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Abstract
A stochastic epidemicmodel with infectivity rate in incubation period and homestead–
isolation on the susceptible is developed with the aim of revealing the effect of
stochastic white noise on the long time behavior. A good understanding of extinc-
tion and strong persistence in the mean of the disease is obtained. Also, we derive
sufficient criteria for the existence of a unique ergodic stationary distribution of the
model. Our theoretical results show that the suitably large noise can make the disease
extinct while the relatively small noise is advantageous for persistence of the disease
and stationary distribution.

Keywords Stochastic epidemic model · Homestead–isolation · Infectivity in
incubation period · Survival · Stationary distribution
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1 Introduction

Over the last several decades, infectious disease models have gained increasing recog-
nition as a powerful tool to reveal the mechanism spread of diseases. Based on systems
design with deterministic and stochastic models, there are a lot of literatures to inves-
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tigate the transmission rates of diseases, see [1–27] and the references therein. One
of classic epidemic models is the SEIR model, which subdivides a homogeneous
host population into categories containing susceptible, exposed, infectious and recov-
ered individuals, with their population sizes denoted by S, E, I and R, respectively.
Anderson and May [2] first used a system of ordinary differential equations (ODEs)
to describe a classical SEIR epidemic model in 1991. Later, ODEs, IDEs, PDEs and
SDEs are heavily employed to investigate SEIR epidemic models and many good
results are obtained, for details to see [3,22–30]. In particular, Zhao et al. [30] estab-
lished and studied an SEIR model with non-communicability in incubation period.
But, for some diseases, such as COVID-19, the incubation period is infectious [31],
and the COVID-19 outbreak control in China shows that both physical protection
[32–34] and social isolation [35–37] play important roles in controlling the epidemic
in the present absence of vaccines for the virus. With the idea of infectivity in incu-
bation period, Jiao et al. [38] proposed a deterministic SEIR epidemic model with
homestead–isolation on the susceptible

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ(t) = � − β(1 − θ1)S(t)[I (t) + θ2E(t)] − μS(t),
Ė(t) = β(1 − θ1)S(t)[I (t) + θ2E(t)] − (δ + μ)E(t),
İ (t) = δE(t) − (γ + α + μ)I (t),
Ṙ(t) = (γ + θ3α)I (t) − μR(t),

(1.1)

where δ > θ2(γ + α + μ), and the biological meanings of the parameters of model
(1.1) are shown in Table 1 below.

Since the variable R in the fourth equation is not involved in the first three equations
of model (1.1), a reasonable idea is to consider the following model

⎧
⎨

⎩

Ṡ(t) = � − β(1 − θ1)S(t)[I (t) + θ2E(t)] − μS(t),
Ė(t) = β(1 − θ1)S(t)[I (t) + θ2E(t)] − (δ + μ)E(t),
İ (t) = δE(t) − (γ + α + μ)I (t).

(1.2)

It follows from [38] that the basic reproductionnumber is R0 = �β(1−θ1)[δ+θ2(γ+α+μ)]
μ(γ+δ+μ)(δ+μ)

,

Table 1 The biological significance of each parameter for model (1.1)

Notation Biological meaning

� The enrolling rate

β The infective rate from S to E

0 < θ1 < 1 The homestead–isolation rate of the susceptible

0 < θ2 < 1 The infective rate of the exposed in incubation period

μ > 0 The natural death rate

δ > 0 The transition rate from E to I

α > 0 The hospitalized rate of I for the disease

γ > 0 The transition rate from I to R

θ3 > 0 The recovery rate of I
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and the threshold dynamics results of model (1.2) are summarized as follows:
• The positive equilibrium (denoted by P∗) is globally asymptotically stable if

