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Abstract
The study considers a directed dynamics reaction-diffusion competition model to
study the density of evolution for a single species population with harvesting effect
in a heterogeneous environment, where all functions are spatially distributed in time
series. The dispersal dynamics describe the growth of the species, which is distributed
according to the resource function with no-flux boundary conditions. The analysis
investigates the existence, positivity, persistence, and stability of solutions for both
time-periodic and spatial functions. The carrying capacity and the distribution func-
tion are either arbitrary or proportional. It is observed that if harvesting exceeds the
growth rate, then eventually, the population drops down to extinction. Several numer-
ical examples are considered to support the theoretical results.
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1 Introduction

A classical reaction-diffusion equation (RDE) arises in many areas of sciences and
engineering, such as chemistry [1], pattern formation [2, 3], ecological invasions [4],
spread of epidemics [5], biophysics [6, 7], and many other areas [8–10]. In general, an
RDE represents a mathematical model where several components interact. In ecology,
a classical RDE model plays an important role in studying different types of species
dynamics [10].

The biological diversity of the earth is affected by habitat loss and fragmentation.
Understanding the consequences of these effects on the persistence of native popu-
lations and communities is one of the challenging problems in conservation biology.
Interactions of two species may be altered due to habitat loss and fragmentation,
which illustrates the critical links between spatial ecology and conservation [11].
For instance, during an avian influenza outbreak, different culling strategies could be
incorporated as a control measure to minimize the long-term effects on genetic diver-
sity [12]. Environmental factors do not only affect to the biological diversity but they
influence human diseases too. Eco-epidemiological models are used to investigate the
transmission dynamics of an infectious disease engaged with a prey-predator connec-
tion in the impact of sickness in ecological models [13–15]. A model consists of a
four-dimensional system of differential equations is considered to study the global
dynamics for a honeybee colony infested by virus-carrying Varroa mites in [16].

In theoretical ecology, the determination of distribution (density) of species (or
organisms) and the structure of communities is one of the main goals where species
(or organisms) interact with each other in a given environment [17]. In the recent
decade, the role of spatial effects in preserving biodiversity has received a great deal
of attention in the literature on conservation [18–21].

There is a substantial difference between classical and directed diffusion. For
instance, in classical diffusion some movements are unpredictable; whereas a directed
diffusion focuses on selecting habitat influences. Populations differ in the diffusion
strategies they employ as well as in their environmental intensities [22–24]. Further,
the competition between populations also has influences on the diffusion [25–27].

Both autonomous and non-autonomous population models subject to either impul-
sive or continuous harvesting were studied in [28, 29] and found that the impulsive
strategy can be as good as the continuous one but cannot outperform. The effect of peri-
odic habitat fluctuations on anonlinear insect populationmodel has been studied in [30]
and illustrate the possibility of a significant increase in population numbers using both
theorically and experimentally. The harvesting problem in the seasonal environment
was considered in [31], presented a general harvesting model with seasonal carrying
capacity and developed a theoretical foundation. A diffusive predator-prey models are
analyzed and studied in [32, 33], complex dynamics of these models are visualized
in the presence of the predator harvesting. A density-dependent prey-predator model
having the effect of harvesting is investigated in [34].Moreover, prey-predator popula-
tion model with fear and Allee effects is considered in [35]. This paper investigates the
global existence of the solution of a diffusive directed dynamic (DDD) model, which
is a variant of the classical RDE model. In the proposed DDD model, we consider
the resource distribution is uniform per capita according to the distribution function
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with the homogeneous Neumann boundary condition which is interpreted as there is
no flux of population on the boundary; or the number of populations that come in and
go out at each point on the boundary is equal at each moment, so the total number
of populations is in balance. In addition, we incorporate the harvesting effect in the
DDD model and study its dynamics.

In the present DDDmodel, we consider a dispersed function-driven diffusion when
species migrate to its favorable environment, not just the carrying capacity. Note that
the desired environment of any species can be equivalent to the carrying capacity, but
the converse is not true [36]. There can be any partition of carrying capacity where the
resource for any population is high. Thus, species move to that location from where
it exists. The stability of solutions of the equation with the logistic type of growth
was first studied in [37] and then extended in [38] with general growth function.
The influence of harvesting for a two-species competition was studied in [39] with a
spatially heterogeneous environment. In this paper, we consider the time and space
involving disperse diffusion.

One important observation is how diffusion terms are added to an RDE or a DDD
model. Commonly, in a regular diffusion, it takes the form d�v(t, x), where d is the
specific diffusion rate and v(t, x) is the density of the species at time t and position
x . In the case of directed diffusion, carrying capacity-driven diffusion is an important

term, and has the form d�
(

v(t,x)
K (t,x)

)
, where K (t, x) is the carrying capacity of the envi-

ronment. In this paper we incorporated the new directed diffusion term, d�
(

v(t,x)
P(t,x)

)
,

known as the disperse diffusion, where P(t, x) is some positive and bounded resource
distribution function. Both K , and P have the same dimension as v.

Many organisms, which follow this type of diffusion strategy, compete for common
land, food habitat, etc., slow each other’s growth rate and diffuse according to the
properties of the common space they need. For instance, like deers, they tend to move
toward green areas for the food chain. If a forest area is in-habitat, they move to
other spaces or become extinct. This study explores a population distribution that has
a tremendous application in different areas of ecology and economy; instantaneous
examples are in river and ocean ecology to observe the seasonal behaviors of different
species, includingwild animals andwinter birds.We investigate globalwell-posedness
of the mathematical model, determine conditions on harvesting rate for which non-
trivial equilibrium states exist and examine their global stability for both spatial and
time dependent periodic functions with the same period. For time periodic growth,
resource, capacity and harvesting functions, we prove the existence of time-periodic
states.

The main objectives of the study are: (1) We will study with an influencing diffu-
sion model where the resource distribution is uniform per capita instead of random to
observe that the coherent strategy is favorable for the species in competition. (2) It is
expected that any species’ movement (diffusion) according to the distribution func-
tion changes the persistence and extinction threshold. (3) Including the new diffusion
strategy in the model leads the species to be depending on the resource distribution
function, which governs the environmental carrying capacity. (4) In addition, theory
does not give any idea about the profile of nonzero equilibrium state vs , except when
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resource function P is proportional to the capacity function K . We have explored this
numerically since it is important from ecological considerations.

The rest of the paper is organized as follows: InSect. 2, theDDDmodel is developed.
In Sect. 3, the existence and uniqueness of solution of a DDDmodel is presented along
with a convergence analysis. In Sect. 4, we present the proof of the existence of time-
periodic solution in a bounded region. The dynamics of harvesting and its applications
are being described in Sect. 5. Some examples are presented in Sect. 6 for applications.
Finally, Sect. 7 concludes the summary and discussion of the results.

