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Abstract
This work deals with the existence and uniqueness of global solution and finite time
stability of fractional partial hyperbolic differential systems (FPHDSs). Using the
fixed-point approach, the existence and uniqueness of global solution is studied and
an estimation of solution is given. Moreover, some sufficient conditions for the finite
time stability ofFPHDSsare established.Numerical experiments illustrate theStability
result.

Keywords Partial hyperbolic differential systems · Stability analysis · Fractional
order

Mathematics Subject Classification 26A33

1 Introduction

Since twenty years, the area of fractional calculus has gained much attentions by the
researchers and numerous works has been published in this context [1–11]. In fact, in
[1] a phase dynamics of inline Josephson junction in voltage state is discussed, also,
phase difference between the wave functions is analyzed via fractional calculus and a
finite element scheme is used for the simulations of governing equations. In addition,
authors in [5] have replaced the integer first-order derivative in time with the Caputo
fractional derivative in which a numerical approach to chaotic pattern formation in
diffusive predator-prey system is investigated. In the frame of novelty study, a new
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approach for the solution of fractional diffusion problems with conformable derivative
is elaborated with authors in [8].

Fractional differential equations have recently proved to be valuable tools in the
modeling of many phenomena in different domain applications, whether in biology
[12–14], diffusion [8], control theory [15–21] or viscoelasticity [22]. In fact, regrad-
ing biological application, authors in [12] have modeled a fractional order system
for COVID-19 pandemic transmission. In regards control theory, authors in [17]
have presented a novel controller of fractional sliding mode type based on nonlin-
ear fractional-order Proportional Integrator (PI) derivative controller. In addition, with
systems dealing with time varying delay, a new Finite Time Stability (FTS) analysis of
singular fractional differential equations is investigated. Furthermore, regarding fuzzy
neural networks, a finite-time stability is studied in the work of [16].

For some basic results in the theory of fractional partial differential equations
(FPDEs), the reader is referred to [23–30]. For example, authors in [27] have pre-
sented a Lyapunov-type inequality for the Darboux Problem for FPDEs. Furthermore,
such inequality is used to study the existence of nontrivial solutions of FPDEs.

In the literature, for the existence and uniqueness of Darboux fractional partial
differential equations with time delay, the exist the work of [29]. Compared to the
previous cited work, the existence and uniqueness of solutions is given without any the
Lipschitz constant. Furthermore, there are many works which treat FTS of time delay
fractional order systemswhen the solution depends onone variable (see [15,16,21,31]),
unlike our studied work treats the case when the solution depends of two variables.

Based on the above interpretation, the contribution of this work is summarized as
follow:

– The existence and uniqueness of the global solution of Darboux fractional partial
differential equations with time delay is proved.

– An estimation of the solutions is given.
– The FTS results of such systems are given and the theoretical contributions are
validated by two numerical examples.

The paper is organized as follows. In Sect. 2, Some basic results related to the
fractional calculus are given. In Sect. 3, the existence, the uniqueness of the global
solutions, the estimation of solutions and the FTS results are investigated. In Sect. 4,
we present some numerical examples which illustrate and prove the efficiency of the
main results.

2 Basic results

Definition 1 The Riemann Liouville fractional integral of order γ = (γ1, γ2) of w is
defined by:

I γ

a+w (ξ, ζ ) = [
� (γ1) � (γ2)

]−1
∫ ξ

a+
1

∫ ζ

a+
2

(ξ − s)γ1−1(ζ − t)γ2−1w(s, t)dtds,

where a = (a1, a2) ∈ R
2 and γ1, γ2 are strictly positives.
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Definition 2 The Riemann Liouville fractional derivative of order γ = (γ1, γ2) of w

is defined by:

Dγ

a+w (ξ, ζ ) = D2
ξ,ζ I

1−γ

a+ w (ξ, ζ ) ,

= [
� (1 − γ1) � (1 − γ2)

]−1
D2

ξ,ζ

∫ ξ

a+
1

∫ ζ

a+
2

(ξ − s)−γ1 (ζ − t)−γ2w(s, t) dtds,

where a = (a1, a2) ∈ R
2, (γ1, γ2) ∈ (0, 1)2 and D2

ξ,ζ = ∂2

∂ξ∂ζ
.