R0 > 1;
• The disease-free equilibrium (denoted by P0) is globally asymptotically stable

provided that R0 < 1.
Admittedly, deterministic model has significant advantages in simplifying the

complex system and facilitating the theoretical analysis, whereas there exist some lim-
itations in describing the population dynamics by this modeling method, especially
when the external interference is relatively large and the population number decreases
dramatically due to large-scale natural disasters including hurricanes, tsunamis, vol-
canoes, earthquakes such that the law of large numbers becomes no longer available
and the dynamical behaviors have changed even more radically compared with the
corresponding deterministic models [39–41]. For example, Arnold et al. [39] found
that the real environmental white noise couldmake the stable Lotka-Volterra system no
longer stable, even a stationary solution no longer exists. Zhou et al. [40] revealed that
random effects may lead the disease to extinction in scenarios where the deterministic
model exhibits persistence. Since the fluctuations in the randomly varying environ-
ment, such as humidity, temperature, food supply, season, etc., constantly affect the
biological population densities [42], which embodies the objectivity and universality
of the stochasticity. Accordingly, some researchers have argued that stochastic dif-
ferential equations (SDEs) should be used to model epidemic systems because they
are inevitably affected by the environmental noises, thus their stochastic dynamics
have been intensively studied, for example, persistence and extinction [12,16–20,23],
asymptotic stability [24,25], positive recurrent [20,23], stationary distribution [6,16–
19,43,44], periodic solution [43,44], optimal vaccination strategy [14] and so on.

In the last fewyears, numerous goodworks [23,45–48] on stochastic SEIR epidemic
model have sprung up that focused on the effects of stochastic perturbation on their
transmission dynamics. In particular, Yang and Mao [23] observed that the dynamical
behaviors of the perturbed SEIR models be considerably different from that of the
deterministic counterpart, namely, large perturbations can accelerate the extinction of
epidemics regardless of the magnitude of the basic reproduction number R0. Applying
Lyapunov method Zhang and Wang [45] achieved the conditions for the stochastic
stability, persistence and extinction of an SEIR model driven simultaneously by white
and Lévy noises (termed jumps) which can capture the wide spread of infectious
diseases caused by medical negligence. More recently, Boukanjime et al. [46] utilized
a stochastic SEIRmodel to describe the COVID-19 transmission dynamics affected by
mixture of white and telegraph noises and investigated the extinction and persistence
in the mean of the COVID-19 epidemic in Indian states in terms of the stochastic
threshold R0.

It should also be mentioned that several possible approaches incorporating stochas-
tic effects into the epidemic models have been proposed and extensively studied.
Thereinto, one well-known approach to construct the discrete-time or continuous-
time Markov chain models [49–51], which are conducive to estimating parameters
and exploring the implications of the models by using statistical methods and simu-
lation (e.g., seeing [50,51]). Artalejo and his coauthors [50] formulated a stochastic
SEIR model described by a continuous-time Markov chain and developed efficient
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computational procedures for the distribution of the duration of an outbreak. Another
frequently used approach is to incorporate the noises (such as the white, color, Lévy,
telegraph noises or the coupling noises between them) into certain deterministic epi-
demic models [20,43–46]. This approach is mainly involved in the following several
different forms of perturbations: the noises may perturb model parameters [23,52–
56], or be proportional to the distance between the state variables and the endemic
equilibria of the deterministic models [24,57,58], or proportional to the state variables
measuring population densities [19,25,43,47,59], with the advantage of good under-
standing the stochastic dynamics in long time of these models from the theoretical
analysis perspective. For instance, Liu et al. [25] analyzed asymptotic behaviors of
the equilibria of a stochastic delayed nonlinear SEIR epidemic model via Lyapunov
functions.

