Skip to main content
Log in

On the 4-adic complexity of the two-prime quaternary generator

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

R. Hofer and A. Winterhof proved that the 2-adic complexity of the two-prime (binary) generator of period pq with two odd primes \(p\ne q\) is close to its period and it can attain the maximum in many cases. When the two-prime generator is applied to producing quaternary sequences, we need to determine the 4-adic complexity. It is proved that there are only two possible values of the 4-adic complexity for the two-prime quaternary generator, which are at least \(pq-1-\max \{\log _4(pq^2),\log _4(p^2q)\}\). Examples for primes p and q with \(5\le p, q <10000\) illustrate that the 4-adic complexity only takes one value larger than \(pq-\max \{\log _4(p),\log _4(q)\}\), which is close to its period. So it is good enough to resist the attack of the rational approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let \(\ell =\gcd \left( 4^p-1, 4^{q}-1 \right) \). Then there exist kl such that \(kp+lq=1\) and \(4^{kp+lq}\equiv 1\pmod {\ell }\), i.e., \(4\equiv 1\pmod {\ell }\) and \(\ell =3\).

  2. Let \(3^2 \mid (4^p-1)\). That is \(4^p\equiv 1\pmod {9}\). Then p divides the value of the Euler’s totient function \(\varphi (9)=6\) and we have a contradiction since \(p>3\).

  3. If \(\delta \) is of the form \(8\mu +1\), \(8\mu +5\) or \(8\mu +7\), we have from (8)

    $$\begin{aligned} -4(4b+3)^2 +25pq+90-162\lambda \not \equiv \delta (1+2\lambda pq) \pmod {8}. \end{aligned}$$
  4. If \(\delta \) is of the form \(8\mu +1\), \(8\mu +3\) or \(8\mu +5\), we have from (11)

    $$\begin{aligned} -4(4b+3)^2 +9pq-54-162\lambda \not \equiv \delta (1+2\lambda pq) \pmod {8}. \end{aligned}$$

References

  1. Chen, Z.: Linear complexity and trace representation of quaternary sequences over \({\mathbb{Z}}_4\) based on generalized cyclotomic classes modulo \(pq\). Cryptogr. Commun. 9(4), 445–458 (2017). https://doi.org/10.1007/s12095-016-0185-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Du, X., Zhao, L., Niu, Z.: 2-Adic complexity of two classes of generalized cyclotomic binary sequences with Order 4. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102–A(11), 1566–1570 (2019). https://doi.org/10.1587/transfun.E102.A.1566

    Article  Google Scholar 

  3. Edemskiy, V.: The linear complexity and autocorrelation of quaternary Whiteman’s sequences. Intern. J. Appl. Math. Electron. Comput. 1(4), 7–11 (2013)

    Google Scholar 

  4. Goresky, M., Klapper, A.: Algebraic Shift Register Sequences. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  5. Hofer, R., Winterhof, A.: On the 2-adic complexity of the two-prime generator. IEEE Trans. Inf. Theory 64(8), 5957–5960 (2018)

    Article  MathSciNet  Google Scholar 

  6. Hu, H.: Comments on “A new method to compute the 2-adic complexity of binary sequences.” IEEE Trans. Inf. Theory 60(9), 5803–5804 (2014). https://doi.org/10.1109/TIT.2014.2336843

  7. Hu, H., Feng, D.: On the 2-adic complexity and the \(k\)-error 2-adic complexity of periodic binary sequences. IEEE Trans. Inf. Theory 54(2), 874–883 (2008). https://doi.org/10.1109/TIT.2007.913238

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, L., Yue, Q., Wang, M.: The linear complexity of Whiteman’s generalized cyclotomic sequences of period \(p^{m+1}q^{n+1}\). IEEE Trans. Inf. Theory 58(8), 5534–5543 (2012). https://doi.org/10.1109/TIT.2012.2196254

    Article  MATH  Google Scholar 

  9. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics. Springer, New York (1990)

    Book  Google Scholar 

  10. Jing, X., Xu, Z., Yang, M., Feng, K.: On the \(p\)-adic complexity of the Ding–Helleseth–Martinsen binary sequences. Chin. J. Electron. 30(1), 64–71 (2021). https://doi.org/10.1049/cje.2020.08.016

    Article  Google Scholar 

  11. Klapper, A.: The asymptotic behavior of \(N\)-adic complexity. Adv. Math. Commun. 1(3), 307–319 (2007). https://doi.org/10.3934/amc.2007.1.307

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumar, P.V., Helleseth, T., Calderbank, A.R., Hammons, A.R., Jr.: Large families of quaternary sequences with low correlation. IEEE Trans. Inf. Theory 42(2), 579–592 (1996). https://doi.org/10.1109/18.485726