Definition 3 The Caputo fractional derivative of order γ = (γ1, γ2) of w is defined
by:

C Dγ

a+w (ξ, ζ ) = Dγ

a+
[
w (ξ, ζ ) − w (ξ, a2) − w (a1, ζ ) + w (a1, a2)

]
,

= [
� (1 − γ1) � (1 − γ2)

]−1
D2

ξ,ζ

∫ ξ

a+
1

∫ ζ

a+
2

(ξ − s)−γ1(ζ − t)−γ2

× [w (s, t) − w (s, a2) − w (a1, t) + w (a1, a2)] dtds,

where a = (a1, a2) ∈ R
2, (γ1, γ2) ∈ (0, 1)2 and D2

ξ,ζ = ∂2

∂ξ∂ζ
.

Definition 4 The Mittag-Leffler function is defined by:

Eξ (�) =
∞∑

m=0

�m

�(mξ + 1)
,

where ξ > 0, � ∈ C.

Remark 1 Let ε be a nonzero real. The function ν(s) = Eτ

(
ε(s − p)τ

)
satisfies:

1

�(τ)

∫ s

p
(s − t)τ−1ν(t)dt = 1

ε

[
ν(s) − 1

]
,

where s, p ∈ R, p ≤ s.

Definition 5 A mapping � : ϒ × ϒ → [0,∞] is called a generalized metric on a
nonempty set ϒ , if:

(i) �(γ1, γ2) = 0 if and only if γ1 = γ2,
(ii) �(γ1, γ2) = �(γ2, γ1), ∀ γ1, γ2 ∈ ϒ ,
(iii) �(γ1, γ3) ≤ �(γ1, γ2) + �(γ2, γ3), ∀ γ1, γ2, γ3 ∈ ϒ .

The following theorem describes a main result of the fixed point theory.

Theorem 1 [32] Suppose that (ϒ,�) is a generalized complete metric space. Let
 : ϒ → ϒ is a strictly contractive operatorwithC < 1. If one can find a nonnegative
integer j0 such that �( j0+1y0,  j0 y0) < ∞ for some y0 ∈ ϒ , then:

(i) n y0 converges to a fixed point y1 of ,
(ii) y1 is the unique fixed point of  in ϒ∗ := {y2 ∈ ϒ : �( j0 y0, y2) < ∞},
(iii) If y2 ∈ ϒ∗, then �(y2, y1) ≤ 1

1−C �( y2, y2).

123



2392 H. Arfaoui, A. Ben Makhlouf

3 Main results

Throughout the paper, we use the following notations:

�np = R
n × R

n × R
p, I = [0, T1] × [0, T2],

t = (t, s) ∈ R
2+, ø(t) = (τ1(t), τ2(s)),

r = (u, v) ∈ R
2+, ø(r) = (τ1(u), τ2(v)),

where τ1, τ2 are two functions which will be specified later.
We consider the fractional-order system, with the variable t, as follows:

C Dα
0 x(t) = Ax(t) + Bx(t − ø(t)) + Cd(t)

+ F(t, x(t), x(t − ø(t)), d(t)), for all t ∈ I , (1)

with the initial condition:

x(t) = �(t), for all t ∈ J̃ ,

where α = (α1, α2), 0 < α1, α2 < 1. The function ø is continuous on I and τ1, τ2 are
positives. The matrices A, B ∈ R

n×n , C ∈ R
n×p and the function � ∈ C( J̃ ,Rn).

Here, the domain J̃ is defined by:

J̃ = J\(0, T1] × (0, T2] and J = [−r1, T1] × [−r2, T2]

where the constants r1, r2 are given by:

r1 = sup
t∈[0,T1]

(τ1(t)) and r2 = sup
t∈[0,T2]

(τ2(t)).

The source term F ∈ C(R2+ × �np,Rn), (in Eq. (1)), is continuous and satisfies:

‖F(t,u) − F(t, v)‖ ≤ κ(t)
3∑

i=1

‖ui − vi‖ and F(t, 0) = 0, (2)

for all t ∈ R
2+ and for all u = (u1, u2, u3), v = (v1, v2, v3) ∈ �np, where κ is a

continuous function on R
2+. ‖.‖ is the Euclidean norm.