This contribution is interested in probing into stochastic dynamics of model (1.2)
incorporating random perturbations by thorough mathematical analysis. Therefore,
following [25,47,59], we suppose that random perturbations are proportional to the
variables S, E and I in model (1.2) under the influence of white noises and get a
stochastic model

⎧
⎨

⎩

d S(t) = [� − β(1 − θ1)S(t)(I (t) + θ2E(t)) − μS(t)]dt + σ1S(t)d B1(t),
d E(t) = [β(1 − θ1)S(t)(I (t) + θ2E(t)) − (δ + μ)E(t)]dt + σ2E(t)d B2(t),
d I (t) = [δE(t) − (γ + α + μ)I (t)]dt + σ3 I (t)d B3(t),

(1.3)

where Ḃi (t) are the white noises which are regarded as the derivative of mutually
independent standard Brownian motions Bi (t) (i = 1, 2, 3). σ 2

i > 0 (i = 1, 2, 3) are
the intensities of the noises and Bi (t) are defined on the complete probability space
(	,F , {Ft }t≥0,P). Also, we assign R

n+ = {x ∈ R
n : x j > 0, 1 ≤ j ≤ n}.

Our main purpose of this work is to investigate the effects of environmental noises
on the stochastic dynamics of model (1.3) and reveal whether the noises can inhibit
the disease or not by comparing with the global dynamical results of model (1.2)
established in [38]. The rest organization is as follows. Section 2 focuses on the
extinction and strong persistence in the mean of the disease. Section 3 discusses
the existence of a unique ergodic stationary distribution. Numerical simulations are
conducted to substantiate our analytical results in Sect. 4. A brief biological discussion
is provided in the final section.

2 Survival results of the disease

The section focuses on the survival results of the disease, andwefirst give the following
two lemmas (Lemmas 2.1 and 2.2).

Lemma 2.1 For initial value (S(0), E(0), I (0)) ∈ R
3+, there is a unique solution (S(t),

E(t), I (t)) of model (1.3) on t ≥ 0 and the solution remains in R
3+ with probability

one.

123



A stochastic epidemic model with infectivity in incubation… 789

Assign W (S, E, I ) = (S − a − a ln S
a ) + (E − 1− ln E) + aβ(1−θ1)

μ+α+γ
(I − 1− ln I ),

where a = (δ + μ)/[β(1 − θ1)(θ2 + δ
(μ+γ+α)

)], the rest proof is similar to Theorem
2.1 in [25], and we omit it here.

The following Lemma 2.2 is useful for the proofs of Theorems 2.1–2.2.

Lemma 2.2 Let (S(t), E(t), I (t)) be the solution of (1.3), then lim supt→+∞(S(t) +
E(t)+ I (t)) < +∞, limt→+∞ S(t)/t = 0, limt→+∞ E(t)/t = 0, limt→+∞ I (t)/t =
0, limt→+∞ ln S(t)/t = 0, limt→+∞ ln E(t)/t = 0, limt→+∞ ln I (t)/t =
0, a.s. And limt→+∞

∫ t
0 S(r)d B1(r)/t = 0, limt→+∞

∫ t
0 E(r)d B2(r)/t = 0,

limt→+∞
∫ t
0 I (r)d B3(r)/t = 0, a.s.

Proof It follows from (1.3) that

d(S + E + I ) = [� − μ(S + E + I ) − (α + γ )I ]dt

+σ1Sd B1 + σ2Ed B2 + σ3 I d B3, (2.1)

and we obtain, by solving the above equation (2.1), that

S(t) + E(t) + I (t)

= �

μ
+

(

S(0) + E(0) + I (0) − �

μ

)

e−μt − (α + γ )

∫ t

0
I (r)e−μ(t−r)dr

+σ1

∫ t

0
S(r)e−μ(t−r)d B1(r) + σ2

∫ t

0
E(r)e−μ(t−r)d B2(r)

+σ3

∫ t

0
I (r)e−μ(t−r)d B3(r)

≤ �

μ
+

(

S(0) + E(0) + I (0) − �

μ

)

e−μt + σ1

∫ t

0
S(r)e−μ(t−r)d B1(r)

+σ2

∫ t

0
E(r)e−μ(t−r)d B2(r) + σ3

∫ t

0
I (r)e−μ(t−r)d B3(r). (2.2)

Let

M(t) = σ1

∫ t

0
S(r)e−μ(t−r)d B1(r) + σ2

∫ t

0
E(r)e−μ(t−r)d B2(r)

+σ3

∫ t

0
I (r)e−μ(t−r)d B3(r).

Clearly, M(t) is a continuous local martingale with M(0) = 0.
Define

X(t) = X(0) + H(t) − Y (t) + M(t),

where

X(0) = S(0) + E(0) + I (0), H(t) = �

μ
(1 − e−μt ),
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Y (t) = (S(0) + E(0) + I (0))(1 − e−μt ).

