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Abstract
Investigation of rumor spread dynamics and its control in social networking sites
(SNS) has become important as it may cause some serious negative effects on our
society. Here we aim to study the rumor spread mechanism and the influential factors
using epidemic like model. We have divided the total population into three groups,
namely, ignorant, spreader and aware. We have used delay differential equations to
describe the dynamics of rumor spread process and studied the stability of the steady-
state solutions using the threshold value of influence which is analogous to the basic
reproduction number in disease model. Global stability of rumor prevailing state has
been proved by using Lyapunov function. An optimal control system is set up using
media awareness campaign tominimize the spreader population and the corresponding
cost. Hopf bifurcation analyses with respect to time delay and the transmission rate
of rumors are discussed here both analytically and numerically. Moreover, we have
derived the stability region of the system corresponding to change of transmission rate
and delay values.
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1 Introduction

Unlimited use of internet made social networking sites (SNS) a popular mode of
expression which provides a useful environment among its users [1,2], especially in
young generation [3]. Nowadays SNS like Facebook, Twitter, Instagram are used by
a sizable section of population. It is estimated that, over 49% of all individuals have
accessed social media worldwide by the middle of the year 2020 [4]. A rumor is
basically a “ circulating story of questionable veracity, which is apparently credible
but hard to verify, and produces sufficient skepticism and/or anxiety so as to motivate
finding out the actual truth” [5]. Rumors may become harmful to both individual and
the society [6]. Before the advent of social media, people used to share news with their
own social circle, where every individual is personally known to them.Nowadays, with
advent and popular use of SNS, rumors are now spreading instantly and becoming a
far more widespread agent [7,8]. For example, during the ongoing pandemic COVID-
19, a piece of baseless news that, the infection could be transmitted by consuming
chicken was circulated on SNS. As a result, people started to believe in it and the
wholesale price of chicken had fallen by nearly 70% [9]. Rumors regarding fluctuation
in international share market indices like Dow Jones, Nikkei, Sensex are capable of
spreading huge panic all over the world. For instance, in the year 2015, a Scottish
trader’s tweets caused the stock price of two organizations to plummet approximately
by 28 percent [10]. The share-market trader was charged with securities fraud by the
United States’ Securities and Exchange Commission. The various negative fallouts
of rumor propagation demand that we understand the mechanism of transmission of
rumor in details. Nowadays, along with social science, mathematical and computing
tools like network theory, graph theory and nonlinear dynamics are used to explain
the progression of rumors in SNS [11]. Moreno [12] used nodes in a complex network
instead of account holders to investigate rumor spreading dynamics. Kawachi [13]
studied the impact of age-dependent rumor transmission rate in an age structured
deterministic model.

Mathematical modeling in epidemiology using nonlinear dynamical system has
played a significant role to understand themechanismand toobtain insight on control of
diseases [14,16–19]. Nonlinear dynamics is often used to study age-dependent disease
models with nonlinear incidence rate [20–22]. Apart from epidemiology, dynamical
behavior of various age-structured model like drug abuse model, alcoholism model
are studied with the help of nonlinear dynamics [23,24]. In ecology, different func-
tional interactions in prey-predator model with competition and herd behavior are
investigated using mathematical modeling [25–28].

In 1964, Daley and Kendall [29] proposed a mathematical model on sociology
dividing the total population into three sub-groups namely, ignorant population, who
have not heard about the rumor, spreader, who spread the rumor and stiflers, who lose
their interest in the rumor and cease to spread the rumor. Wang et al. investigated
models on rumor propagation with the analogy of Susceptible-Infected-Recovered
(SIR) model [30]. Also Hu et al.[31] and Dhar et al.[32] studied dynamics of rumor
propagation model similar to disease model. Jain et al. [33] discussed the stochastic
effect on rumor propagation dynamics.
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Time delay is a real phenomenon in social networking. Zhu et al. [34] studied the
effect of delay on rumor propagation model. In [35] the influence delay of thinkers
is included and optimal control of rumor is analyzed. Optimal control is also used
in rumor propagation model of [11,36] with controls such as media awareness and
official media coverage. The effect of media on spread of infectious disease, process
of game communication has been discussed with the help of mathematical modeling
and analysis using nonlinear dynamics [37],[38], [39].

From the previous examples, it is clear that the impact of circulation of unverified
news on the change of the share prices is critical. We can recall that, ‘White house hav-
ing been bombed, injuring Barack Obama’, had been tweeted by AP’s Twitter account
by hackers. Associated Press(AP) is known as one of the ultimate sources for indepen-
dent reporting from around the world. Consequently, it shook the US stock markets
within minutes [40]. This incident is an example of potentiality of rumors to harm
the economy. To control this kind of situations we need proper awareness campaign-
ing strategy. Respective governments usually take steps against rumor propagation
by broadcasting the fact with the help of media. So, the aim is to achieve maximum
impact using limited public fund. Hence optimal control using Pontryagin’sMaximum
Principle [41] has been applied to find out optimal media announcement schedule with
minimum cost.

However, the majority of previous researches have not considered the logistic
growth for spreader population. It is more realistic in the dynamics of rumor propa-
gation, as rumor spreads fast initially, but after some time the transmission rate slows
down when it becomes difficult to find new ignorant who has not heard of it. There-
fore, consideration of the logistic growth for spreader population in rumor propagation
model is important. We have calculated the threshold value of influence for rumor, that
is, the condition when a rumor prevails and when it disappears eventually. Although,
some of the previous studies have discussed optimal control strategy to control rumor,
optimal control of rumor in difficult situations by awareness campaign through media
is a very new perspective. Media is the easiest way to reach all the users on SNS. So,
optimal control of media effort is the most effective approach to curb a rumor on SNS.
Numerical simulations demonstrate the level of execution of the control required to
eradicate disturbances caused by rumor. In this paper, we have investigated the effect
of the delay.When a controversial topic flashes on timeline repeatedly, people get con-
fused. Then they take time to think about its authenticity and after that they propagate
the news. This kind of time lag is very important to reflect the reality more effectively.
This sort of time delay, one ignorant usually takes to get convinced and become a
spreader, is not discussed before.

The paper is arranged as follows:Model formulation is done in the Sect. 2. Existence
and conditions of stability of equilibria are deduced in Sect. 3. In the same section, the
global stability of the endemic equilibrium has been discussed. In Sect. 4, associated
optimal control system for the non-delayed model has been set up. Analysis of Hopf
bifurcation with respect to the time delay and the transmission rate of rumor have been
performed in Sect. 5. The Sect. 6 is devoted to numerical simulation to support the
analytical work. Finally, in Sect. 7, some concluding remarks are given.
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2 Model formulation

Here we modified Daley-Kendall model [29] on rumor propagation by introducing
logistic growth in the spreader population and a delay in the interaction term between
the spreader and the ignorant class in SNS. News, that appears on SNS, can be true
or partially true or completely fake and their questionable veracity breed rumors.
Although some of the users are aware of the fake news, others are unaware of it. Rest
of the users get initially confused and later, after seeing that news repeatedly on their
news-feed, start believing it.