The function d ∈ R
p is the disturbance. We suppose that the function d ∈

C(R2+,Rp) is continuous and satisfies:

∃ρ > 0 : dT (t)d(t) ≤ ρ2. (3)

Let us introduce the following constants a0, a1, a2 which are defined by:

a0 = ‖A‖ + max
t∈I (κ(t)), a1 = ‖B‖ + max

t∈I (κ(t)), a2 = ‖C‖ + max
t∈I (κ(t)),
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where the function κ is given in relation (2).

Definition 6 The system (1) is robustly FTS with respect to {ε, σ, ρ, T1, T2}, ε < σ ,
if the following relation is satisfied:

‖�‖ ≤ ε 
⇒ ‖x(t)‖ ≤ σ, ∀t ∈ I ,

for all disturbance d ∈ R
p satisfying (3).

Recall that the solution of the system (1) is defined on the extended domain J =
J̃ ∪ I as follows:

x(t) =
⎧
⎨

⎩

�(t), for all t ∈ J̃ ,

θ(t, s) + 1
�(α1)�(α2)

∫ t
0

∫ s
0 (t − u)α1−1(s − v)α2−1πx (r) dvdu, ∀ (t, s) ∈ I ,

(4)

where the functions πx , θ are defined by:

θ(t, s) = �(t, 0) + �(0, s) − �(0, 0), (5)

πx (r) = Ax(r) + Bx(r − τ(r)) + Cd(r) + F(r, x(r), x(r − τ(r)), d(r)).

(6)

The first main result is given by the following theorem.

Theorem 2 Let η1, η2 > 0 such that 1 − a0+a1
η1η2

> 0. Assume that hypothesis (2)
is satisfied. Then, Eq. (1) has a unique solution y0 on I . In addition, the following
inequality holds:

‖y0(t)‖ ≤ 3
[
1 + (a0 + a1)M0(η1, η2)Eα1(η1T

α1
1 )Eα2(η2T

α2
2 )

]
‖�‖

+a2M0(η1, η2)Eα1(η1T
α1
1 )Eα2(η2T

α2
2 )‖d‖, (7)

where M0(η1, η2) is given by:

M0(η1, η2) = T α1
1 T α2

2

[1 − a0+a1
η1η2

]�(α1 + 1)�(α2 + 1)
. (8)

The proof of Theorem 2 will be established later.
Let us consider the complete metric space (E, δ) that is defined as follows:

E = C(J ,Rn) and δ(ζ1, ζ2) = inf
{
M > 0,

‖ζ1(t) − ζ2(t)‖
h(t)

≤ M,∀t ∈ J
}
,
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where the function h ∈ C(J ,R+) and is defined by:

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Eα1(η1t
α1)Eα2(η2s

α2), for t = (t, s) ∈ I ,
1, for t ∈ [−r1, 0] × [−r2, 0],
Eα2(η2s

α2), for t ∈ [−r1, 0] × [0, T2],
Eα1(η1t

α1), for t ∈ [0, T1] × [−r2, 0].
(9)

Let � ∈ C( J̃ ,Rn). We consider the operator A : E → E defined by:

(Ay)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

�(t), for all t ∈ J̃ ,

�(t, 0) + �(0, s) − �(0, 0)
+ 1

�(α1)�(α2)

∫ t
0

∫ s
0 (t − u)α1−1(s − v)α2−1πy(r) dvdu, ∀ (t, s) ∈ I ,

(10)

where the function πy is given by:

πy(r) = Ay(r) + By(r − τ(r)) + Cd(r) + F(r, y(r), y(r − τ(r)), d(r)).

Immediately, we have the following proposition.

Proposition 1 The operator A : E → E is contractive.

Proof Recall that r = (u, v) ∈ R
2+. Let y1, y2 ∈ E , we can deduce, from system

(10), that:

(Ay1)(t) − (Ay2)(t) = 0, ∀t ∈ J̃ .

On the other hand, for t = (t, s) ∈ I we have:

‖(Ay1)(t) − (Ay2)(t)‖
=

∥∥∥
1

�(α1)�(α2)

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1

[
A
(
y1(r) − y2(r)

)

+B
(
y1(r − ø(r)) − y2(r − ø(r))

) +
(
F

(
r, y1(r), y1(r − ø(r)), d(r)

)

−F
(
r, y2(r), y2(r − ø(r)), d(r)

))]
dvdu

∥∥∥.