It follows from (2.2) that S(t)+ E(t)+ I (t) ≤ X(t) for all t > 0. Obviously, H(t) and
Y (t) are continuous adapted increasing processes on t ≥ 0 with H(0) = Y (0) = 0.
Applying Theorem 3.9 in [60], we obtain limt→+∞ X(t) < +∞. Hence

lim sup
t→+∞

(S(t) + E(t) + I (t)) < +∞. (2.3)

Thus, one easily derives

lim
t→+∞

S(t)

t
= 0, lim

t→+∞
E(t)

t
= 0, lim

t→+∞
I (t)

t
= 0,

lim
t→+∞

ln S(t)

t
= 0, lim

t→+∞
ln E(t)

t
= 0, lim

t→+∞
ln I (t)

t
= 0.

Assign

M1(t) =
∫ t

0
S(r)d B1(r), M2(t) =

∫ t

0
E(r)d B2(r), M3(t) =

∫ t

0
I (r)d B3(r).

It follows from the quadratic variations that

〈M1(t), M1(t)〉 =
∫ t

0
S2(r)dr ≤

(

sup
t≥0

S2(t)

)

t .

By the large number theorem for martingale (see [60]) and (2.3), one has

lim
t→+∞

∫ t
0 S(r)d B1(r)

t
= 0.

Similarly, we have

lim
t→+∞

∫ t
0 E(r)d B2(r)

t
= 0, lim

t→+∞

∫ t
0 I (r)d B3(r)

t
= 0.

The proof of the desired conclusions is finished. 
�
Next, we consider the extinction of the disease.

Theorem 2.1 If R̂0 = 2�β(1+θ2)(1−θ1)(δ+μ)2

μ[(δ+μ)2(γ+α+μ+ 1
2 σ 2

3 )∧ 1
2 δ2σ 2

2 ] < 1, then the disease I (t) will be

extinct.

Proof Integrating both sides of (2.1) over the interval [0, t] and dividing by t lead to

1

t

∫ t

0
d(S(s) + E(s) + I (s))
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≤ � − μ

t

∫ t

0
(S(s) + E(s) + I (s))ds + σ1

1

t

∫ t

0
S(s)d B1(s)

+σ2
1

t

∫ t

0
E(s)d B2(s) + σ3

1

t

∫ t

0
I (s)d B3(s),

from which we conclude that

S(t) + E(t) + I (t)

t
− S(0) + E(0) + I (0)

t

≤ � − μ

t

∫ t

0
(S(s) + E(s) + I (s))ds + σ1

1

t

∫ t

0
S(s)d B1(s)

+σ2
1

t

∫ t

0
E(s)d B2(s) + σ3

1

t

∫ t

0
I (s)d B3(s).

We can know from Lemma 2.2 that

lim sup
t→+∞

1

t

∫ t

0
(S(s) + E(s) + I (s))ds ≤ �/μ. (2.4)

Let A(t) = δE(t) + (δ + μ)I (t). Applying Itô’s formula yields

d ln A(t)

=
[

β(1 − θ1)δSI

δE + (δ + μ)I
+ β(1 − θ1)δθ2SE

δE + (δ + μ)I
− (δ + μ)(γ + α + μ)I

δE + (δ + μ)I

−δ2σ 2
2 E2 + (δ + μ)2σ 2

3 I 2

2(δE + (δ + μ)I )2

]

dt

+ δσ2E

δE + (δ + μ)I
d B2(t) + (δ + μ)σ3 I

δE + (δ + μ)I
d B3(t)