2 Mathematical model

To investigate the spatial effects in ecology, the random RDE models are well estab-
lished and used widely (see [1]–[6]). These models support the following three
important types of ecological phenomena: (1) A minimal patch size is needed to
sustain a population and its growth, (2) Biological invasions generate the propagation
of wavefronts, and (3) The spatial patterns are formed in the distributions of popula-
tions in homogeneous environments. By observing the classical diffusion model, in
this paper, we consider the following DDD system to model the density of the species
v(t, x):

∂v

∂t
= d�

( v

P

)
+ rv

(
1 − v

K

)
− Yhv, (t, x) ∈ �, (1)

∇
( v

P

)
· n = 0, (t, x) ∈ ∂�, (2)

v(0, x) = v0(x), x ∈ �, (3)

where �⊂R
N is an open domain, N∈{1, 2, 3}, n is the outward normal vector to the

boundary. P(t, x) is a resource distribution function, K (t, x) is the carrying capacity
of the environment, r(t, x) is the specific growth rate, Yh(t, x) is the harvesting func-
tion, v0 is the initial density of the species, � = (0, T ]×�, ∂� = (0, T ]×∂� for
any T > 0, and �∞ = (0,∞)×�. In this model, the distribution function ensures
the resource is uniformly distributed per capita, also the population is assumed to
be distributed according to the available per resource. The modified diffusion term
leads to the homogeneous Neumann boundary condition, and was first introduced in
[18] motivated by the choice of optimal harvesting strategies. This alternative model
of time-dependent spatial reaction-diffusion equation to study the population distri-
bution in a heterogeneous environment, where diffusive transport of population is
proportional to the gradient of population density per unit capacity instead of just
the population density. In this model, populations are distributed based on available
resources. It is an influencing diffusion model where the resource distribution is uni-
form per capita to observe that the coherent strategy is favorable for the species in
competition. Other nonlinear diffusion types, based on the experimental data, were
considered in population dynamics [40–42].

Remark 1 The functions P , K , and r are all depend on both t , and x , unless otherwise
state.
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Throughout this paper, we assume P > 0 in �, P ∈ C1+α/2,2+α(�∞) for some
α ∈ (0, 1) and functions P , ∂P

∂t , K , and ∂K
∂t are uniformly bounded from below and

above in �.
The equilibrium point of the above system is v∗(x), where v∗ = 0 is the obvious

as a trivial steady-state. Our primary interest is non-trivial equilibrium. In absence
of harvesting (Yh ≡ 0), all possible equilibrium points of the above system can be
obtained as either for K (x)

P(x) ≡ k or K (x)
P(x) �≡ k, where k is a constant. If P(x) = K (x),

then v∗(x) = K = P is the only non-trivial equilibrium point. If the resource function
and capacity function are not proportional then v∗(x) is the non-trivial steady-state.
For non-zero harvesting (Yh �≡ 0), v∗(x) is the unique steady-state neither K (x)
nor P(x). It is also noted that when diffusion coefficient is small, equilibrium state
v∗(x) ≈ K (x), whereas when diffusion effects are large, v∗(x) is proportional to P(x)
as presented numerically.

We define g(t, x, v) := r
(
1 − v

K

)
, and h(t, x, v) := vg and have the following

assumptions:

(h1) h is uniformly Hölder continuous in�× J , where J is either a suitable sub-interval
of R or a sector between lower and upper solutions. Moreover, functions h and
∂ f
∂v

are C1([0, T ]) as functions of t , Hölder continuous in � in the x variable and
continuous in R as functions of v.

(h2) g(t, x, v) is strictly monotonically decreasing in v, g(t, x, v)< 0 when v > K ,
and g(t, x, v) > 0 when 0 < v < K , for (t, x) ∈ �.

(h3) g(t, x, ·) ∈ C2(R).

It is easy to verify that the logistic growth function with positive bounded r follows
the above (h1)–(h3) assumptions. In the following sections, for establishing several
results, we assume the conditions (h1)-(h3) hold.

3 Existence, uniqueness, and convergence analysis

For convenience, everywhere in this section, we assume

(i) P and K are Hölder continuous in x and continuously differentiable periodic
function, K > 0 for any (t, x) ∈ �,

(ii) r is continuous in �∞, periodic and r > 0 for any (t, x) ∈ �.

The domain� is nonempty open boundedwith ∂� ∈ Cα+1, 0 < α < 1.We first state
and proof the existence and uniqueness theorem for the time dependent distribution
function, carrying capacity, and specific growth rate.

Theorem 1 Let the initial function v0(x) ∈ C(�), v0(x) > 0, and Yh(t, x) ≡ 0 in a
nonempty open bounded sub-domain �s ⊂ �. Then there exists a unique attractor v

of the problem (1)-(3) and the solution is positive.

Proof For simplicity and to translate the diffusion term in classical style, we first make
the following substitution

w(t, x) := v

P
,
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and since the function P is positive and bounded from above in �, the new variable
w is well defined. We obtain that function w satisfies

∂w

∂t
+ w

P

∂P

∂t
− d

P
�w = rw

(
1 − Pw

K

)
.

Then the equivalent system of (1)-(3) is

∂w

∂t
+ w

P

∂P

∂t
− d

P
�w = rw (1 − Hw) , (t, x) ∈ �, (4)

∂w

∂n
= 0, (t, x) ∈ ∂�, (5)

w(0, x) = v(0, x)

P(0, x)
, x ∈ �, (6)

where we define

H = sup
(t,x)∈�

P(t, x)

K (t, x)
. (7)

For some particular functions in the domain, either K is proportional to P or they are
non-proportional. It is obvious that the operator L := d∗(t, x)� is uniformly elliptic
with the coefficient d∗ := d/P that is Hölder continuous. Therefore, according to
Lemma A2, to show that the existence of the unique solution of (4)-(6), we only
need to construct an ordered pair of upper and lower solutions. To construct an upper
solution, denote

β(t, x) := 1

P

∂P

∂t
, (8)

and consider a constant C such that

C ≥ sup
(t,x)∈�∞

v0(x)

P(t, x)
≥ sup

(t,x)∈�

v0(x)

P(t, x)
, (9)

and r(1 − HC) < 0 which can be found according to (h2). Note that since v0 is
bounded in � and K is bounded from below,

sup
(t,x)∈�

v0(x)

P(t, x)
< ∞.

Next, choose

γ ≥ sup
(t,x)∈�

|β(t, x)|
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and let w∗(t, x) ≡ Ceγ t . Then

∂w∗

∂t
− d

P
�w∗ = γw∗,

gives

w∗ (
r − r Hw∗ − β

) ≤ γw∗, (10)

for some particular bounded functions P , and K if condition (7) holds. Thus, the first
inequality of (57) in Definition A2 holds. Further,

∂w∗

∂n
= 0 and w∗ ≥ w(0, x).

Therefore,w∗ is an upper solution of (4)-(6) byDefinitionA2.The functionw∗(t, x) ≡
0 is obviously a lower solution.Check that the right-hand side of the following function

l(t, x, w, K , P) := rw

(
1 − P

K
w

)
− βw

is continuously differentiable with respect tow and we can denote themaximal deriva-
tive of l in w for each (t, x)

g∗(t, x) = sup
{−lw(t, x, w, K , P), w∗ ≤ w ≤ w∗} ,

g∗(t, x) = sup
{
lw(t, x, w, K , P), w∗ ≤ w ≤ w∗} .