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumari, P., Kewat, P.R.: 2-Adic and linear complexities of a class of Whiteman’s generalized cyclotomic sequences of order four. Int. J. Found. Comput. Sci. 30(5), 759–779 (2019). https://doi.org/10.1142/S0129054119500205

    Article  MathSciNet  MATH  Google Scholar 

  14. Qiang, S., Li, Y., Yang, M., Feng, K.: On the 4-adic complexity of quaternary sequences of period \(2p\) with ideal autocorrelation. IEEE Int. Symp. Inf. Theory (ISIT) 2021, 1812–1816 (2021). https://doi.org/10.1109/ISIT45174.2021.9518210

    Article  Google Scholar 

  15. Sun, Y., Wang, Q., Yan, T.: The exact autocorrelation distribution and 2-adic complexity of a class of binary sequences with almost optimal autocorrelation. Cryptogr. Commun. 10(3), 467–477 (2018). https://doi.org/10.1007/s12095-017-0233-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, Y., Yan, T., Chen, Z., Wang, L.: The 2-adic complexity of a class of binary sequences with optimal autocorrelation magnitude. Cryptogr. Commun. 12(4), 675–683 (2020). https://doi.org/10.1007/s12095-019-00411-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, Y., Wang, Q., Yan, T.: A lower bound on the 2-adic complexity of the modified Jacobi sequence. Cryptogr. Commun. 11(2), 337–349 (2019). https://doi.org/10.1007/s12095-018-0300-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Whiteman, A.L.: A family of difference sets. Illinois J. Math. 6, 107–121 (1962)

    Article  MathSciNet  Google Scholar 

  19. Xiao, Z., Zeng, X., Sun, Z.: 2-Adic complexity of two classes of generalized cyclotomic binary sequences. Int. J. Found. Comput. Sci. 27(7), 879–893 (2016). https://doi.org/10.1142/S0129054116500350

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiong, H., Qu, L., Li, C.: A new method to compute the 2-adic complexity of binary sequences. IEEE Trans. Inf. Theory 60(4), 2399–2406 (2014). https://doi.org/10.1109/TIT.2014.2304451

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, J., Klapper, A.: Feedback with carry shift registers over \({\mathbb{Z}}/(N)\). SETA (1998). https://doi.org/10.1007/978-1-4471-0551-0-29

    Article  MATH  Google Scholar 

  22. Yan, M., Yan, T., Li, Y.: Computing the 2-adic complexity of two classes of Ding–Helleseth generalized cyclotomic sequences of periods of twin prime products. Cryptogr. Commun. 13(1), 15–26 (2021). https://doi.org/10.1007/s12095-020-00451-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, M., Feng, K.: Determination of 2-adic complexity of generalized binary sequences of order 2. arXiv:2007.15327 [cs.IT](2020). https://doi.org/10.48550/arXiv.2007.15327

  24. Yan, M., Yan, T., Sun, Y., Sun, S.: Computing the 2-adic complexity of two classes generalized cyclotomic sequences. IEEE Access 8, 140478–140485 (2020). https://doi.org/10.1109/ACCESS.2020.3013122

    Article  Google Scholar 

  25. Zhang, L., Zhang, J., Yang, M., Feng, K.: On the 2-adic complexity of the Ding–Helleseth–Martinsen binary sequences. IEEE Trans. Inf. Theory 66(7), 4613–4620 (2020). https://doi.org/10.1109/TIT.2020.2964171

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, C., Sun, Y., Yan, T.: Further results on the 2-adic complexity of a class of balanced generalized cyclotomic sequences. arXiv:2102.12098 [cs.IT] (2021). https://doi.org/10.48550/arXiv.2102.12098

  27. Zhu, S., Li, F.: Periodic sequences with maximal \(N\)-adic complexity and large \(k\)-error \(N\)-adic complexity over \({\mathbb{Z}}/(N)\). J. Complex. 28(2), 202–208 (2012). https://doi.org/10.1016/j.jco.2011.10.006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the referees for their valuable and detailed comments. V. Edemskiy was supported by Russian Science Foundation according to the research Project No. 22-21-00516, https://rscf.ru/en/project/22-21-00516/. Z. Chen was partially supported by the National Natural Science Foundation of China under Grant No. 61772292, and by the Provincial Natural Science Foundation of Fujian, China under Grant No. 2020J01905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edemskiy, V., Chen, Z. On the 4-adic complexity of the two-prime quaternary generator. J. Appl. Math. Comput. 68, 3565–3585 (2022). https://doi.org/10.1007/s12190-022-01740-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01740-z

Keywords

Mathematics Subject Classification

Navigation