≤ β(1 − θ1)(1 + θ2)Sdt − 1

(δE + (δ + μ)I )2
{[

(δ + μ)2(γ + α + μ) + 1

2
(δ + μ)2σ 2

3

]

I 2

+1

2
δ2σ 2

2 E2
}

dt + δσ2E

δE + (δ + μ)I
d B2(t) + (δ + μ)σ3 I

δE + (δ + μ)I
d B3(t)

≤ β(1 − θ1)(1 + θ2)Sdt − 1

2(δ + μ)2
[

(δ + μ)2
(

γ + α + μ + 1

2
σ 2
3

)

∧ 1

2
δ2σ 2

2

]

dt

+ δσ2E

δE + (δ + μ)I
d B2(t) + (δ + μ)σ3 I

δE + (δ + μ)I
d B3(t). (2.5)
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792 D. Shangguan et al.

Integrating both sides of (2.5) over the interval [0, t], dividing by t , and combining
with (2.4) and Lemma 2.2, we have

lim inf
t→+∞ sup

ln A(t)

t
≤ �β(1 − θ1)(1 + θ2)

μ

− 1

2(δ + μ)2

[

(δ + μ)2
(

γ + α + μ + 1

2
σ 2
3

)

∧ 1

2
δ2σ 2

2

]

= 1

2(δ + μ)2

[

(δ + μ)2
(

γ + α + μ + 1

2
σ 2
3

)

∧ 1

2
δ2σ 2

2

]

(R̂0 − 1) < 0,

which implies that

lim
t→+∞ I (t) = 0, lim

t→+∞ E(t) = 0.

Thus, the disease I (t) will be extinct. 
�
Assumption A Rs

0 = β(1−θ1)�δ(
1
2 σ 2

1 +μ
)(

1
2 σ 2

3 +μ+γ+α
)(

1
2 σ 2

2 +μ+δ
) > 1.

Finally, we give the persistence of the disease.

Theorem 2.2 If Assumption A holds, then the disease I (t) will be strong persistent in
the mean, and

lim inf
t→+∞

1

t

∫ t

0
I (s)ds ≥ (δ + μ + 1

2σ
2
2 )(Rs

0 − 1)

c1β(1 − θ1) + c2β(1 − θ1)θ2
γ+α+μ

δ

> 0.

Proof Integrating on both sides of the last equation of (1.3) over the interval [0, t] and
dividing by t lead to

I (t) − I (0)

t
= δ

t

∫ t

0
E(s)ds − γ + α + μ

t

∫ t

0
I (s)ds + σ3

t

∫ t

0
I (s)d B3(s).

We computer that

1

t

∫ t

0
E(s)ds = γ + α + μ

δt

∫ t

0
I (s)ds + ψ(t), (2.6)

where

ψ(t) = 1

δ

[ I (t) − I (0)

t
− σ3

t

∫ t

0
I (s)d B3(s)

]
.

It follows from Lemma 2.2 that we have

lim
t→+∞ ψ(t) = 0. (2.7)
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Assign

U (S, E, I ) = −c1 ln S − c2 ln I − ln E,

where

c1 = β(1 − θ1)δ�
(
μ + 1

2σ
2
1 )2(γ + α + μ + 1

2σ
2
3

) , c2 = β(1 − θ1)δ�
(
μ + 1

2σ
2
1 )(γ + α + μ + 1

2σ
2
3

)2 .