Then, the Lipschitz condition (59) holds and by Lemma A2, there exists a unique
solution of the problem (4)-(6) satisfying w∗ ≤ w ≤ w∗. Finally, using the inverse
substitution we obtain a unique solution of (1)-(3).

To ensure that the solution is positive for any non-negative initial function v0(x),
we assume

s(t, x) = weAt = v

P
eAt ,

where

A := w∗ sup
(t,x)∈�

[r(t, x)H ] + sup
(t,x)∈�

|β(t, x)|.

The inverse substitution, w = se−At into (4)-(6), we have

∂s

∂t
− d

P
�s =

[
rw

(
1 − P

K
w

)
− βw + Aw

]
eAt ≥ 0, (t, x) ∈ �, (11)

∂s

∂n
=0, (t, x) ∈ ∂�, (12)
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s(0, x) =w(0, x) ≥ 0, x ∈ �. (13)

To study (11)-(13), note that s is non-negative since w ≥ w∗ = 0. Then, assume that
s has a zero at some point (t0, x0). If (t0, x0) ∈ � then according to the maximum
principle, we obtain s(t, x) ≡ 0 in �, for details, see Lemma A3. According to the
assumption of the theorem s(0, x) > 0 on some open bounded sub-domain �s ⊂ �

and s ∈ C(�) since w is a solution of (4)-(6). Therefore s(t, x) > 0 in �. Moreover,
if s(t1, x1) = 0 for some (t1, x1) ∈ ∂� then by Lemma A2, we have ∂s

∂n < 0 at (t1, x1)
which contradicts the no flux boundary conditions in (11)-(13). This concludes the
proof. �

Now we consider the system (1)-(3) without harvesting and with spatially dis-
tributed parameters P(x), K (x), and r(x):

∂v

∂t
= d�

(
v

P(x)

)
+ r(x)v

(
1 − v

K (x)

)
, (t, x) ∈ �, (14)

∇
(

v

P(x)

)
· n = 0, (t, x) ∈ ∂�, (15)

v(0, x) = v0(x), x ∈ �. (16)

The result of Theorem 1 will apparently valid for (14)-(16). The next result shows that
when the carrying capacity and the intrinsic growth rate are only distributed spatially,
and P(x) ≡ K (x) then v(x) :≡ K (x) ≡ P(x) is an equilibrium solution of (14)-
(16). Also, the solution v(t, x) of (1)-(3) with Yh(t, x) ≡ 0 converges to K (x) for any
v0(x) ≥ 0, v0(x) �≡ 0 [37], with the following estimated convergence speed

∫

�

|v(t, x) − K (x)|dx ≤ e− inf� r(x)t
∫

�

K (x) dx .

We now consider the arbitrary distribution function, P(x) and carrying capacity,
K (x), and we have the following result.

Theorem 2 If the rational function K (x)
P(x) �≡ k, where k is a constant then v∗(x) is

an equilibrium solution of (14)-(16). Moreover, for any v0(x) ≥ 0, v0(x) �≡ 0 the
solution v(t, x) of (1)-(3) with Yh(t, x) ≡ 0 converges to v∗(x), with the estimated
convergence speed as

∫

�

|v(t, x) − v∗(x)|dx ≤ Ce−ϒ t , where ϒ = inf
�

r(x) > 0. (17)

Proof Define the constants

M∗ := max

{
sup
x∈�

v(0, x), sup
x∈�

v∗(x)
}

, and m∗ := min

{
inf
x∈�

v(T , x), inf
x∈�

v∗(x)
}

,
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for some fixed moment T > 0. Note that m∗ > 0 since v∗(x) > 0 by assumption and
v(T , x) > 0 for any x ∈ �, T > 0 by Theorem 1.

Let vM∗(t, x) and vm∗(t, x) be the solutions of (14)-(16) satisfying initial conditions
vM∗(0, x) = M∗ ≥ v0(x) and vm∗(T , x) = m∗ ≤ v(T , x), respectively. According
to Definition A2 the function vM∗(t, x) satisfies (57) and it is an upper solution of
(14)-(16). The function vm∗(t, x) is a lower solution of the problem (14)-(16) with
the initial condition at the moment T which is v(T , x). Then, by Theorem 1 we have
vM∗(t, x) ≥ v(t, x) and v(t, x) ≤ vm∗(t, x) for any t ≥ T such that

vm∗ ≤ v ≤ vM∗ for any (t, x) ∈ [T ,∞) × �.

Thus, for any positive v∗(x), the above inequalities imply

vm∗(t, x) − v∗(x) ≤ v(t, x) − v∗(x) ≤ vM∗(t, x) − v∗(x) for any
(t, x) ∈ [T ,∞) × �. (18)

The following two inequalities are deduced from the same idea as above and hence

vm∗(t, x) − v∗(x) ≤ 0, vM∗(t, x) − v∗(x) ≥ 0, (t, x) ∈ [T ,∞) × �. (19)

Combining (18) and (19) leads to

|v(t, x) − v∗(x)| ≤ max{vM∗(t, x) − v∗(x), v∗(x) − vM∗(t, x)}, (t, x)

∈ [T ,∞) × �.

Thus, integrating both sides yields.

∫

�

|v(t, x) − v∗(x)|dx

≤ max

⎧⎨
⎩

∫

�

(vM∗(t, x) − v∗(x)) dx,
∫

�

(v∗(x) − vm∗(t, x)) dx

⎫⎬
⎭ . (20)

We now define z(t, x) := vM∗(t, x) − v∗(x) and then z ≥ 0 by (19) and substituting
in (14)-(16), we have

∂z

∂t
= d�

(
z(t, x)

P(x)

)
+ d�

(
v∗(x)
P(x)

)
+ r(x)

K (x)
vM∗(t, x)(K − vM∗(t, x)). (21)

Integrating both sides of (21) over � and using the Neumann boundary conditions
with the application of the Gauss theorem yields

d

dt

∫

�

z(t, x) dx = d∇
(

v∗(x)
P(x)

)
+

∫

�

r(x)

K (x)
vM∗(K − vM∗) dx . (22)
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Since vM∗ is an upper solution of (14)-(16), we have

d�
(vM∗

P

)
+ r(x)

K (x)
vM∗ (K (x) − vM∗) ≤ 0, which yields

r(x)

K (x)
vM∗ (vM∗ − K (x)) ≥ d�

(vM∗

P

)
.

Integrating over the domain, using boundary conditions, and ∇( vM∗
P

) ≥ 0 we get

∫

�

r(x)

K (x)
vM∗ (vM∗ − K (x)) dx ≥ 0. (23)

Since K (x) �≡ P(x), for a real constant α>0, it is possible to write K (x) = P(x)+α

and the gradient, ∇
(

v∗(x)
P(x)

)
will no longer be zero. Then for some v∗(x) and P(x),

∇
(

v∗(x)
P(x)

)
≤ 0 which yields the following inequalities from (22) and we have

d

dt

∫

�

z(t, x) dx ≤ −
∫

�

r(x)

K (x)
vM∗(vM∗ − K (x)) dx

= −
∫

�

r(x)

K (x)
z(vM∗ − K (x)) dx −

∫

�

r(x)

K (x)
v∗(vM∗ − K (x)) dx

≤ −
∫

�

r(x)

K (x)
z(vM∗ − K (x)) dx

≤ −
∫

�

r(x)z(t, x) dx ≤ −ϒ

∫

�

z(t, x) dx .