Now, by using relation (2), we obtain:

‖(Ay1)(t) − (Ay2)(t)‖
≤ 1

�(α1)�(α2)

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1

[(
κ(r) + ‖A‖)‖y1(r) − y2(r)‖

+(
κ(r) + ‖B‖)‖y1(r − ø(r)) − y2(r − ø(r))‖

]
dvdu.
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From the definition of the constants a0, a1, a2, we deduce that:

‖(Ay1)(t) − (Ay2)(t)‖ ≤ 1

�(α1)�(α2)

×
{
a0

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1‖y1(r) − y2(r)‖ dvdu

+ a1

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1‖y1(r − ø(r)) − y2(r − ø(r))‖ dvdu

}
.

Or, equivalently:

‖(Ay1)(t) − (Ay2)(t)‖ ≤ 1

�(α1)�(α2)

×
{
a0

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1 ‖y1(r) − y2(r)‖

h(r)
h(r) dvdu

+ a1

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1 ‖y1(r − ø(r)) − y2(r − ø(r))‖

h(r − ø(r))
h(r − ø(r)) dvdu

}
.

Finally, from the definition of the metric space E , we get:

‖(Ay1)(t) − (Ay2)(t)‖
≤ a0δ(y1, y2)

∫ t

0

∫ s

0

(t − u)α1−1(s − v)α2−1

�(α1)�(α2)
h(r) dvdu

+ a1δ(y1, y2)
∫ t

0

∫ s

0

(t − u)α1−1(s − v)α2−1

�(α1)�(α2)
h(r − ø(r)) dvdu.

(11)

Let us mention that we have:

h(r − ø(r)) ≤ h(r), for all r ∈ I . (12)

Then, we can deduce from relations (11) and (12) that:

‖(Ay1)(t) − (Ay2)(t)‖
≤ (a0 + a1)δ(y1, y2)

∫ t

0

∫ s

0

(t − u)α1−1(s − v)α2−1

�(α1)�(α2)
h(r) dvdu.

Using Remark 1, we get:

‖(Ay1)(t) − (Ay2)(t)‖ ≤ a0 + a1
η1η2

δ(y1, y2)h(t).

Thus,

δ(Ay1,Ay2) ≤ a0 + a1
η1η2

δ(y1, y2).
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Therefore, A is contractive. The proof is complete. �
In the following, we establish the proof of Theorem 2.

Proof (Theorem 2). Let � ∈ C( J̃ ,Rn), with ‖�‖ ≤ ε1. We consider a function μ

defined as follows:

μ(t) =
⎧
⎨

⎩

�(t), ∀ t ∈ J̃ ,

�(t, 0) + �(0, s) − �(0, 0), ∀ (t, s) ∈ I .
(13)

It’s easy to see that we have the following estimation:

‖μ(t)‖ ≤ 3‖�‖, ∀ t ∈ J . (14)

From the definition of the operator A, see (10), and the definition of the function μ,
see (13), we get:

(Aμ)(t) − μ(t) = 0, ∀ t ∈ J̃ .

For all t = (t, s) ∈ I , we obtain:

‖(Aμ)(t) − μ(t)‖
=

∥∥∥
1

�(α1)�(α2)

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1πμ(r) dvdu

∥∥∥,

≤ 1

�(α1)�(α2)

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1

[
3(a0 + a1)‖�‖ + a2‖d‖

]
dvdu,

≤
(3(a0 + a1)‖�‖ + a2‖d‖

�(α1 + 1)�(α2 + 1)

)
tα1sα2 ,

where the function πμ is given as in Eq. (6). Then, we deduce that:

‖(Aμ)(t) − μ(t)‖
h(t)

≤
(3(a0 + a1)‖�‖ + a2‖d‖

�(α1 + 1)�(α2 + 1)

)
T α1
1 T α2

2 .

Hence, we deduce that:

δ(Aμ,μ) ≤
(3(a0 + a1)‖�‖ + a2‖d‖

�(α1 + 1)�(α2 + 1)

)
T α1
1 T α2

2 .