Considering these characters of users in SNS, we divide the total population N (t)
into three sub-populations as: x(t) denotes the ignorant class who are unaware of the
rumor yet, analogically related to the susceptible population in SIR model y(t) stands
for the spreader class, like the infected population in SIRmodel, z(t) is the aware class
who ignore the rumor, so does not spread it, like immune population in SIR model.

We consider that the spreader population follows logistic growth curve. Logistic
growth happens when the growth rate slows down as the population tends to reach a
maximum sustainable value K , where total environmental resources are limited. In
logistic growth, this maximum sustainable population is called the carrying capacity.
Initially the rumor spreads exponentially. But it slows down after achieving the max-
imum population size K , because there fewer new ignorant are found to become
spreader as most of them either have joined the spreader or aware class as time
advances. Moreover the total population is bounded, which is proved later. The rate
of increase of the aware population reduces the growth rate of the spreader population
and the people loses their interest about the rumor as time goes on. Therefore after
some time rumor spread does not increase more and it becomes asymptotic to a con-
stant value K . With this notion we have taken the logistic form y

(
1− y

K

)
for spreader

population with carrying capacity K .
According to [42], false rumors on SNS usually take more time to be proved as

a false one. Sometimes people improvise news in different ways which creates more
confusion. Considering these, certain time is needed by the ignorant population after
they come across a rumor,to ascertain if to believe it or not. The time, required to
think about the authenticity of the rumor before spreading it, is defined as delay due
to thinking process, τ . We exclude those who do not go through thinking process,
rather instantaneously forward any news they find on their newsfeed. To express this
phenomenon mathematically, We take the delay τ in the interaction term between the
ignorant and the spreader class as the former takes some time to get convinced by the
rumor and become spreader.

At first we consider some assumptions:

• Recruitment of new user at time t is a whole number b.
• The new users do not believe in the news that flashes on their timelines with
probability p.

• A spreader individual never comes back to ignorant class, rather can only go to
the aware class.

• Once an individual gets aware, the person never comes back to any of the rest of
the classes.
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• There is no interaction between the aware class and the ignorant class.
• We exclude those spreaders who are somewhat biased for different reasons, for
example, commercial, political or other societal issues, who intentionally forward
rumors of their preferences.

Taking into account the above assumptions, we can formulate the model as follows:

dx

dt
= (1 − p)b − βx(t − τ)y

1 + αy
− μx

dy

dt
= y

(
1 − y

K

)
βx(t − τ)y

1 + αy
− ηyz − μy

dz

dt
= pb + ηyz − μz

(2.1)

Here, N (t) = x(t) + y(t) + z(t) is the total number of accounts active on a par-
ticular SNS at time t . When an ignorant individual interacts with a spreader one,
becomes a spreader with transmission rate β. A spreader one becomes an aware indi-
vidual at a rate η after coming in contact with an aware individual. All the parameters
p, b, β, α, η, μ, K are considered as positive constants and their definitions are given
in the Table 1.

By putting τ = 0, we get the following non-delayed system.

dx

dt
= (1 − p)b − βxy

1 + αy
− μx

dy

dt
= βxy

1 + αy
+ y

(
1 − y

K

)
− ηyz − μy

dz

dt
= pb + ηyz − μz.

(2.2)

2.1 Non-negativity and boundedness

The non-negativity and boundedness of the considered system (2.1) are necessary to
show that the model is realistic.

Table 1 Parameter description

Parameter Parameter definition

p Probability that one newcomer does not believe in the rumor.

b Number of new account holders on SNS.

β Transmission rate of rumor.

μ The rate at which the population becomes inactive related to the particular event.

η The rate of one spreader becoming aware after coming in contact with the aware population.

α Saturation constant.

K The carrying capacity of the spreader class.
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Theorem 1 The solution set of the system (2.1) is always non-negative with the initial
conditions x(0) ≥ (1 − p)b, y(0) ≥ 0, z(0) ≥ pb and N0 = x0 + y0 + z0.

Proof Integrating the first equation of the system (2.1) we obtain,

x(t) = e
∫
(

(1−p)b
x − β y

1+αy −μ)dt ≥ 0.

Similarly, from the second and third equation of the system we get

y(t) = e
∫
(

βx
1+αy +(1− y

K )−ηz−μ)dt ≥ 0 and z(t) = e
∫
(
pb
z −ηy−μ)dt ≥ 0, respectively.

��
Theorem 2 The solution set of the system (2.1) is bounded.

Proof Here we already have x(t) ≥ 0 , y(t) ≥ 0, z(t) ≥ 0 and adding all equations
of the system (2.1) we get

dN

dt
= b + g(y) − μN (t) (2.3)

where,

g(y) = y(1 − y

K
).

Differentiating g(y) we get,

g′(y) = 1 − 2y

K
.

Then g(y) attains its maximum at y = K
2 and maximum value is K

4 . Using maximum
value for g(y) which is K

4 , we can write

dN

N (t)− b+ K
4

μ

≤ −μdt .

Now integrating both sides,
where k1 is any integrating constant and taking limit as t → ∞, we get

lim sup
t→∞

N (t) ≤ lim
t→∞

[
b + K

4

μ
− k1e

−μt

]

.

Therefore, we obtain

N (t) ≤ b + K
4

μ
. (2.4)

So, from (2.4), set of solution (x(t), y(t), z(t)) is bounded, since x(t) ≤ N (t), y(t) ≤
N (t), z(t) ≤ N (t). ��
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3 Equilibrium points and stability analysis

3.1 Threshold value of influence for the non-delayed system

The basic reproduction number for a disease model, R0, is defined as the expected
number of secondary cases produced by a single (typical) infection in a completely
susceptible population [43]. It is important to note thatR0 is a dimensionless number.
Mathematically it gives the threshold value for the stability of disease-free state.

In this article R0 gives the threshold value for stability of rumor-free state. It
measures the potential influence of rumor on ignorant population. Therefore R0 is
represented here as the threshold value of influence that determines whether or not the
rumor will continue to spread among ignorant class. Here,R0 describes the expected
number of persons in a completely ignorant class, who have just become spreaders
through contactwith one spreader.R0 greater than one implies that rumorwill continue
to affect the population if no external influences intervene. R0 less than one implies
that the spreader population will lead to extinction.
Now, we shall calculateR0 = ρ(GH−1) using next generation matrix method, where
are G, H are Jacobians of F , V at Ē respectively. For system (2.2), F , V are given by

F = βxy

(1 + αy)
+ y(1 − y

K
)

V = ηyz + μy.