Applying Itô’s formula to U , one obtains

dU = LUdt − c1σ1d B1(t) − c2σ3d B3(t) − σ2d B2(t),

where

LU = −c1
�

S
+ c1β(1 − θ1)I + c1β(1 − θ1)θ2E

+c1μ + 1

2
c1σ

2
1 − c2δ

E

I

+c2 (γ + α + μ) + 1

2
c2σ

2
3 − β(1 − θ1)

SI

E

−β(1 − θ1)θ2S + δ + μ + 1

2
σ 2
2

≤ −3 3
√

c1c2β(1 − θ1)δ� + c1

(

μ + 1

2
σ 2
1

)

+c2

(

γ + α + μ + 1

2
σ 2
3

)

+ c1β(1 − θ1)I

+c1β(1 − θ1)θ2E + δ + μ + 1

2
σ 2
2

= −
(

δ + μ + 1

2
σ 2
2

)

(Rs
0 − 1) + c1β(1 − θ1)I + c1β(1 − θ1)θ2E .

Thus

dU ≤ [−(δ + μ + 1

2
σ 2
2 )(Rs

0 − 1) + c1β(1 − θ1)I + c1β(1 − θ1)θ2E]dt

−c1σ1d B1(t) − c2σ3d B3(t) − σ2d B2(t). (2.8)

Integrating (2.8) over the interval [0, t] and then dividing by t on both sides, we have

U (t) − U (0)

t
≤ −

(

δ + μ + 1

2
σ 2
2

)

(Rs
0 − 1) + c1β(1 − θ1)

t

∫ t

0
I (s)ds

+ c1β(1 − θ1)θ2

t

∫ t

0
E(s)ds
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794 D. Shangguan et al.

− c1σ1t−1
∫ t

0
d B1(s) − c2σ3t−1

∫ t

0
d B3(s) − σ2t−1

∫ t

0
d B2(s).

(2.9)

Taking the superior limit on both sides of (2.9) and combining with (2.6), (2.7) and
Lemma 2.2, we have

lim inf
t→+∞

1

t

∫ t

0
I (s)ds ≥

(
δ + μ + 1

2σ
2
2

)
(Rs

0 − 1)

c1β(1 − θ1) + c1β(1 − θ1)θ2
γ+α+μ

δ

> 0.

The proof is complete. 
�

3 Stationary distribution

In this section, we further study the stationary distribution for model (1.3) by using the
theory of Hasminskii [61]. Let X(t) be a regular time-homogeneous Markov process
in Rd described by

d X(t) = b(X)dt +
k∑

r=1

gr d Br (t),

and the corresponding diffusion matrix is defined as follows

A(X) = (ai j (x)), ai j (x) =
k∑

r=1

gi
r (x)g j

r (x).

Lemma 3.1 [61] The Markov process X(t) has a unique ergodic stationary distribution
π(·) if there exists a bounded domain U ⊂ R

d with regular bounded � and

(i): A positive number M satisfied that
∑d

i, j=1 ai j (x)ξ1ξ2 ≥ M |ξ |2, x ∈ U , ξ ∈ R
d .

(ii): There exists V ( V is a nonnegative C2-function) such that LV is negative for any
R

d \ U. If f (·) is a function integrable with respect to the measure π , then

Px

{

lim
T →+∞

1

T

∫ t

0
f (X(t))dt =

∫

Rd
f (x)π(dx)

}

= 1

for all x ∈ R
d .

Theorem 3.1 If Assumption A holds, model (1.3) owns a unique ergodic stationary
distribution π(·).
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Proof Weonly need to verify the assumptions (i)−(i i) in Lemma3.1.Wefirst consider
the diffusion matrix of model (1.3)

A =
⎛

⎝
σ 2
1 S2 0 0
0 σ 2

2 E2 0
0 0 σ 2

3 I 2

⎞

⎠ .