Therefore by using Grönwall’s lemma A4, we get

∫

�

z(t, x) dx ≤ e−ϒ t
∫

�

z(0, x) dx ≤ e−ϒ t
∫

�

(M∗ − v∗(x)) dx,

which implies

∫

�

(vM∗(t, x) − v∗(x)) dx ≤ e−ϒ t
∫

�

(M∗ − v∗(x)) dx . (24)

While we consider the lower solution, vm∗(t, x), similarly, it is easy to establish the
following integrals relation.

∫

�

(v∗(x) − vm∗(t, x)) dx ≤ e−ϒ t
∫

�

(v∗(x) − m∗) dx . (25)
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Finally from (20), (24), and (25) it follows that

∫

�

|v(t, x) − v∗(x)|dx ≤ Ce−ϒ t , for any t ∈ [T ,∞),

where

C ≡ max

⎧⎨
⎩

∫

�

(M∗ − v∗(x)) dx,
∫

�

(v∗(x) − m∗) dx

⎫⎬
⎭ .

If t is too large and tends to ∞ then

lim
t→∞

∫

�

|v(t, x) − v∗(x)|dx = 0, (26)

for any non-negative and not identically zero initial value v0(x) in �. Equality (26)
implies the uniqueness of the positive equilibrium solution. �

For rational functions, all non-negative and non-trivial solutions converge to the
positive steady-state K (x), and we can estimate the convergence rate. The result is
prescribing in the following Theorem.

Theorem 3 If the function K (x) ≡ αP(x), α > 0 in (14)-(16) then for any v0(x) ≥
0, v0(x) �≡ 0 the solution v(t, x) of (1)-(3) with Yh(t, x) ≡ 0 converges to K (x),
with the convergence speed estimated as

∫

�

|v(t, x) − K (x)|dx ≤ αe−ϒ t
∫

�

P(x) dx .

As far as the function K (x) and P(x) are rational, the proof is very straightforward
and similar to Theorem 2 and is omitted.

4 T0−periodicity and unique periodic attractor

When the resource function K (t, x) and positive distribution P(t, x) are both space
and time-dependent, generally, there is no more a positive equilibrium solution of (1)-
(3) without having the effect of harvesting. However, if P(t, x), K (t, x) and r(t, x)
are periodic bounded functions with the same period T0, under certain conditions, we
can establish the existence of a positive attracting periodic solution.

Recall again the substitution w = v/P , where P is assumed to be strictly positive,
bounded, Hölder continuous in x , periodic and at least C1(R+) in t . Then the problem
(1)-(3) with Yh(t, x) ≡ 0 becomes

∂w

∂t
− d

P
�w = rw

(
1 − Pw

K

)
− βw, (t, x) ∈ �, (27)
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∂w

∂n
= 0, (t, x) ∈ ∂�, (28)

w(0, x) = v(0, x)

P(0, x)
, x ∈ �, (29)

where β(t, x) = 1
P

∂P
∂t .

We also denote gmin = inf
{
g(t, x), (t, x) ∈ �

}
and gmax = sup{

g(t, x), (t, x) ∈ �
}
, for any bounded continuous function g(t, x).

Theorem 4 Suppose that rmin − βmax > 0 and

2H rmin(rmin − βmax) − rmax

(
rmax − βmin

2

)
> 0, (30)

where H is defined in (7), then there exists a unique periodic solution w∗ of (27)-(29)
in the interval

〈
rmin − βmax

rmax
,
rmax − βmin

rmin

〉
.

Proof Denote

w = rmin − βmax

rmax
, w = rmax − βmin

rmin
.

It is easy to check that

∂w

∂t
− d

P
�w = 0 = w

(
rmin − βmax − rmaxHw

) ≤ w

(
r − β − r

P

K
w

)
,

∂w

∂t
− d

P
�w = 0 = w (rmax − βmin − rminHw) ≥ w

(
r − β − r

P

K
w

)
.

These inequalities imply that w and w are the constant lower and upper solutions of
(27)-(29) with the initial conditions w(0, x) = w and w, respectively. Then according
to Lemma A4 from Appendix there exists a pair of T0-periodic solutions w∗ and w∗
satisfying

w ≤w∗(t, x) ≤ w∗(t, x) ≤ w, (t, x) ∈ �, (31)

∂w∗
∂t

− d

P
�w∗ =w∗ (r(t, x) − β(t, x) − r Hw∗) , (t, x) ∈ �, (32)

∂w∗

∂t
− d

P
�w∗ =w∗ (

r(t, x) − β(t, x) − r Hw∗) , (t, x) ∈ �, (33)

∂w∗
∂n

=∂w∗

∂n
= 0, (t, x) ∈ ∂�. (34)

123



Spatio-temporal solutions of a diffusive directed dynamics... 615

Now we will show that w∗ ≡ w∗ if condition (30) holds. Subtracting (32) from (33),
we construct

∂

∂t
(w∗ − w∗) − d

P
�(w∗ − w∗) = r(w∗ − w∗) − β(w∗ − w∗) − r H(w∗2 − w2∗).

(35)

Introducing s := (w∗ − w∗)
√
P in the above equation, we have

∂

∂t

(
s√
P

)
− d

P
�

(
s√
P

)
= r

(
s√
P

)
− β

(
s√
P

)
− r H

(
s√
P

)
(w∗ + w∗).

(36)

Rearranging

1√
P

∂s

∂t
− 1

2

s

P3/2

∂P

∂t
= d

P
�

(
s√
P

)
+ r

(
s√
P

)

− β

(
s√
P

)
− r H

(
s√
P

)
(w∗ + w∗). (37)

Multiplying both sides of (37) by s
√
P and rearranging, we have

s
∂s

∂t
= d

s√
P

�

(
s√
P

)
+ s2

(
r − β

2

)
− r Hs2(w∗ + w∗). (38)

Due to periodicity of K , P, w∗, andw∗, the function s(t, x) is also T0-periodic, there-
fore

0 =
T0∫

0

∫

�

s
∂s

∂t
dx dt

= −d

T0∫

0

∫

�

∣∣∣∇
(

s√
P

) ∣∣∣
2
dx dt +

T0∫

0

∫

�

s2
[(

r − β

2

)
− r H(w∗ + w∗)

]
dx dt

≤ −d

T0∫

0

∫

�

∣∣∣∇
(

s√
P

) ∣∣∣
2
dx dt

−
[
2Hrmin(rmin − βmax) − rmax

(
rmax − βmin

2

)] T0∫

0

∫

�

s2 dx dt

≤ 0.