Calculating the Jacobians G,H of F , V at Ē we obtain

G = ∂F
∂ y

∣∣∣∣
Ē

= β
(1 − p)b

μ
+ 1 (3.1)

H = ∂V
∂ y

∣∣
∣∣
Ē

= η
pb

μ
+ μ. (3.2)

Where G gives the matrix of rate of secondary spreader growth. We obtain the next
generation matrix GH−1. Then we have R0 = ρ(GH−1), the largest eigen value of
GH−1. So, the threshold value of influence for the model(2.2) is

R0 = β(1 − p)b + μ

ηpb + μ2 . (3.3)

We know thatR0 plays a significant role in case of highly contagious disease models.
Here we conceptualizeR0 as rumor eradicating factor within SNS. NowR0 depends
on β, α,μ, η, p, b. So it is really difficult to find that particular set of parameters for
which we shall get that crucial value.

3.2 Equilibria of the system

There exist two equlibria of the model (2.1)
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(i) Rumor Free Equilibrium (RFE ), Ē =(x̄, 0, z̄) where x̄ = (1−p)b
μ

and z̄ = pb
μ
,

which means rumor wipes out eventually.
(ii) Rumor Existing or prevailing Equilibrium(REE), (x̂, ŷ, ẑ), with ŷ 	= 0, which

means rumor will continue to spread across the SNS.

At the interior equilibrium point, we get

(1 − p)b − βxy

1 + αy
− μx = 0

βxy

1 + αy
+ y(1 − y

K
) − ηyz − μy = 0

pb + ηyz − μz = 0.

(3.4)

Solving 1st and 3rd equation of (3.4) we get

x̂ = (1 − p)b

[ β ŷ
1+α ŷ + μ]

and ẑ = pb

μ − η ŷ
.

Substituting the values of x̂ and ẑ in the 2nd equation of the system (3.4) we get the
following cubic equation in ŷ.

C1 ŷ3 − C2 ŷ
2 + C3 ŷ + C4 = 0 (3.5)

where

C1 = η

K
(β + αμ) (3.6)

C2 =(1 − μ)η(β + αμ) + μ

K
(β + αμ − η) (3.7)

C3 =μ(1 − μ)(β + αμ − η) − μ2

K
− (β(1 − p)b + ηpb(β + αμ)) (3.8)

C4 =μ2[(ηpb + μ2) − (β(1 − p)b + μ)]. (3.9)

This fixed point exists only when the equation (3.5) has a positive root. Clearly, C1
and C2 are positive. Here we make one assumption

H1 :(ηpb + μ2) − (β(1 − p)b + μ) < 0 or R0 > 1.

If H1 holds then the following cases appear.

1A) C3 is negative, which means there is exactly one positive root.
1B) C3 is positive, which implies there are either three roots or exactly one positive

root.

And when H1 does not hold, there may be following two cases:

2A) C3 is negative, which means either two positive real roots or no real root by
Descarte’s rule of sign.

123



Dynamics and control of rumor propagation 3019

2B) C3 is positive, which again means either two positive real roots or no real root by
Descarte’s rule of sign.

If we get one positive real root of equation (3.5), we find the value of ŷ, then obtain x̂
and ẑ. Hence the following lemma directly follows:

Lemma 1 IfH1 holds i.e. whenR0 > 1 then the system (2.1) has at least one positive
rumor endemic equilibrium.

3.3 Local stability analysis

Theorem 3 IfR0 < 1 the RFE is locally asymptotically stable and unstable ifR0 > 1.

Proof IfR0 < 1 then (β(1 − p)b + μ − (ηpb + μ2)) < 0.
Jacobian matrix for RFE is given by

J0 =
⎛

⎜
⎝

−μ
−β(1−p)b

μ
0

0 β(1−p)b
μ

+ 1 − η
pb
μ

− μ 0

0 η
pb
μ

−μ

⎞

⎟
⎠ (3.10)

The characteristic equation about Ē is given by

(λ − μ)2{λ + (ηz̄ + μ) − (β x̄ + 1)} = 0

where x̄ = (1−p)b
μ

, ȳ = 0, z̄ = pb
μ
. Then we get λ1 = λ2 = −μ and λ3 = [(β(1 −

p)b+μ]− [ηpb+μ2]. So, ifH1 holds then all the eigen values of the corresponding
Jacobianmatrix (3.10) are negative. IfR0 > 1 then λ3 = (β x̄+1)−(ηz̄+μ) becomes
positive, therefore system becomes unstable. Hence the theorem. ��

Note: At R0 = 1 the system experiences transcritical bifurcation and RFE of the
system (2.2) becomes unstable.

Next, we will discuss the local stability analysis of the system (2.1) about the
endemic equilibrium.

The Jacobian matrix at REE for the system (2.1) is given by

Ĵ =

⎛

⎜
⎜
⎝

−β ŷ
1+α ŷ e

−λτ − μ
−β x̂

(1+α ŷ)2
0

β ŷ
1+α ŷ e

−λτ β ˆ̂x
(1+α ŷ)2

+ 1 − 2 ŷ
K − ηẑ − μ −η ŷ

0 ηẑ η ŷ − μ

⎞

⎟
⎟
⎠ . (3.11)

The characteristic polynomial for REE is given by

λ3 + a1λ
2 + a2λ + a3 + Ae−λτ (λ2 − c1λ + b1) = 0 (3.12)
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where

A = β ŷ

1 + α ŷ
, P0 = ŷ

1 + α ŷ
, Q0 = x̂

(1 + α ŷ)2

a = η ŷ, b′ = 1 − 2
ŷ

K
, Q = βQ0,

a1 = 3μ + ηẑ − a − b′ − Q

a2 = 3μ2 + 2μηẑ + ab′ − 2(a + b′)μ − 2Qμ − Qa

a3 = μ3 − μ2(a + b′ − ηẑ) + μab′ − Qμ(μ − a)

b1 = μ2 − μ(a + b′) + ab′ + ηẑ(μ − a)

c1 = a + b′ − ηẑ − 2μ.

When τ = 0, the characteristic equation for system (2.2) becomes

λ3 + p1λ
2 + p2λ + p3 = 0 (3.13)

where

p1 =A + a1
p2 =a2 − Ac1
p3 =a3 + Ab1.