Assign M = min(S,E,I )∈U⊂R
3+{σ 2

1 S2, σ 2
2 E2, σ 2

3 I 2}, then

3∑

i, j=1

ai j (S, E, I )ξiξ j = σ 2
1 S2ξ21 + σ 2

2 E2ξ22 + σ 2
3 I 2ξ33 ≥ M |ξ |2, (S, E, I ) ∈ U ,

ξ = (ξ1, ξ2, ξ3) ∈ R
3,

which implies that (i) in Lemma 3.1 is satisfied.
Now, we continue to verify (i i). Consider a C2-function Ṽ : R3+ → R with

Ṽ (S, E, I ) = M
(

− ln S − a1 ln E − a2 ln I − β(1 − θ1)θ2

δ
I

)

+ 1

q + 1
(S + E + I )q+1 − ln S − ln E,

where a1, a2 are positive constants to be chosen later, 0 < q < 1 is a constant satisfying
κ := μ − q

2 (σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ) > 0 and the constantM > 0 is sufficient large such that

gu
1 + gu

2 − ηM ≤ −2, where η := (μ + 1
2σ

2
1 )(Rs

0 − 1),

gu
1 = sup

S∈(0,+∞)

{

F − 1

2
κSq+1 − �

S

}

,

gu
2 = sup

E∈(0,+∞)

{

−1

2
κ Eq+1 + β(1 − θ1)θ2E

}

.

In addition, Ṽ (S, E, I ) is continuous and tends to +∞ when (S, E, I ) is close to the
boundary of R3+. Therefore, it has lower bounded and reaches the lower bound at this
point (S0, E0, I0) in the interior of R3+. Let us consider a nonnegative C2-function
V : R3+ → R+ with

V (S, E .I ) = Ṽ (S, E, I ) − Ṽ (S0, E0, I0)

= M
(

− ln S − a1 ln E − a2 ln I − β(1 − θ1)θ2

δ
I

)

+ 1

q + 1
(S + E + I )q+1 − ln S

− ln E − Ṽ (S0, E0, I0)

= M(V1 + V2) + V3 + V4,
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where (S, E, I ) ∈ ( 1k , k) × ( 1k , k) × ( 1k , k) and k > 1 is a sufficiently large integer,

V1 = − ln S − a1 ln E − a2 ln I , V2 = −β(1−θ1)θ2
δ

I , V3 = 1
q+1 (S + E + I )q+1, V4 =

− ln S − ln E − Ṽ (S0, E0, I0), and

a1 = β(1 − θ1)δ�
(
μ + δ + 1

2σ
2
2

)2 (
γ + α + μ + 1

2σ
2
3

) ,

a2 = β(1 − θ1)δ�
(
μ + δ + 1

2σ
2
2

) (
γ + α + μ + 1

2σ
2
3

)2 .

Applying Itô’s formula, one has

LV1 = −�

S
+ β(1 − θ1)I + β(1 − θ1)θ2E

+μ + 1

2
σ 2
1 − a1β(1 − θ1)

SI

E

−a1β(1 − θ1)θ2S + a1

(

μ + δ + 1

2
σ 2
2

)

−a2
δE

I
+ a2

(

γ + α + μ + 1

2
σ 2
3

)

≤ −3 3
√

a1a2�β(1 − θ1)δ + a1

(

μ + δ + 1

2
σ 2
2

)

+a2

(

γ + α + μ + 1

2
σ 2
3

)

+μ + 1

2
σ 2
1 + β(1 − θ1)I + β(1 − θ1)θ2E

= −
(

μ + 1

2
σ 2
1

)

(Rs
0 − 1) + β(1 − θ1)I + β(1 − θ1)θ2E

= −η + β(1 − θ1)I + β(1 − θ1)θ2E . (3.1)

Similarly,

LV2 = −β(1 − θ1)θ2E + β(1 − θ1)θ2(γ + α + μ)

δ
I , (3.2)

and

LV3 = (S + E + I )q [� − μS − μE − (γ + α + μ)I ]
+q

2
(S + E + I )q−1(σ 2

1 S2 + σ 2
2 E2 + σ 2

3 I 2)

≤ �(S + E + I )q − μ(S + E + I )q+1

+q

2
(S + E + I )q−1(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 )(S2 + E2 + I 2)

≤ �(S + E + I )q − μ(S + E + I )q+1
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+q

2
(S + E + I )q+1(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 )

= �(S + E + I )q −
(
μ − q

2

(
σ 2
1 ∨ σ 2

2 ∨ σ 2
3

))
(S + E + I )q+1

= �(S + E + I )q − 1

2
κ(S + E + I )q+1 − 1

2
κ(S + E + I )q+1

≤ Q − 1

2
κ(S + E + I )q+1, (3.3)

where

Q = sup
(S,E,I )∈R3+

{

−1

2
κ(S + E + I )q+1 + �(S + E + I )q

}

.