In the first inequality of the previous line we used w∗ + w∗ ≥ 2w; the last inequality
follows from the condition (30). Therefore w∗ − w∗ = 0 and we obtain a unique
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periodic solution w∗ = w∗ = ŵ of (27)-(29) in the interval 〈w,w〉. Moreover,
according to Lemma A4 for any initial function w0(x) ∈ 〈w,w〉 the corresponding
solution of (27)-(29) satisfies w(t, x) → ŵ(t, x) as t → ∞ for x ∈ �. �

5 Persistence and extinction with harvesting

We now consider the harvesting term effect (i.e., Yh(t, x) �≡ 0) in the system (1)-(3)
to explore some advanced study connected between intrinsic growth rate, carrying
capacity, and harvesting function.

Introducing w = v/P in system (1)-(3) becomes

∂w

∂t
− d

P
�w = − 1

P

∂P

∂t
w + rw (1 − Hw) − Yhw, (t, x) ∈ �, (39)

∇w · n = 0, (t, x) ∈ ∂�, (40)

w(0, x) = v(0, x)

P(0, x)
, x ∈ �. (41)

The system (39)-(41) also has a unique positive solution, and we have the following
result.

Theorem 5 Let v0(x) ∈ C(�), v0(x) > 0 in �, then there exists a unique positive
solution v(t, x) of the problem (1)-(3).

Proof The proof of the theorem follows using after the immediate substitution of
(1)-(3), which brings out (39)-(41) and as a consequence of the proof of Theorem 1.
According to Theorem 1, to prove it, we only need to construct an upper-lower solu-
tion pair. Consider a constant C as in (9) then r(t, x)(1 − HC) < 0 which can be
found according to (h2). Furthermore, choose γ1 ≥ sup

(t,x)∈�

∣∣ 1
P

∂P
∂t − Yh(t, x)

∣∣ and let

w(t, x) ≡ Ceγ1t which is valid since v0 is bounded in � and K , and P are bounded
from below. Then

∂w

∂t
− d

P
�w = γ1w, gives

w

(
r − r Hw − 1

P

∂P

∂t
+ Yh

)
≤ γ1w. (42)

Further,

∂w

∂n
= 0 and w ≥ w(0, x).

Therefore, w(t, x) is an upper solution of (39)-(41) by Definition A2. The function
w(t, x) ≡ 0 is obviously a lower solution. The right-hand side function of (39)-(41)

g(t, x, w, K , P) := rw (1 − Hw) −
(
1

P

∂P

∂t
+ Yh

)
w
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is continuously differentiable with respect tow and we can denote themaximal deriva-
tive of g in w for each (t, x) such that

g(t, x) = sup
{−gw(t, x, w, K , P), w ≤ w ≤ w

}
, and

g(t, x) = sup
{
gw(t, x, w, K , P), w ≤ w ≤ w

}
.

Then, the Lipschitz condition (59) holds and by Lemma A2 there exists a unique
solution of the problem (1)-(3) satisfying w ≤ w ≤ w. The positivity of the solution
is obvious according to Theorem 1. �

In the following stairs, we will consider the case where all the functions are time-
independent, and we assume K (t, x) ≡ K (x), P(t, x) ≡ P(x), r(t, x) ≡ r(x), and
Yh(t, x) ≡ Yh(x). Thus, the system (1)-(3) becomes

∂v

∂t
= d�

(
v

P(x)

)
+ r(x)v

(
1 − v

K (x)

)
− Yh(x)v, (t, x) ∈ �, (43)

∇
(

v

P(x)

)
· n = 0, (t, x) ∈ ∂�, (44)

v(0, x) = v0(x), x ∈ �. (45)

To study the problem (43)-(45), we first consider the following two propositions for a
general parabolic equation as described in [17].

Proposition 1 ( [17], Proposition 3.1) Consider the following general form of a model

∂v

∂t
= ∇ · d(x)∇v + �b(x) · ∇v + f (x, v) in � × (0,∞), (46)

d(x)
∂v

∂n
+ β1(x)v = 0 on ∂� × (0,∞). (47)

Assume that f (x, v) ≤ vg0(x) for x ∈ �, where g0(x) is a bounded measurable
function if �b/d is a gradient, and g0(x) ∈ Cα(�) if �b/d is not a gradient. If the largest
eigenvalue σ1 of

∇ · d(x)∇ψ + �b(x) · ∇ψ + g0(x)ψ = σψ in � × (0,∞), (48)

d(x)
∂ψ

∂n
+ β1(x)ψ = 0 on ∂� × (0,∞), (49)

is negative, then (46)-(47) has no positive equilibria, and all non-negative solutions
decay exponentially to zero as t → ∞.

Proposition 2 ([17], Proposition 3.2, and 3.3) Suppose that f (x, v) = vg(x, v) with
g(x, v) of class C2 in v and Cα in x and there exists a L > 0 such that g(x, v) < 0
for v > L. If the principal eigenvalue σ1 is positive in the problem
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∇ · d(x)∇ψ + �b(x) · ∇ψ + g(x, 0)ψ = σψ in � × (0,∞),

d(x)
∂ψ

∂n
+ β1(x)ψ = 0 on ∂� × (0,∞),

then (46)-(47) has a minimal positive equilibrium v∗, and all solutions to (46)-(47)
which are initially positive on an open subset of � are eventually bounded below by
orbits which increase toward v∗ as t → ∞. Moreover, if g(x, v) is strictly decreasing
in v for v ≥ 0 then the minimal positive equilibrium is the only positive equilibrium
for (46)-(47).

Now we will demonstrate sufficient conditions for extinction and persistence for
the harvesting model (43)-(45).

Theorem 6 Let the function f (t, x, v, K ) := r(x)v(1−v/K ) satisfies the assumptions
(h1)-(h2) and let sup

t>0
[r(x)(1 − v/K )] < Yh(x) for all x ∈ �. Then for any v0(x) the

solution of system (43)-(45) converges to zero as t → ∞.

Proof Once again, we assume w(t, x) = v
P(x) and then Eq. (43)-(45) becomes

∂w

∂t
= d

P(x)
�w + r(x)w

(
1 − P(x)w

K (x)

)
− Yh(x)w, (t, x) ∈ �, (50)

∇w · n =0, (t, x) ∈ ∂�, (51)

w(0, x) =v0(x)

P(x)
, x ∈ �. (52)

Rewrite the term d
P(x)�w as:

d

P(x)
�w = ∇ ·

(
d

P(x)
∇w

)
− ∇ d

P(x)
· ∇w.

Therefore, comparing (50)-(52) with (46)-(47), it shows that d(x) = d
P(x) ,

�b(x) =
−∇ d

P(x) , f (x, v) = rw(1 − Pw/K ) − Yhw, and β1(x) = 0.
Denote

sup
t>0

[
r(x)

(
1 − P(x)w

K (x)

)
− Yh(x)

]
= g0(x) for x ∈ �.

Then the linearized eigenvalue problem of (50)-(52) around the solution w(t, x) is
given by

d

P(x)
�ψ + g0(x)ψ =σψ, (t, x) ∈ �, (53)

∇ψ · n =0, (t, x) ∈ ∂�. (54)
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To prove the result, it is enough to show that the principal eigenvalue of (53)-(54) is
negative. Multiplying both sides of (53) by P(x), and integrating over � using the
boundary condition, sequentially, we get

σ

∫

�

P(x)ψ dx =
∫

�

P(x)g0(x)ψ dx .