By Routh-Hurwitz criterion, we get the following result.

Theorem 4 The REE of the non-delayed system (2.2) will be locally asymptotically
stable if all the roots of the equation(3.13) are with negative real parts, that is, when
pi > 0 for i = 1, 3 and p1 p2 > p3.

3.4 Global stability analysis of REE

To study the global stability of REE of the system (2.2), let us consider the Lyapunov
function

V (t) = [x − x̂ + y − ŷ + z − ẑ]2
so that, V (t) ≥ 0 in the solution space

Γ = {(x, y, z) ∈ R
3 : x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0, N (t) ≤ b+ K

4
μ

}
and

V (t)|x̂,ŷ,ẑ = 0, V (t) > 0 whenever {x 	= x̂, y 	= ŷ, z 	= ẑ}.
Then

V̇ (t) = 2[(x − x̂) + (y − ŷ) + (z − ẑ)](ẋ + ẏ + ż)

= 2[(x − x̂) + (y − ŷ) + (z − ẑ)][b + y(1 − y

K
) − μ(x + y + z)].
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Now from (3.4),

(x̂ + ŷ + ẑ) = 1

μ

(
b + ŷ(1 − ŷ

K
)

)
. (3.14)

Also, in our solution space Γ , we have

0 ≤ y
(
1 − y

K

)
≤ K

4

and from (2.4), we have N (t) ≤ b+ K
4

μ
and N (t) ≥ 0.

V̇ (t) = 2[N (t) − (x̂ + ŷ + ẑ)][b + y(1 − y

K
) − μN (t)] (3.15)

= 2

μ
[μN (t) − (b + ŷ(1 − ŷ

K
))][b + y(1 − y

K
) − μN (t)] (3.16)

≤ 2

μ
[μN (t) − (b + ŷ(1 − ŷ

K
))][b + K

4
− μN (t)] (3.17)

Now, ŷ is a positive a root of the equation (3.5). Then ifR0 > 1 and C3 < 0 in (3.5),
the equation has exactly one positive root. Using theory of equations for (3.5), we
obtain

ŷ

(
1 − ŷ

K

)
≥ C2

C1

(
1 − C2

KC1

)
= K2.

Then from inequality (3.17), we have

V̇ (t) ≤ − 2

μ
[b + K2 − μN (t)]2 ≤ 0

whenever K
4 ≤ K2 and V̇ (t) ≤ 0 in Γ . Therefore, the system (2.2) is globally stable

around REE by Lyapunov’s global stability theorem. So, we can state the following
theorem.

Theorem 5 If R0 > 1 the model (2.2) is globally stable around REE in the solution
space

Γ =
{
(x, y, z) ∈ R

3 : x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0, N (t) ≤ b+ K
4

μ

}

if K
4 ≤ C2

C1
(1 − C2

KC1
) with C3 < 0, where Ci , i = 1, 2, 3, 4 are given by (3.6-3.8).

If the endemic state becomes globally stable, then the rumor continues to persist
in a large scale as time goes on. Sometimes, SNS release unverified news even before
it appears on mainstream media. As in 2018, when many people in India refused
to take the 10 rupee coin due to false news, a great deal of ambiguity was created
in marketplaces. The news about the validity of 10 rupee coin[44], was broadcast
via media, made them get to know the truth. As a result the situation gets stabilized.
Clearly, a responsible media awareness campaign on SNS is beneficial to resolve these
kind of situations. In the next section we investigate optimum use of media awareness
campaign to control rumor.
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Fig. 1 The system converges to same point with different initial values

4 Optimal control bymedia intervention

The mainstream media like newspapers, radio and television has great impact on
public’s thoughts, understanding and crisis management [37,45]. To resolve any
ambiguous situation caused by rumor the primary impact of media coverage is to
promote science education, broadcasting the true fact with proper explanation so that
the probability of ignorant individuals of believing in rumors reduces. When a rumor
breaks out, awareness programs like publishing the authoritative information in news-
paper, blogs, websites of responsible agency like AFP, Reuters, any press conference
of responsible government clarifying the truth discourage spreaders to spread it fur-
ther. According to the point of view of an administrator in crisis, the following optimal
controlmodel is formulated to reduce the number of spreaders onSNSbymedia aware-
ness program as well as the total cost associated with the control. The cost function
includes all negative impacts in the society and loss of economy as well as the cost of
media intervention control, which we need to minimize. When an emergency occurs,
media awareness program is broadcast to curb rumor. Control is applied for finite time
period and is removed when number of spreaders is reduced enough to bring back the
stability of the system. In this situation, every individual irrespective of their affiliation
to the spreader or aware class suffers actively or passively. So, we count cost for every
user, when the media intervention control is applied. Let u be the media control.
Here we assume some facts :

• We consider the cost function of the control as u2(t)(x(t) + y(t) + z(t)) since
control of media effort works for all of the users. Although our aim to minimize
the spreader population, awareness campaign through media cannot be applied for
any specific group instead of whole population.

• The ignorant population directly enters to the aware class with the rate α1, whereas
the spreader population transfers to aware class with the rate α2. It is evident that
α1 is greater than α2.
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dx

dt
= (1 − p)b − βxy

1 + αy
− μx − α1ux

dy

dt
= y

(
1 − y

K

)
+ βxy

1 + αy
− ηyz − μy − α2uy

dz

dt
= pb + ηyz − μz + (α1x + α2y)u.

(4.1)

with the initial condition x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. Here our objective is to
minimize the total number of spreaders and the corresponding cost. So,

I (x, y, z, u) = min
u∈Θ̂

∫ T

0
[B0y(t) + B1u

2(t)(x(t) + y(t) + z(t))]dt (4.2)

where

Θ̂ = {u : u ∈ L2[0, T ], 0 ≤ u ≤ 1}.
By [46], to find the optimal solution, we find the Hamiltonian of our optimal control
problem (4.1) as given by

H = [B0y + B1u
2(x + y + z)] + λ1((1 − p)b − βxy

(1 + αy)
− μx − α2ux)

+ λ2(
βxy

(1 + αy)
− ηyz − μy + y(1 − y

K
) − α3uy)

+ λ3[pb + ηyz − μz + u(α2x + α3y)] (4.3)

where λi , i = 1, 2, 3 are adjoint variables.

4.1 Existence of optimal control

Theorem 6 For the system (4.1) and objective function (4.2) there exists an optimal
control u∗ ∈ Θ̂ for which

I (x∗, y∗, z∗, u∗) = min
u∈Θ̂

∫ T

0
[B0y + B1u

2(x + y + z)]dt .