By using Theorem 1 and Proposition 1, there exists a unique solution y0 to the problem
(1) such that:

y0(t) = �(t), ∀ t ∈ I ,
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and we have the following estimation:

δ(y0, μ) ≤ 1

1 − a0+a1
η1η2

(3(a0 + a1)‖�‖ + a2‖d‖
�(α1 + 1)�(α2 + 1)

)
T α1
1 T α2

2 ,

or, equivalently

δ(y0, μ) ≤
(
3(a0 + a1)‖�‖ + a2‖d‖

)
M0(η1, η2),

where M0(η1, η2) is given by Eq. (8). So, for all t ∈ I we have

‖y0(t) − μ(t)‖ ≤
(
3(a0 + a1)‖�‖ + a2‖d‖

)
M0(η1, η2)Eα1(η1T

α1
1 )Eα2(η2T

α2
2 ).

(15)

It’s well known that:

‖y0(t)‖ ≤ ‖μ(t)‖ + ‖y0(t) − μ(t)‖, t ∈ I .

Consequently, using (14) and (15), we can establish that:

‖y0(t)‖ ≤ 3‖�‖ +
(
3(a0 + a1)‖�‖ + a2‖d‖

)
M0(η1, η2)Eα1(η1T

α1
1 )Eα2(η2T

α2
2 ),

≤ 3
[
1 + (a0 + a1)M0(η1, η2)Eα1(η1T

α1
1 )Eα2(η2T

α2
2 )

]
‖�‖

+ a2M0(η1, η2)Eα1(η1T
α1
1 )Eα2(η2T

α2
2 )‖d‖.

The proof is complete. �
The second main result of this paper is given by the following theorem.

Theorem 3 If there exists η1, η2 > 0 such that: a0 + a1 < η1η2 and the following
inequality holds:

3
[
1 + (a0 + a1)M0(η1, η2)Eα1(η1T

α1
1 )Eα2(η2T

α2
2 )

]
ε

+
[
a2M0(η1, η2)Eα1(η1T

α1
1 )Eα2(η2T

α2
2 )

]
ρ ≤ σ. (16)

Then, the system (1) is FTS w.r.t. {ε, σ, ρ, T1, T2}.
Proof It follows from (7) and (16) that (1) is FTS. �

4 Numerical simulation

Recall that the solution of the system (1) is given by the relation (4) as follows:
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x(t, s) = θ(t, s) + 1

�(α1)�(α2)

∫ t

0

∫ s

0
(t − u)α1−1(s − v)α2−1πx (u, v) dvdu,

(17)

for all (t, s) ∈ [0, T1] × [0, T2], where the functions πx , θ are given by relations (5)
and (6). In this section, we study the system (1) where x, θ, πx ∈ R

2, then we suppose
that the solution vector x is of the form:

x(t, s) = (
x1(t, s), x2(t, s)

)T
.

We consider an uniform grid in the extended domain [−r1, T1] × [−r2, T2]. Let λ =
T1
N = r1

q and β = T2
M = r2

p , where N , M, p, q ∈ N. We build two sequences (ti )i ,
(s j ) j as follows:

ti = iλ, ∀i = −q,−q + 1,−q + 2, . . . ,−1, 0, . . . , N ,

s j = jβ, ∀ j = −p,−p + 1,−p + 2, . . . ,−1, 0, . . . , M .

At the point (ti , s j ), we have:

x(ti , s j ) = θ(ti , s j ) + 1

�(α1)�(α2)

∫ ti

0

∫ s j

0
(ti − u)α1−1(s j − v)α2−1πx (u, v) dvdu,

(18)

where θ(ti , s j ) = �(0, s j ) + �(ti , 0) − �(0, 0). Now, we consider the following
approximations:

x(ti , s j ) ≈ xi j , θ(ti , s j ) ≈ θi j , �(0, s j ) ≈ �0 j , �(ti , 0) ≈ �i0, �(0, 0) ≈ �00.

(19)

Then Eq. (18) becomes:

xi j = θi j + 1

�(α1)�(α2)

∫ ti

0

∫ s j

0
(ti − u)α1−1(s j − v)α2−1πx (u, v) dvdu.