Therefore, the principal eigenvalue is

σ1 = sup
(t,x)∈�

∫
�

P(x)g0(x)ψ dx

∫
�

P(x)ψ dx
.

From the initial assumption, we have sup
t>0

[r(x)(1 − v/K )] < Yh(x) such that

g0(x) = sup
t>0

[r(x) (1 − Pw/K ) − Yh(x)] < 0.

Hence, σ1 < 0, which concludes the proof. �
Theorem 7 Let the function f (t, x, v, K ) := r(x)v(1 − v/K ) hold the conditions
(h1)-(h3) and let sup

t>0
[r(x)(1 − v/K )] > Yh(x) for x ∈ �. This guarantees a unique

positive equilibrium state v∗(x) of (43)-(45) such that v0 ∈ C(�), v0 �≡ 0, as t
approaches to the infinity, v(t, x) converges to the v∗(x).

Proof Ifwe compare the system (50)-(52)which is equivalent to (43)-(45),with system
(46)-(47), then we get the linearized system around the solution w(t, x) given by

d

P(x)
�ψ + g(x, w)ψ = σψ, (t, x) ∈ �,∇ψ · n = 0, (t, x) ∈ ∂�.

where,

g(x, w) = sup
t>0

[
r(x)

(
1 − P(x)w(t, x)

K (x)

)
− Yh(x)

]
for x ∈ �

By integrating and using the boundary condition we get

σ

∫

�

P(x)ψ dx =
∫

�

P(x)g(x, w)ψ dx

Which gives us the principal eigenvalue

σ1 = sup
(t,x)∈�

∫
�

P(x)g(x, w)ψ dx

∫
�

P(x)ψ dx
,
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Since g(x, w) is strictly positive from the initial assumption that sup
t>0

[r(x)(1−v/K )] >

Yh(x) for all x ∈ �, we can conclude that σ1 > 0.
Also,using the properties (h2) there exists K such that

g(x, w) := r(x)(1 − Pw/K ) − Yh(x) < 0, while w > K/P,

Hence the function g(x, w) is decreasing inw forw ≥ K/P > 0. By comparing with
Proposition 2, there exists a unique positive equilibrium solution w∗ of (50)-(52) as
equivalence to v∗ of (43)-(45).

To show that, the equilibrium solution v∗ is bounded, we can use upper-lower
solution pair according to Lemma A2 as defined in Appendix A. The proof is very
similar to Theorem 5. For simplicity we will use model (50)-(52). To construct an
upper solution, consider a constant c such that

c ≥ sup
x∈�

[
K (x)

P(x)

]
,

then r(x)
(
1 − P

K C
)

< 0. Further, choose γ2 ≥ sup
x∈�

|Yh(x)| and let w(t, x) ≡ ceγ2t

which is valid since v0 is bounded in � and K and P are bounded below in �. Then

∂w

∂t
− d

P
�w = γ2w ≥ w

(
r − r P

K
w − Yh

)
,

Also,

∂w

∂n
= 0 and w ≥ w(0, x).

Therefore w(t, x) is an upper solution of (50)-(52) by Definition A2. The function
w(t, x) ≡ 0 is obviously a lower solution. Since the steady-state is unique and bounded
by upper and lower solution, so it is asymptotically stable, i.e., v(t, x) → v∗(x) as
t → ∞ for any v0 �= 0. �

6 Numerical simulations

In this section we perform several numerical experiments with and without harvesting
effect in the model. For numerical computation, we discretize the Eqs. (1)-(3) using
Crank-Nicolson scheme, which is unconditionally stable.

6.1 Numerical illustrations without harvesting

Example 1 Assume that P(t, x) = (2.3 + cos(πx))(1.2 + sin(t)) on � = (0, 1)
with the diffusion coefficient d = 1.0, and the reaction coefficient r(x) = 1.1. If
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Fig. 1 Average solutions of (1)-(3) usingdifferent initial values for (a) r(x) = 1.1, (b) r(x) = 2.1+cos(πx),
and (c) r(t, x) = (2.1+cos(πx))(1.5+cos(t)), where P(t, x) = (2.3+cos(πx))(1.2+sin(t)), K (t, x) =
2P(t, x), � = (0, 1), and d = 1.0

Fig. 2 Solutions of (1)-(3) a over the domain, and b over time, for r(x) = 1.1, P(t, x) = (2.3 +
cos(πx))(1.2 + sin(t)), K (t, x) = (2.5 + cos(πx))(1.3 + sin(t)), � = (0, 1), d = 1.0, and for the
varying initial conditions

K (t, x)/P(t, x) ≡ k where k is a constant, for example, K (t, x) = αP(t, x), and
α = 2.0 then there is a unique solution of (1)-(3).

If we compare the uniqueness for various initial conditions and different growth
rates, the unique solution of (1)-(3) is valid as designed in Fig. 1. This figure justified
the result of Theorem 1 for proportional functions P(t, x) and K (t, x).

In the following example, we consider the arbitrary time-dependent function to
check the positivity and uniqueness of solution for the system (1)-(3) by changing the
initial densities.

Example 2 Suppose P(t, x) = (2.3 + cos(πx))(1.2 + sin(t)) on � = (0, 1) with
the diffusion coefficient d = 1.0, and reaction coefficient r(x) = 1.1. If K (t, x) =
(2.5+ cos(πx))(1.3+ sin(t)), there is a unique solution of (1)-(3) as shown in Fig. 2,
where we choose various positive initial values v0 ∈ {0.7, 1.5, 7.2} to justify the
uniqueness of solutions.

Graphical structure of these diagrams (Fig. 2) verified the Theorem 1 for random,
non-proportional and time-periodic functions P(t, x), and K (t, x).

In both Examples 1 and 2 (Figs. 1 and 2), Theorem 1 is verified either for pro-
portional or non-proportional relations of the distribution function P(t, x) and the
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Fig. 3 Average solutions of (14)-(16) over time for P(x) = 2.0 + cos(πx), K (x) = 2.5P(x), r(x) =
2.1 + cos(πx), and � = (0, 1) in a convergence study for v0 = 0.55, and d = 1.0, b effects of diffusion
coefficients where v0 = 0.55, and c for different initial values with d = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

1.5

3.0

4.5

6.0

7.5

r=1.0
r=2.1
r=r(x)

(a)

100 101 1020.0

1.0

2.0

3.0

4.0

5.0

r=1.0
r=2.1
r=r(x)

(b)

Fig. 4 Solutions of (14)-(16) (a) over the domain, and (b) average solutions with respect to time for
P(x) = 2.0 + cos(πx), K (x) = 2.5P(x), � = (0, 1), v0 = 0.5, and d = 1.0 with the variation of
reaction coefficients r = 1.0, 2.1, and r(x) = 2.1 + cos(πx).

carrying capacity K (t, x), i.e., the bounded H defined in (7) does not affect the main
result of the Theorem 1.

For Example 3, we consider the spatially distributed rational function to show the
effects of different parameters.