Proof As all the state variables and co-state variables are non-negative and so is the
control variable u. Also the control space Θ̂ is convex and closed as the state space
Ω . Then by [47] the proof is straightforward. ��

4.2 Analysis of the control

Here we find the set of necessary conditions for our optimal control problem with the
help of Pontryagin’s Maximum Principle [41].
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Theorem 7 If u∗ is the optimal control variable which optimizes (4.2) for system (4.1),
with optimal state variables x∗, y∗, z∗ and optimal co-state variable λ̄i , i = 1, 2, 3
where λ̄i satisfies the following system;

⎧
⎪⎨

⎪⎩

dλ1
dt = −B1u2 + λ1(

β y
1+αy + μ + α2μ) − λ2(

β y
1+αy ) − λ3α2u

dλ2
dt = −B0 − B1u2 + λ1

βx
(1+αy)2

− λ2(
βx

(1+αy)2
− ηz − μ − α3u + 1 − 2y

K ) − λ3(ηz + α3y)
dλ3
dt = −B1u2 + λ2ηy − λ3(ηy − μ)

(4.4)
with transversality condition

λi (T ) = 0 for i = 1, 2, 3. (4.5)

Then we obtain

u∗ = min

{
max

{
α2x(λ1 − λ3) + α3y(λ2 − λ3)

2B1(x + y + z)
, 0

}
, 1

}
. (4.6)

Proof Using Pontryagin’s Maximum Principle on the Hamiltonian (4.3), we obtain
the mathematical expression of the adjoint system (4.4), which is

⎧
⎪⎨

⎪⎩

dλ1
dt = − ∂H

∂x = −B1u2 + λ1(
β y

1+αy + μ + α2μ) − λ2(
β y

1+αy ) − λ3α2u
dλ2
dt = − ∂H

∂ y = −B0 − B1u2 + λ1
βx

(1+αy)2
− λ2(

βx
(1+αy)2

− ηz − μ − α3u + 1 − 2y
K ) − λ3(ηz + α3y)

dλ3
dt = − ∂H

∂z = −B1u2 + λ2ηy − λ3(ηy − μ)

From the optimality condition ∂H
∂u |(x=x∗,y=y∗,z=z∗) = 0, we obtain

u∗ = α2x(λ1 − λ3) + α3y(λ2 − λ3)

2B1(x + y + z)
. (4.7)

By definition, the highest and the lowest value of control are 1 and 0 respectively. That
is, if u∗ ≤ 0 then u∗ = 0 and if u∗ ≥ 1 then u∗ = 1. So, for u∗ we get the optimum
value of I (x, y, z, u) for the problem (4.1). Hence the theorem. ��

5 Effect of the delay

Let us consider the delayed system (2.1) to investigate the effect of the delay on
the behavior of the system. The system 2.1 is stable around REE only when all the
eigen values are with negative real part and loses its stability when a pair of purely
imaginary eigen values traverses from left towards right across the imaginary axis.
Now to determine whether the real part of the eigen values are negative or not, we
apply the technique of Ruan and Wei [48]. To check if there is any Hopf point at
τ = τ0, let us put λ = iω in the equation (3.12) and we get,

−iω3 − a1ω
2 + ia2ω + a3 = A[cos(ωτ) − i sin(ωτ)][ω2 + ic1ω − b1] (5.1)
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(a3 − a1ω
2) + i(a2ω − ω3) = A[cos(ωτ) − i sin(ωτ)][ic1ω − (b1 − ω2)]. (5.2)

Now equating real and imaginary part of the equation 5.2 and then squaring and adding
we get

A2[(b1 − ω2) + c21ω
2] = [a3 − a1ω

2]2 + ω2(ω2 − a2)
2. (5.3)

Let us put ω2 = z in the equation (5.3) and we get the following equation

z3 + (a1
2 − 2a2)z

2 − z[A2(1 − c1
2) − a22 − 2a1a3] + a3

2 − A2b1 = 0. (5.4)

Clearly, if a32 − A2b1 < 0. So, the equation (5.4) has at least one positive root, for
which we get ω = ±√

z. These calculations ensure that there exists a pair of purely
imaginary roots. Now from equation (5.3) we get

cos(ωτ) = (a1ω2 − a3)(b1 − ω2) + ω(a2 − ω2)c1ω

A[(b1 − ω2)2 + c21ω
2] (5.5)

τ = 1

ω
arccos

[
(a1ω2 − a3)(b1 − ω2) + ω2(a2 − ω2)c1

A[(b1 − ω2)2 + c21ω
2]

]

+ 2kπ, k = 1, 2, 3, . . . .

(5.6)

So, for one value of ω we get a sequence τk . Now ±iω0 is a pair of purely imaginary
roots of (3.12) with τ = τ j . Clearly, the sequence τ j is increasing and lim j→∞ τ j =
∞. Then we can define τ0 = min τ j .

5.1 Hopf bifurcation analysis with respect to time delay and transmission rate

To show that, the system(2.1) undergoes aHopf bifurcation at τ0, the following theorem
is used.

Theorem 8 Let λ(τ) = γ (τ) + iω(τ) be the root of equation (3.12) near τ = τ0
satisfying γ (τ0) = 0 and ω(τ0) = ω0. To show that there is a Hopf bifurcation with
respect to τ0, the following transversality condition should hold.

Re

[
dλ(τ)

dτ

]−1

τ=τ0

	= 0 (5.7)

Proof Let

R(λ) = λ3 + a1λ
2 + a2λ + a3 (5.8)

I (λ) = A[λ2 − c1λ + b1]. (5.9)

Then the equation (3.12) can be rewritten in the form

R(λ) + e−λτ I (λ) = 0. (5.10)
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Now differentiating (5.10) with respect to τ we get

R′(λ)
dλ

dτ
− [−λe−λτ I (λ) + e(−λτ) I ′(λ)

dλ

dτ
− τe(−λτ) I (λ)

dλ

dτ
] = 0.

Then we get

(
dλ

dτ

)−1

= (3λ2 + 2λa1 + a2) + [−τ A(λ2 − c1λ + b1) + A(2λ − c1)]e−λτ

Aλ(λ2 − c1λ + b1)e−λτ
.

Now, calculating
( dλ
dτ

)−1
at τ = τ0, i.e. λ = iω0 we get

[
dλ

dτ

]−1

τ=τ0

= (−3ω0
2 + 2iω0a1 + a2) + [−τ A(−ω0

2 − c1iω0 + b1) + A(2iω0 − c1)]e−iω0τ

Aλ(−ω0
2 − c1iω0 + b1)e−iω0τ

.