(20)

We deduce from (19) and (20) that:

x0 j = θ0 j = �0 j and xi0 = θi0 = �i0.

Equation (20) can be rewritten as follows:

xi j = θi j + 1

�(α1)�(α2)

i−1∑

k=0

j−1∑

l=0

∫ tk+1

tk

∫ sl+1

sl
(ti − u)α1−1(s j − v)α2−1πx (u, v) dvdu.
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Now, we can used the approximation proposed in [26]:

xi j = θi j + 1

�(α1)�(α2)

i−1∑

k=0

j−1∑

l=0

∫ tk+1

tk

∫ sl+1

sl
(ti − u)α1−1(s j − v)α2−1πx (tk, sl) dvdu,

= θi j + 1

�(α1)�(α2)

i−1∑

k=0

j−1∑

l=0

πkl
x

∫ tk+1

tk

∫ sl+1

sl
(ti − u)α1−1(s j − v)α2−1 dvdu,

(21)

where we have the approximation πx (tk, sl) ≈ πkl
x and:

πx (tk, sl) = Ax(tk, sl) + Bx(tk − r1, sl − r2) + Cd(tk, sl)

+ F(tk, sl , x(tk, sl), x(tk − r1, sl − r2), d(tk, sl)),

and the term

x(tk − r1, sl − r2) = x(kλ − qλ, lβ − pβ)

= x((k − q)λ, (l − p)β) = x(tk−q , sl−p) ≈ xk−q,l−p,

so, we deduce that:

πkl
x = Axkl + Bxk−q,l−p + Cdkl + F(tk, sl , xkl , xk−q,l−p, dkl).

By calculating the integral in the right hand side of Eq. (21) and after simplification,
we obtain:

xi j = θi j + λα1βα2

�(α1 + 1)�(α2 + 1)

i−1∑

k=0

j−1∑

l=0

bikcl jπ
kl
x , (22)

where bik, cl j are given by:

bik = (i − k − 1)α1 − (i − k)α1 , cl j = ( j − l − 1)α2 − ( j − l)α2 .

The convergence of the method can be deduced from [26]. The error in this method is
given by:

‖x(ti , s j ) − xi j‖ = O(λα1 + βα2), as λ �→ 0, β �→ 0.

5 Numerical examples

In the following numerical examples, we prove that the solution of the system (1)
satisfies the Definition 6. Indeed, we show that for any ε > 0 and σ > 0 such that:
ε < σ , we have
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‖�‖ ≤ ε ⇒ ‖x(t, s)‖ ≤ σ, ∀(t, s) ∈ [0, T1] × [0, T2]. (23)

Recall that the system (1) is given as follows:

C D(α1,α2)
0 x(t, s) = Ax(t, s) + Bx(t − r1, s − r2) + Cd(t, s)

+ F(t, s, x(t, s), x(t − r1, s − r2), d(t, s)), (24)

for all (t, s) ∈ [0, T1] × [0, T2], and the initial condition is defined by:

x(t, s) = �(t, s), ∀(t, s) ∈ [−r1, 0] × [−r2, 0],

where the solution x(t, s) = (x1(t, s), x2(t, s))T

Example 1 We have taken the following data:

A = 10−2
(

1 2
−3 −4

)
, B = 10−2

(
2 −3
5 −4

)
,

C = 10−2
(

1 2
−1 −1

)
, d(t, s) = 10−3

(
5
4

)
.

The source term is in the form:

F(t, s, x(t, s), x(t − r1, s − r2), d(t, s)) = 0.02

(
sin(x2(t, s)

sin(x1(t − r1, s − r2))

)
.

where (r1, r2) = (0.1, 0.2). The initial condition:

�(t, s) =
(
0.07 cos(10π ts)
0.07 cos(9π ts)

)
,

for all (t, s) ∈ [−0.1, 0] × [−0.2, 0]. Moreover, we have taken: N = 70, M = 60
η1 = η2 = 1, ε = 0.1, σ = 10 and ρ = 0.01. In the following, we have plotted
the solution for different values of α = (α1, α2). Remark that ‖�‖ ≈ 0.09899 < ε.
Also, the stability relation given in (23) is well satisfied ‖x(t, s)‖ < 10. Indeed, the
norm of the solution x(t, s) is given in each figure: Figures 1, 2 and 3. In this case, the
fractional-order system (24) is FTS with respect to {ε, σ, ρ, T1, T2}.