Example 3 In this example, we consider P(x) = 2.0 + cos(πx) on � = (0, 1) with
the diffusion coefficient d = 1.0, and reaction coefficient r(x) = 2.1 + cos(πx). If
K (x) = αP(x), and α = 2.5 there is a unique solution of (14)-(16) as designed in
Fig. 3 due to the outcome of diffusion coefficients and multiple initial values.

Figure 3 ensures the result as justified in Theorem 3 for spatially distributed rational
functions P(x) and K (x).

Since there exists a unique solution that converges to K (x), which is also true if
we vary diffusion coefficient, d and initial density, v0 (Fig. 3). Also, the conclusion of
the Theorem 3 is stable for varying reaction coefficients, as depicted in Fig. 4.

Finally, from those Figs. (3 and 4), we see that for proportionally changes dis-
tribution function if we alter diffusion coefficient d, initial density v0, and reaction
coefficient r(x), the behavior of solution does not show any significant change and
always converges to K (x) at t → ∞.

At this stage, our interest is to consider the arbitrary function to observe and check
the validity of theoretical results by changing the parametric values.
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Domain

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.00.0

3.0

6.0

9.0

12.0

K
P

(a)

time

A
ve

. 
D

en
si

ty

100 101 1020.0

3.0

6.0

9.0

K
P

(b)

Fig. 5 Solutions of (14)-(16) a over the domain and b average solutionswith time for P(x) = 2.0+cos(πx),
K (x) = 2.5P(x) + 3.0, � = (0, 1), d = 1.0, and v0 = 0.5

Fig. 6 Average solutions of (14)-(16) over time for P(x) = 2.0 + cos(πx), K (x) = 2.5P(x) + 3.0,
r(x) = 2.1+ cos(πx), and � = (0, 1) in a effects of diffusion coefficients where v0 = 0.5, b for different
growth rates when d = 1.0, and c for different initial values with d = 1.0

Example 4 In this problem, we consider P(x) = 2.0 + cos(πx) on � = (0, 1) with
the diffusion coefficient d = 1.0, reaction coefficient r(x) = 2.1 + cos(πx), and
v0 = 0.5. We assume the carrying capacity K (x) = αP(x) + c,where α = 2.5 > 0,
and c = 3.0 > 0. There is a unique solution of (14)-(16), which justifies Theorem 2
for the non-rational functions P(x) and K (x) (Fig. 5).

Since it is not necessary here that the solution converges to K (x), it might converge
to K (x) or not depending on the environment, which is also true ifwe vary the diffusion
coefficient (Fig. 6(a)); specific growth rate (Fig. 6(b)) and the initial density (Fig. 6(c)).

Observing all figures (Fig. 6), it concludes that for arbitrary distribution function,
if we vary the initial density of v0, then the solution doesn’t diverge. If we choose a
different diffusion coefficient d, then a slight change will be noticed. Lastly, if we dealt
with the variation of reaction coefficient r(x), the behavior of the solution changes
rapidly, showing the speed of convergence.

6.2 Numerical illustrations with harvesting

Example 5 In model (43)-(45), we consider the spatial functions P(x) = 1.3 +
cos(πx), K (x) = 2.1 + cos(πx), the diffusion coefficient d = 1.0, and initial
values v0 = 0.1. The result in Fig. 7 follows the analytical behavior. We con-
sider in (a) r = 1.2 with various constant and non-constant harvesting functions,
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Fig. 7 Average solutions of (43)-(45) over time for P(x) = 1.3 + cos(πx), K (x) = 2.1 + cos(πx), � =
(0, 1), and d = 1.0 with v0 = 0.1
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Fig. 8 Average solutions of (1)-(3) over time for P(t, x) = (2.3 + cos(πx))(1.2 + sin(t)), and K (t, x) =
2P(t, x) on the domain � = (0, 1), r = 1.0, and d = 1.0 with v0 = 0.1 for a Yh = 1.1; b Yh = 0.5; c
Yh(x) = 0.5 + (cos(πx))2

Yh = 1.0, 1.3, Y1(x) = 0.1 + (cos(πx))2, Y2(x) = 1.4 + sin(πx), and in (b)
r = 1.5 + cos(πx) sin(x) with Yh = 1.0, 1.55, Y3(x) = 0.1 + (sin(x))2, and
Y4(x) = 1.6 + sin(πx).

Whenwe allow harvesting, as in (43)-(45), numerical study shows that if the growth
rate per capita is lower than the harvesting, either spatially distributed or constant, the
density of average population levels eventually dropped to zero as time grows. On the
other scenarios, if the harvesting coefficient is lower than the specific growth rate, the
population has a stable state and this fact is analytically proved in Theorems 6 and 7.

Example 6 Similarly, in (1)-(3), we consider the time-varying rational function,
K (t, x) ≡ 2P(t, x); where P(t, x) = (2.3 + cos(πx))(1.2 + sin(t)), growth rate
r = 1.0, diffusion coefficient d = 1.0, and initial density v0 = 0.1. In Fig. 8,
we consider harvesting coefficient in (a) Yh = 1.1; in (b) Yh = 0.5; and in (c)
Yh(x) = 0.5 + (cos(πx))2. This example also shows that the population is in extinc-
tion if the harvesting rate is high, see Figure 8(a), whereas the population persists
periodically for higher growth rate, see for examples in Fig. 8b and 8c.

Example 7 In (1)-(3), we now assume the time-periodic non-rational parameters such
that P(t, x) = (1.3 + cos(πx))(1.2 + sin(t)), K (t, x) = (2.1 + cos(πx))(1.05 +
sin(t)), r(t, x) = 1.8 + cos(πx) sin(t), with constant diffusion rate d = 1.0, and
initial density v0 = 0.1. It is seen that the graphs follow the theoretical results, see
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Fig. 9 Periodic solution of (1)-(3) with time for P(t, x) = (1.3+cos(πx))(1.2+sin(t)), K (t, x) = (2.1+
cos(πx))(1.05 + sin(t)), r(t, x) = 1.8 + cos(πx) sin(t), � = (0, 1), d = 1.0, and initial value v0 = 0.1
with a Yh(t, x) = 2.1 + sin(x) cos(t), b Yh(t, x) = 1.1 + sin(x) cos(t), and c Yh(t, x) = 1.1 + cos(t)

Fig. 9 for (a) Yh(t, x) = 2.1 + sin(x) cos(t), (b) Yh(t, x) = 1.1 + sin(x) cos(t), and
(c) Yh(t, x) = 1.1 + cos(t). By choosing all functions in both space-time periodic,
we conclude that there exists a positive solution that has been proven theoretically in
Theorem 5.