(5.11)
Distinguishing real and imaginary part we can rewrite equation (5.11) in the following
form

[
dλ

dτ

]−1

τ=τ0

= 1

Aω0

[(a2 − 3ω0
2) − Aτ0(b1 − ω0

2) cos(ω0τ0) − Aω0(2 + c1τ0) sin(ω0τ0)]
+ i[2a1ω0 + ω0(2 + c1τ0) cos(ω0τ0) − Aτ0(b1 − ω0

2) sin(ω0τ0)]
[−(b1 − ω0

2) sin(ω0τ0) + c1ω0 cos(ω0τ0)]
+ i[(b1 − ω0

2) cos(ω0τ0) − c1ω0 cos(ω0τ0)]
(5.12)

or we can write (
dλ

dτ

)−1
∣∣∣∣∣
(τ=τ0)

= 1

Aω0

d2 + id3
d4 + id5

(5.13)

where

d2 =[(a2 − 3ω0
2) − Aτ0(b1 − ω0

2) cos(ω0τ0) − Aω0(2 + c1τ0) sin(ω0τ0)]
d3 =[2a1ω0 + ω0(2 + c1τ0) cos(ω0τ0) − Aτ0(b1 − ω0

2) sin(ω0τ0)]
d4 =[−(b1 − ω0

2) sin(ω0τ0) + c1ω0 cos(ω0τ0)]
d5 =[(b1 − ω0

2) cos(ω0τ0) − c1ω0 cos(ω0τ0)].

Equation (5.13) implies that

Re

[
dλ(τ)

dτ

]−1

τ=τ0

= 1

Aω0

d2d4 − d3d5
d42 + d52

. (5.14)

Therefore, if d2d4 − d3d5 	= 0, the transversality condition for Hopf bifurcation holds
and the system (2.1) bifurcates from fixed point REE at time delay τ = τ0. ��
Lastly, from Theorem 4 and Theorem 8 we can conclude the following statement.

Theorem 9 When R0 > 1 then for system(2.1)
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(i) the endemic equilibrium is locally asymptotically stable (LAS) for all τ ∈ [0, τ0]
(ii) for τ > τ0, if the transversality condition(5.7) holds, the system experiences a

Hopf bifurcation at τ0 i.e. the endemic equilibrium (x̂, ŷ, ẑ) becomes unstable,
where,

τ0 = 1

ω0
arccos

[
(a1ω2

0 − a3)(b1 − ω0
2) + ω2

0(a2 − ω0
2)c1

A[(b1 − ω0
2)2 + c21ω0

2]

]

. (5.15)

Next,wefind that the dynamical behavior of the system (2.1) is sensitivewith respect to
the transmission rateβ. Herewe shall fix the delay at τ1(< τ0) and then if the parameter
β is varied, we can find that the system experiences a bifurcation about REE. Here
we find the critical value of β, say βc, for which the pair of purely imaginary root
λ = ±iωc appears. Now, from equation (5.5)

cos(ωcτ1)A[(b1 − ω2
c )

2 + c21ωc
2] = (α′

1 − βcQ0)ω
2
c − α′

3 + βcQ0d1)(b1 − ω2
c )

+ ωc(α
′
2 − βcQ0e1 − ω2

c )c1ωc

(5.16)

βc = (α′
1ωc

2 − α′
3)(b1 − ω2

c ) + c1ωc
2(α′

2 − ωc
2) − cos(ωcτ1)A[(b1 − ω2

c )
2 + c21ω

2
c ]

Q0[(ωc2 − d1)(b1 − ω2
c ) + e1c1ωc2]

(5.17)

where

α′
1 =a1 + βQ0, α′

2 = a2 + βQ0e1, α′
3 = a3 + βQ0d1

d1 =μ2 − μη ŷ, e1 = 2μ + η ŷ.

Now to check the transversality condition for Hopf bifurcation at βc, we need to prove
the following lemma.

Lemma 2 Let λ(β) = γ (β) + iω(β) be the root of equation (3.12) near β = βc

satisfying γ (βc) = 0 and ω(βc) = ωc. To show that there is a Hopf bifurcation with
respect to β at βc, the following transversality condition should hold.

Re

[
dλ(β)

dβ

−1
]

β=βc

	= 0 (5.18)

Proof Let

R1(λ) = λ3 + α′
1λ

2 + α′
2λ + α′

3

R2(λ) = Q0(λ
2 + e1λ + d1)

I1(λ) = [λ2 − c1λ + b1].

Then the equation (3.12) can be rewritten in the form

R1(λ) − βR2(λ) + βP0e
(−λτ1) I1(λ) = 0. (5.19)
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Now differentiating (5.19) with respect to β we get

R′
1(λ)

dλ

dβ
− R2(λ) − βR′

2(λ)
dλ

dβ
+ P0e

−λτ1 I1(λ) + βe−λτ1 [I ′
1(λ) − τ1 I1(λ)] dλ

dβ
= 0.

(
dλ

dβ

)−1

= R′
1(λ) − βR′

2(λ) + βP0e−λτ1 [I ′
1(λ) − τ1 I1(λ)]

R2(λ) − P0e−λτ1 I1(λ)
(5.20)

Now to check the value of dλ
dβ

at β = βc, we substitute λ by iωc in (5.20) and we get

(
dλ

dβ

)∣∣∣
∣
βc

= R′
1(iωc) − βR′

2(iωc) + βP0e−iωcτ1 [I ′
1(iωc) − τ1 I1(iωc)]

R2(iωc) − P0e−iωcτ1 I1(iωc)
(5.21)

=
(a2 − 3ωc

2) + βP0[cos(ωcτ1)(τ1ωc
2 − τ1b1 − c1) + ωc(2 + c1τ1) sin(ωcτ1)]

− i[βP0(sin(ωcτ1)(τ1ωc
2 − τ1b1 − c1) − ωc(2 + c1τ1) cos(ωcτ1)) − 2ωca1 + −2βQ0ωc]

Q0(d1 − ωc
2) − P0(b1 − ωc

2) cos(ωcτ1) + P0ωcc1 sin(ωcτ1)

+ i[Q0e1ωc + P0(b1 − ωc
2) sin(ωcτ1) + P0ωcc1 cos(ωcτ1)]

(5.22)

= s1 − is2
s3 + is4

(5.23)

where

s1 =(a2 − 3ωc
2) + βP0[cos(ωcτ1)(τ1ωc

2 − τ1b1 − c1) + ωc(2 + c1τ1) sin(ωcτ1)]
s2 =−i[βP0(sin(ωcτ1)(τ1ωc

2 − τ1b1 − c1) − ωc(2 + c1τ1) cos(ωcτ1)) − 2ωca1 + −2βQ0ωc]
s3 =Q0(d1 − ωc

2) − P0(b1 − ωc
2) cos(ωcτ1) + P0ωcc1 sin(ωcτ1)

s4 =[Q0e1ωc + P0(b1 − ωc
2) sin(ωcτ1) + P0ωcc1 cos(ωcτ1)].