In the experiment illustrated by Fig. 4, we take the same data as considered in
Fig. 1, but with a height perturbation d(t, s) = (2, 3)T , ‖d(t, s)‖ ≈ 3.605 and
‖x(t, s)‖ = 9.9441. It’s clear that the stabilization is slower than in Fig. 1 (where
d(t, s) = 10−3(5, 4)T , ‖d(t, s)‖ ≈ 0.0064 and ‖x(t, s)‖ = 6.4160). In fact, it’s quite
in agreement.

Example 2 Now, we consider the same fractional-order system given in (24), but we
take the following data:

A = 10−3
(

1 −3
−2 1

)
, B = 10−3

(−1 −2
0.5 3

)
,
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Fig. 1 The numerical solution x(t, s) for (t, s) ∈ [0, 1.8] × [0, 1.52] and (α1, α2) = (0.4, 0.9), with a
norm ‖x(t, s)‖ = 6.4160
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Fig. 2 The numerical solution x(t, s) for (t, s) ∈ [0, 1.8]× [0, 1.8] and (α1, α2) = (0.9, 0.8), with a norm
‖x(t, s)‖ = 6.4178
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Fig. 3 The numerical solution x(t, s) for (t, s) ∈ [0, 1.8]× [0, 1.2] and (α1, α2) = (0.8, 0.3), with a norm
‖x(t, s)‖ = 6.4190
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Fig. 4 The numerical solution x(t, s) for (t, s) ∈ [0, 1.8] × [0, 1.52], (α1, α2) = (0.4, 0.9) and a pertur-
bation d(t, s) = (2, 3)T , with a norm ‖x(t, s)‖ = 9.9441

C = 10−3
(−3 −1

2 0.5

)
, d(t, s) = 10−2

(
1
0.5

)
.

The source term is in the form:

F(t, s, x(t, s), x(t − r1, s − r2), d(t, s)) = 10−3
(
sin(πx1(t − r1, s − r2))

sin(πx2(t, s))

)
.

where (r1, r2) = (0.1, 0.1). The initial condition:

�(t, s) =
(
0.01 cos(π ts)
0.01 sin(π ts)

)
,

for all (t, s) ∈ [−0.1, 0] × [−0.1, 0]. Moreover, we have taken: N = 80, M = 70
η1 = η2 = 1, ε = 0.1, σ = 1 and ρ = 0.02. Remark that ‖�‖ ≈ 0.01414 < ε. Also,
the stability relation given in (23) is well satisfied ‖x(t, s)‖ < 1. Indeed, the norm of
the solution x(t, s) is given in each figure: Figures 5, 6 and 7. Also, in this case, the
fractional-order system (24) is FTS with respect to {ε, σ, ρ, T1, T2}.

6 Conclusion

In this work, several goals have been achieved. Indeed, we have proved the existence
and uniqueness of a global solution of (FPHDSs) using an approach based on the
fixed-point theory. Moreover, a new sufficient condition for the (FTS) of such systems
is obtained. Finally, some illustrative examples were presented to prove the validity
of our result.
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Fig. 5 The numerical solution x(t, s) for (t, s) ∈ [0, 1.4]× [0, 1.3] and (α1, α2) = (0.2, 0.4), with a norm
‖x(t, s)‖ = 0.7480

0
0.5

1
1.5

2

00.511.52
9.7

9.8

9.9

10

10.1

x 10−3

x1
(t

,s
)

0
0.5

1
1.5

2

0

0.5

1

1.5

2
−0.5

0

0.5

1

1.5

2

2.5

x 10−5

x2
(t
,s
)

Fig. 6 The numerical solution x(t, s) for (t, s) ∈ [0, 1.99] × [0, 1.8] and (α1, α2) = (0.8, 0.7), with a
norm ‖x(t, s)‖ = 0.7481
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Fig. 7 The numerical solution x(t, s) for (t, s) ∈ [0, 1.64] × [0, 1.8] and (α1, α2) = (0.9, 0.3), with a
norm ‖x(t, s)‖ = 0.7481
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