredholm integro-differential equation. Miskolc Math. Notes 22(1), 37–48 (2021)

6. Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for singularly perturbed
pseudo-parabolic equations. Turkish J. Math. 19, 207–222 (1995)

7. Arqub, O.A., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using
reproducing kernel Hilbert space method. Appl. Math. Comput. 219(17), 8938–8948 (2013)

8. Brunner, H.: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian
Sloan. In: Dick, J., et al. (eds.) Numerical Analysis and Computational Solution of Integro-Differential
Equations, pp. 205–231. Springer, Cham (2018)

9. Cakir, M.: A numerical study on the difference solution of singularly perturbed semilinear problem
with integral boundary condition. Math. Model. Anal. 21(5), 644–658 (2016)

10. Cakir, M., Arslan, D.: A new numerical approach for a singularly perturbed problem with two integral
boundary conditions. Comput. Appl. Math. 40, 189 (2021)

11. Cannon, J.R.: The solution of the heat equation subject to the specification of energy. Q. Appl. Math.
21(2), 155–160 (1963)

12. Chen, J.,He,M.,Huang,Y.:A fastmultiscaleGalerkinmethod for solving second order linear Fredholm
integro-differential equation with Dirichlet boundary conditions. J. Comput. Appl. Math. 364, 112352
(2020)

13. Cimen, E., Cakir, M.: A uniform numerical method for solving singularly perturbed Fredholm integro-
differential problem. Comput. Appl. Math. 40, 42 (2021)

14. Dag, H.G., Bicer, K.E.: Boole collocation method based on residual correction for solving linear
Fredholm integro-differential equation. Journal of Science and Arts 3(52), 597–610 (2020)

15. Durmaz, M.E., Amiraliyev, G.M.: A robust numerical method for a singularly perturbed Fredholm
integro-differential equation. Mediterr. J. Math. 18, 1–17 (2021)

16. Durmaz, M.E., Amiraliyev, G.M., Kudu, M.: Numerical solution of a singularly perturbed Fredholm
integro differential equation with Robin boundary condition. Turk. J. Math. 46(1), 207–224 (2022)

17. Dzhumabaev, D.S., Nazarova, K.Z., Uteshova, R.E.: Amodification of the parameterizationmethod for
a linear boundary value problem for a Fredholm integro-differential equation. Lobachevskii J. Math.
41, 1791–1800 (2020)

18. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Tech-
niques for Boundary Layers. Chapman Hall/CRC, New York (2000)

123



An efficient numerical method for a singularly perturbed… 527

19. Hamoud, A.A., Ghadle, K.P.: Usage of the variational iteration technique for solving Fredholm integro-
differential equations. J. Comput. Appl. Mech. 50(2), 303–307 (2019)

20. Hosseini, S.M., Shahmorad, S.: Tau numerical solution of Fredholm integro-differential equations with
arbitrary polynomial bases. Appl. Math. Model. 27(2), 145–154 (2003)

21. Ionkin, N.I.: Solution of a boundary value problem in heat conduction theory with nonlocal boundary
conditions. Differ. Equ. 13, 294–304 (1977)

22. Kadalbajoo, M.K., Gupta, V.: A brief survey on numerical methods for solving singularly perturbed
problems. Appl. Math. Comput. 217, 3641–3716 (2010)

23. Keimer, A., Pflug, L.: Modeling infectious diseases using integro-differential equations: Optimal con-
trol strategies for policy decisions and Applications in COVID-19, (2020), https://doi.org/10.13140/
RG.2.2.10845.44000

24. Kudu, M., Amirali, I., Amiraliyev, G.M.: A finite-difference method for a singularly perturbed delay
integro-differential equation. J. Comput. Appl. Math. 308, 379–390 (2016)

25. Kudu, M.: A parameter uniform difference scheme for the parameterized singularly perturbed problem
with integral boundary condition, Adv. Differ. Equ., 170 (2018)

26. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation
Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions,
Rev World Scientific, Singapore (2012)

27. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)
28. Nicoud, F., Schönfeld, T.: Integral boundary conditions for unsteady biomedical CFD applications.

Int. J. Numer. Methods Fluids 40, 457–465 (2002)
29. O’Malley, R.E.: Singular Perturbations Methods for Ordinary Differential Equations. Springer, New

York (2013)
30. Panda,A.,Mohapatra, J.,Amirali, I.:A second-order post-processing technique for singularly perturbed

Volterra integro-differential equations. Mediterr. J. Math. 18, 231 (2021)
31. Panda, A., Mohapatra, J., Reddy, N.R.: A comparative study on the numerical solution for singularly

perturbed Volterra integro-differential equations. Comput. Math. Model. 32, 364–375 (2021)
32. Pour-Mahmoud, J., Rahimi-Ardabili, M.Y., Shahmorad, S.: Numerical solution of the system of Fred-

holm integro-differential equations by the Tau method. Appl. Math. Comput. 168(1), 465–478 (2005)
33. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential

Equations. Springer-Verlag, Berlin Heidelberg (2008)
34. Samarskii, A.A.: The Theory of Difference Schemes. Marcell Dekker, Inc., New York (2001)
35. Shakti, D., Mohapatra, J.: A second order numerical method for a class of parameterized singular

perturbation problems on adaptive grid. Nonlinear Eng. 6(3), 221–228 (2017)
36. Shakti, D., Mohapatra, J.: A uniformly convergent numerical scheme for singularly perturbed differ-

ential equation with integral boundary condition arising in neural network. Int. J. Computing Science
and Mathematics 10(4), 340–350 (2019)

37. Tair, B., Guebbai, H., Segni, S., Ghiat, M.: An approximation solution of linear Fredholm integro-
differential equation using Collocation and Kantorovich methods. J. Appl. Math, Comput (2021)

38. Tair, B., Guebbai, H., Segni, S., Ghiat, M.: Solving linear Fredholm integro-differential equation by
Nyström method. J. Appl. Math. Comput. Mech. 20(3), 53–64 (2021)

39. Thieme, H.R.: A model for the spatial spread of an epidemic. J. Math. Biol. 4, 337–351 (1977)
40. Turkyilmazoglu, M.: Analytic approximate solutions of parameterized unperturbed and singularly

perturbed boundary value problems. Appl. Math. Model. 35(8), 3879–3886 (2011)
41. Turkyilmazoglu, M.: An effective approach for numerical solutions of high-order Fredholm integro-

differential equations. Appl. Math. Comput. 227, 384–398 (2014)
42. Turkyilmazoglu, M.: High-order nonlinear Volterra - Fredholm - Hammerstein integro-differential

equations and their effective computation. Appl. Math. Comput. 247, 410–416 (2014)
43. Turkyilmazoglu, M.: Effective computation of exact and analytic approximate solutions to singular

nonlinear equations of Lane-Emden-Fowler type. Appl. Math. Model. 37, 7539–7548 (2013)
44. Yalcinbas, S., Sezer, M., Sorkun, H.H.: Legendre polynomial solutions of high-order linear Fredholm

integro-differential equations. Appl. Math. Comput. 210(2), 334–349 (2009)

123

https://doi.org/10.13140/RG.2.2.10845.44000
https://doi.org/10.13140/RG.2.2.10845.44000


528 M. E. Durmaz et al.

45. Yapman, Ö., Amiraliyev, G.M.: Convergence analysis of the homogeneous second order difference
method for a singularly perturbed Volterra delay-integro-differential equation. Chaos Solit. Fractals
150, 111100 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition
	Abstract
	1 Introduction
	2 Properties of the exact solution
	3 Designing of the numerical method
	4 The convergence
	5 Numerical results
	6 Conclusion
	References