Equation (5.23) implies

Re

[(
dλ(β)

dβ

)−1
]

β=βc

= s1s3+s2s4
s32 + s42

. (5.24)

Therefore, from equation (5.23), Re

[(
dλ(β)
dβ

)−1
]

β=βc

	= 0 or transversality condition

for the occurrence ofHopf bifurcation of system (2.1) holds atβ = βc if (s1s3+s2s4) 	=
0, which completes the proof. ��
Now, from the above discussion we can conclude the following theorem.

Theorem 10 When the time delay is fixed at τ = τ1 with 0 < τ1 < τ0, where τ0, the
critical value for the parameter τ is given by equation (5.15), then for system(2.1)

(i) the endemic equilibrium is LAS for all β ∈ [0, βc]
(ii) for β > βc, if the transversality condition(5.18) holds, the system experiences a

Hopf bifurcation at βc i.e. the endemic equilibrium (x̂, ŷ, ẑ) becomes unstable,
where βc is given by

βc = (α′
1ωc

2 − α′
3)(b1 − ω2

c ) + c1ωc
2(α′

2 − ωc
2) − cos(ωcτ1)A[(b1 − ω2

c )
2 + c21ω

2
c ]

Q0[(ωc
2 − d1)(b1 − ω2

c ) + e1c1ωc
2] .
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6 Numerical simulation and discussions

In this sectionwedemonstrate some important numerical results to verify our analytical
findings using Matlab. The values of parameters for the delayed system is given in
Table 2. First we present plots for the non-delayed system to explain the pervasiveness
of rumor.

6.1 Threshold value of Influence and local stability analysis for the non-delayed
system

R0 is one of the most significant parametric expressions, that indicates when a rumor
will be completely wiped out or when it will prevail for the non-delayed system (2.2).
In Fig. 2, we describe how the threshold value of influence, R0 changes as β and η

increases. From Fig. 2a, we can say that β is more effective in increasing theR0 than
η to decrease the R0. Figure 2b reflects the non-linear effect of the parameter p on
R0. Again we observe that β is more effective in increasing R0 than whatever p is
for decreasing R0.

Figure 3a demonstrates whenR0 < 1, trajectories with different initial values con-
verge to a point y = 0, RFE and it is locally stable.WhenR0 > 1, both the equilibrium
points exist and only the REE is locally stable and trajectories from different initial
points converge to a point y 	= 0 (Fig. 3b), rumor prevails as time advances.

Table 2 Values of parameters

Parameter set p b β α K η μ τ0

P1 0.3 10 0.55 0.7 20 0.0162 0.4 2.95

P2 0.3 10 0.56 0.6 20 0.0182 0.4 2.63

P3 0.35 10 0.76 0.7 20 0.0182 0.5 2.35

β 
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(a) β and η is varied and the fixed parameter
values are p = 0.67, b = 7, μ = 0.56.
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(b) β and p is varied and the fixed parameter
values are η = 0.3, b = 10, μ = 0.5.

Fig. 2 Contour plots demonstrating the nature of progress of R0 for variation in pair of parameters
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(a) R0 = 0.92175, β = 0.3, η = 0.23.
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(b) R0 = 2.355, β = 0.5, η = 0.13.

Fig. 3 2D phase portraits of trajectories from different initial points converge to a point on x-y plane,
showing the switch of stability of RFE to REE, as R0 crosses 1. The rest of the parameters are p = 0.63,
b = 10, K = 30, μ = 0.32, α = 0.73. The inset of each figures show time evaluation of Spreader
population which becomes stable, for 3a at y = 0 and for 3b y 	= 0
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(a) Stable at τ = 2.74 (b) Unstable at τ = 3.5

Fig. 4 The stable fixed point is replaced by stable limit cycle as the time delay increases with parameter
value set P1 of Table 2

6.2 Hopf bifurcation analyses for the delayed system

In this part, we illustrate the numerical results to validate our theoretical findings
regarding the occurrence of Hopf bifurcation with respect to time delay and transmis-
sion rate of rumor. Time delay has great impact in the stability of system (2.1). In
Fig. 4 for a slight change in the value of delay, the stable spiral vanishes and a limit
cycle appears in the phase portrait. For the parameter set P2 in Table 2 as τ crosses
the critical value τ0 = 2.63 the stable nature of the state variables is changed to oscil-
latory in Fig. 5. Figure 6 depicts the occurrence of Hopf bifurcation with respect to
time delay.

The transmission rate of rumor β is highly sensitive. In Fig. 7 we see the change in
stability of the solution trajectories state due to slight increase inβ withfixed timedelay
τ1 less than its critical value τ0. Figure 8 shows that the system (2.1) experiences Hopf
bifurcation as β crosses a certain value. It is also observed that the critical value of τ0
increases with decreasing value of β , that is, if β changes from 0.8 to 0.74, τ0 changes
from 2.23 to 2.52 with parameter set P3. Figure 9 demonstrate how the critical value
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Fig. 5 Solution trajectory shows oscillation as time delay crosses the threshold value with parameter values
set P2 of Table 2
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Fig. 6 Bifurcation diagram with respect to time delay

of the bifurcating parameter β changes for change in delay values. Similarly, from the
same figure, we can observe change in critical value of the bifurcating parameter τ ,
as β is changes.

Sometimes a different kind of situation occurs where the original information or
some selective parts of it is used tactfully to present a different perception [49]. As a
result the true event becomes imprecise with time. According to [50], SNS has great
impact in manipulating users, their political views, perception, judgment. But it needs
time to manipulate the perception of a large number of people. This characterization
is explained here by introducing another time delay τ2 in the interaction term between
spreader and ignorant class in model (2.1) along with the delay due to thinking process
of ignorant class presented as βx(t−τ)y(t−τ2)

(1+αy(t−τ2))
. Here we consider that the spreader class

got the original information τ2 time ago and spreaders take that τ2 time to improvise
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(a) Stable at β = 0.76.
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(b) Unstable at β = 0.8.

Fig. 7 The system loses its stability as β increases, where τ1 = 2.23 with rest of the parameters from set
P3 in Table 2

Fig. 8 Bifurcation diagram with respect to transmission rate β

the real information on their own, then start to interact with ignorant individuals with
the twisted information.