7 Conclusion

In this paper, we studied a reaction-diffusion model for single species with logistic
growth function, where carrying capacity, K and distribution function, P are time
dependent. We showed that for the described model, there exists unique solution
(whether the distribution function P(t, x) is proportional to carrying capacity K (t, x)
or not) and it is positive by using upper and lower solution method. The model is
also valid for time independent carrying capacity. If the distribution function P(x)
is proportional to K (x) then there exists unique solution v(t, x) which converges
to K (x) with the convergence speed

∫
�

|v(t, x) − K (x)|dx ≤ e−ϒ t
∫
�

K (x) dx . On

the other hand if K (x) and P(x) are non-proportional then it is not guaranteed that
the solution will converge to K (x). If the carrying capacity, K (t, x) and distribution
function, P(t, x) is a time-periodic function, then we showed that there has a unique
periodic solution in some intervals with a threshhold dynamics. At the inclusion of
the harvesting term, we studied the modified model and established several results
connected with the time-spatial specific growth rate and harvesting function. The
results reflect the natural phenomena of various species, as introduced in the earlier
section of this study. Some numerical results were illustrated to justify the analytic
results in a non-empty open domain for various parametric values with different initial
conditions.

In the COVID era, with the initiative of One Health Research Coalition [43], the
importance of the transdiciplinary research across environmental sciences and public
health is highly encouraged. Recent reports show that COVID-19 can be spread to
animals from human, and vice-versa [44]. In the future work, we plan to incorporate
the COVID-19 models to our model following the recent works [45–49] to have the
pandemic impact on the ecological results. To model and analyze the density of the
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species using fractional order derivative following the recent investigations in [50–53]
and along with the idea herein could be a next research avenue.
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org/10.1007/s12190-022-01742-x.
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Appendix A Additional definitions and lemmata

In order to prove the existence of a positive bounded solution using themethod of lower
and upper solutions [54], we consider the following nonlinear parabolic problem:

{
∂v
∂t − Lv = h(t, x, v, K , P), (t, x) ∈ �,

∇v · n = 0, (t, x) ∈ ∂�, v(0, x) = v0(x), x ∈ �,
(55)

where the operator L is defined as follows

Lv :=
n∑

i, j=1

ai j (t, x)
∂2v

∂xi∂x j
+

n∑
i=1

bi (t, x)
∂v

∂xi
, (56)

and is uniformly elliptic. We assume that the coefficients of the operator L are Hölder
continuous in �.

Definition A1 (Hölder continuous) The function f : I → R is said to be Hölder
continuous if ∃ a constant α such that

| f (x) − f (y)| ≤ M |x − y|α

for all x, y ∈ I with 0 < α ≤ 1.

Definition A2 A function v∗(t, x) ∈ C(�)∩C1,2(�) is called an upper solution of the
system (55) if it satisfies the following inequalities:

{
∂v∗
∂t − Lv∗ ≥ h(t, x, v∗, K , P), (t, x) ∈ �,

∇v∗ · n ≥ 0, (t, x) ∈ ∂�, v∗(0, x) ≥ v0(x), x ∈ �.
(57)
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Similarly, for lower solution v∗(t, x), we have
{

∂v∗
∂t − Lv∗ ≤ h(t, x, v∗, K , P), (t, x) ∈ �,

∇v∗ · n ≤ 0, (t, x) ∈ ∂�, v∗(0, x) ≤ v0(x), x ∈ �.
(58)

The pair v∗, v∗ is said to be ordered if v∗ ≥ v∗ in �. The set of continuous functions
v ∈ C(�) such that v∗ ≤ v ≤ v∗ is denoted as 〈v∗, v∗〉. In the sector 〈v∗, v∗〉 we
assume that for some bounded functions g∗ = g∗(t, x), g∗ = g∗(t, x) the function h
satisfies the condition

−g∗(v1 − v2) ≤ h(t, x, v1, K , P) − h(t, x, v2, K , P) ≤ g∗(v1 − v2), (59)

where

v∗ ≤ v2 ≤ v1 ≤ v∗, (t, x) ∈ �.

Let us now construct a lower and an upper solution sequences for the system (55)
which will converges to a unique solution of the problem (55).

Definition A3 Consider a sequence
{
v(i)

}∞
i=0 defined by the following iterative process

⎧⎨
⎩

∂v(i)(t, x)
∂t − Lv(i)(t, x) + gv(i)(t, x) = F(t, x, v(i−1), K , P), (t, x) ∈ �,

∇v(i) · n = 0, (t, x) ∈ ∂�, v(i)(0, x) = v0(x), x ∈ �,

(60)

where F(t, x, v, K , P) = g · v + h(t, x, v, K , P). Denote the lower sequence with

the initial iteration by
{
v

(i)∗
}∞
i=0

, and the upper sequence by
{
v∗(i)

}∞
i=0.

Lemma A1 [54] Let the condition (59) be satisfied. Then the upper and lower

sequences
{
v∗(i)

}
and

{
v

(i)∗
}
introduce in Definition A3 are well defined and v∗(i)

and v
(i)∗ are in Cα(�), 0 < α ≤ 1 for each i .

In the next result, we can present the existence result for (55).

Lemma A2 [54] Let v∗, v∗ be ordered lower and upper solutions of (55) introduced in
Definition A3 and let g(t, x, v, K , P) satisfy (59). Then the lower and upper sequences{
v

(i)∗
}
and

{
v∗(i)

}
converge monotonically to a unique solution v of (55) and

v∗ ≤ v(i)∗ ≤ v∗(i) ≤ v∗. (61)

Now, we will need the strong maximum principle for parabolic equations to prove
positivity of solutions [54].
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Lemma A3 [54] Let v(t, x) ∈ C(�) ∩ C1,2(�) be such that

∂v

∂t
− Lv ≥ 0, (t, x) ∈ �,

where L is a uniformly elliptic operator defined in (56). If v(t, x) attains a minimum
value m0 at some point in � then v(t, x) = m0 throughout �. If ∂� is in Cα+1 with
0 < α < 1 and v attains a minimum at some point (t0, x0) on ∂�, then ∂v/∂n < 0 at
(t0, x0) whenever v is not constant.

For equations with time-periodic parameters, we will recall the global attractivity
result as described in [55] for (55). The assumption on function h(t, x, v, K , P) is
periodic in t with a period T0 and the following result can be found in [55].

Lemma A4 [55] Let v ≥ v be a pair of constant upper and lower solutions of (55) and
let the function g(t, x, v, K , P) be Hölder continuous in (t, x), T0-periodic in t and
continuously differentiable in v for v ∈ [v, v]. Then ∃ a pair of T0-periodic solutions
v∗ and v∗ of (55) with v ≤ v∗ ≤ v∗ ≤ v. Moreover, for any initial values v0(x)
satisfying v ≤ v0(x) ≤ v in �, the corresponding solution v(t, x) of (55) satisfies

v∗(t, x) ≤ lim
t→∞ inf v(t, x) ≤ lim

t→∞ sup v(t, x) ≤ v∗(t, x), for any x ∈ �.

Moreover if v∗ = v∗ = ṽ, then ṽ is the unique T0-periodic solution in 〈v, v〉 which
satisfies

lim
t→∞ |v(t, x) − ṽ(t, x)| = 0, ∀ x ∈ �.

Definition A4 Grönwall’s inequality: Let θ : [0, T ] → R+ be a nonnegative differen-
tial function and ∃ a constant K such that

dθ(t)

dt
≤ K θ(t), for all t ∈ [0, T ].

Then

θ(t) ≤ eK tθ(0).
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