From Fig. 10, we see that the system loses its stability when time delay τ2 crosses a
certain value along with fixed value of previous delay τ = 2.35. This scenario may be
explained as the spreader class successfully fabricates or twists the real data in certain
amount of time and stability of the system is lost when spreaders start to interact with
the twisted data. Moreover, spreader population dominates others in later case (see
Fig. 10b) and in first i.e. in Fig. 101 aware class dominates with stable nature as time
advances.
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Fig. 9 The nature of stability of system (2.1) due to change in τ and β for parameter set P3
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(a) Time series when τ2 = 2.23 and τ = 2.23.
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(b) Time series when τ2 = 7.3 and τ = 2.23.

Fig. 10 The stable time series of state variables is changed as τ2 crosses a certain value with parameter set
P3 of Table 2

6.3 Simulation for optimal control of media effort

Herewe solve the optimal control problem numerically by “forward-backward sweep”
method [51] to interpret the analytical results obtained in section 4. Themain objective
is to minimize the revenue function defined in (4.2) to control a widespread rumor
by awareness campaign through media. The system (4.1), made of three ordinary
differential equations for the state variables is solved by forward fourth-order Runge-
Kutta Method and the adjoint system (4.4) is solved by backward fourth-order Runge-
Kutta method with the transversality condition (4.5) and optimal condition (4.6). For
simulation, we consider the parameter set P4(p = 0.4, b = 35, β = 0.7, α = 5, K =
30, μ = 0.3, η = 0.09, α1 = 0.6, α2 = 0.44) with initial condition (x0, y0, z0) =
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(b) Spreader population trajectory.
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Fig. 11 Solution trajectories of the system (4.1) with and without application of control for parameter set
P4

(60, 10, 20).We choose the positiveweights (B0, B1) of equation (4.2) as (0.82, 0.02).
The time range of application of control is [0, 250].

Figure 11b represents the spreader population before and after applying control.
It is evident that after applying control by media awareness campaign, the spreader
population decreases more rapidly. Also the growth rate of aware population becomes
higher when control is applied (Fig. 11c). After application of control, number of
ignorant people decreases a lot, as they come to know the truth with the help of media
(Fig. 11a). Figure 12 represents the optimal control function to minimize total cost.
For optimal outcome, the control needs to be applied at the highest rate for a brief
period initially, followed by gradual semi-linear decrease. In this way, the requirement
of control ceases some time before the terminal time. But the cost function before
application of control is higher than the cost function associated with control, as we
have assigned higher cost to the presence of spreader population than the control (see
Fig. 13).

Next we consider two sets of parameters P5 (p = 0.35; b = 35;β = 0.85, α =
5, K = 30, μ = 0.3, η = 0.09, α2 = 0.6, α3 = 0.44) and P6 (p = 0.35, b =
35, β = 0.5, α = 5, K = 30, μ = 0.3, η = 0.09, α2 = 0.6, α3 = 0.44) and compare
their corresponding cost and control graph. In the following Fig. 14 we can see that
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Fig. 12 Control function of media optimal control of media effort
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Fig. 13 Cost function with and without control

as transmission rate β increases, control needs to be applied for more time to reduce
spreader population to the minimum possible level.

When transmission rate increases a bit, control needs to be applied for longer time
duration. Cost function is as usual higher than without control case (see Fig. 15). It
is clear form the figure that the increase in cost is higher in absence of control. This
implies that we count huge loss for higher transmission rate in Fig. 15b compared
to Fig. 15a. But in presence of control, we pay the extra cost only for the extra time
of application of media intervention control and finally end up with better result (see
Fig. 16).
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Fig. 14 Application of control with different transmission rate
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rate in presence ofcontrol.
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Fig. 15 Cost function increase notably less in presence of control than the case of without control
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(a) When there is no control.
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Fig. 16 Density of spreader class with and without control for different values of β
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7 Conclusion

Rumor propagation has increased in a tremendous rate with the increasing popularity
of SNS in our society. If an event occurs, users in SNS share information regarding
that event. This can sometimes mislead the judgment of the social netizen and also
can cause social disturbance for the time being. Considering the fact that a person
needs time to make a judgment after they get to know a rumor, here we studied a
rumor propagation model with time delay τ in the interaction term between spreader
and ignorant class. We derived R0, the threshold value of influence and used it to
investigate the stability of RFE. We also derived the conditions for local and global
stability of endemic state. Here, we noticed that when the threshold value of influence
R0 < 1, the RFE is stable which means the rumor will eventually wipe out from SNS.
WhenR0 > 1, the endemic state appears and REE is the only stable equilibrium. All
the trajectories about this point converge to it for 0 ≤ τ < τ0. But when the time delay
crosses τ0, the system bifurcates from the fixed point, and the state becomes unstable.
We have also noticed that for greater values of transmission rate, system bifurcates
at lesser value of time delay (see Fig. 9) which can be interpreted as the situation
where a news spreads faster, people take lesser time to think about its genuineness. It
may happen under the impression that if a large number of people spread a particular
news, then it may be considered true. When the spreader population becomes large
enough, that is, the spreader density is higher in comparison to the ignorant or the
aware class, we can consider this as a viral scenario. Moreover, we have numerically
analyzed the situation where the spreaders take time to twist or fabricate a news by
introducing another delay τ2 and noticed that stability disappears as τ2 increases along
with fixed τ < τ0 (see Fig. 10). The spreader population contains both active spreaders,
who deliberately spread a fake news and passive ones, who share it out of anxiety or
confusion. In this paper, we have considered them as a whole and we are leaving this
classification of spreader class for our further work.

In this article we considered an optimal control strategy to reduce the disturbances
or panic in the society caused by a widespread rumor transmission (viral scenario).
As we discussed earlier, our aim is to reduce the number of spreaders as well as the
corresponding cost. Here we choose awareness campaign through mainstream media
like newspaper, TV or websites broadcasting statements from responsible agency like
AFP, Reuters etc. because it is the easiest way to reach all the netizens in SNS.We have
seen that control is applied for the longer time for the higher transmission rate. So we
can say that the extra cost is only for the extra time of execution of control. It is clear
that the number of spreaders reduces drastically even if β is too high after applying
the media intervention control and we reach our goal. When control is applied, the
cost function remarkably reduces (see Fig. 13). Even when the transmission rate is
high, the cost function reduces more after application of control with better result (see
Fig. 16). So the media campaigning strategy is very cost-effective even if the control
is applied to all account holders irrespective of their attitude towards the rumor.

From the above discussion, we can say that the awareness campaign through media
on SNS is really effective to control the imbalanced situations that may appear due to
transmission of fake news. The present model can be enhanced using different age-
structured users or a separate state for social media influencers and may offer some
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advanced ideas about dynamics of social networking, which is ever growing in today’s
world.
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