In addition, we can obtain

LV4 = −�

S
+ β(1 − θ1)I + β(1 − θ1)θ2E + μ + 1

2
σ 2
1

−β(1 − θ1)
SI

E
− β(1 − θ1)θ2S + δ + μ + 1

2
σ 2
2 . (3.4)

Combining with (3.1)–(3.4), we have

LV ≤ −ηM + M
[

β(1 − θ1) + β(1 − θ1)θ2(γ + α + μ)

δ

]

I + Q

−κ

2
(S + E + I )q+1 − �

S
+ β(1 − θ1)I + β(1 − θ1)θ2E

−β(1 − θ1)
SI

E
− β(1 − θ1)θ2S + 2μ + δ + 1

2
σ 2
1 + 1

2
σ 2
2

≤ −ηM − 1

2
κ I q+1 + M

[

β(1 − θ1) + β(1 − θ1)θ2(γ + α + μ)

δ

]

I

+β(1 − θ1)I − 1

2
κ Eq+1 + β(1 − θ1)θ2E − 1

2
κSq+1 − �

S

−β(1 − θ1)
SI

E
+ Q + 2μ + δ + 1

2
σ 2
1 + +1

2
σ 2
2

= g1(S) + g2(E) + g3(I ) − β(1 − θ1)
SI

E
, (3.5)

where

g1(S) = F − 1

2
κSq+1 − �

S
,

F = Q + 2μ + δ + 1

2
σ 2
1 + 1

2
σ 2
2 ,

g2(E) = −1

2
κ Eq+1 + β(1 − θ1)θ2E,
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g3(I ) = −1

2
κ I q+1 + M

{

−η +
[

β(1 − θ1) + β(1 − θ1)θ2(γ + α + μ)

δ

]

I

}

+β(1 − θ1)I .

Assign a bounded closed set as follows

U =
{

ε ≤ S ≤ 1

ε
, ε3 ≤ E ≤ 1

ε3
, ε ≤ I ≤ 1

ε

}

,

where ε > 0 is a suitably small constant satisfying the following inequalities

F + gu
2 + gu

3 − �

ε
≤ −1, (3.6)

gu
1 + gu

2 + M
{

−η +
[

β(1 − θ1) + β(1 − θ1)θ2(γ + α + μ)

δ

]

ε

}

+β(1 − θ1)ε ≤ −1, (3.7)

gu
1 + gu

2 + gu
3 − β(1 − θ1)

1

ε
≤ −1, (3.8)

F + gu
2 + gu

3 − κ

2

1

εq+1 ≤ −1, (3.9)

gu
1 + gu

2 + C1 − κ

4

1

εq+1 ≤ −1, (3.10)

gu
1 + gu

3 + C2 − κ

4

1

ε3(q+1)
≤ −1, (3.11)

where

gu
3 = sup

I∈(0,+∞)

{

−1

2
κ I q+1+M

{

−η+
[

β(1−θ1)+ β(1 − θ1)θ2(γ +α+μ)

δ

]

I

}

+β(1 − θ1)I } ,

and we will determine the two positive constants C1, C2 later. For convenience, we
first divide R3+ \ U into six domains with the forms

U1 = {(S, E, I ) ∈ R
3+, 0 < S < ε}, U2 = {(S, E, I ) ∈ R

3+, 0 < I < ε},
U3 = {(S, E, I ) ∈ R

3+, S > ε, I > ε, 0 < E < ε3},
U4 =

{

(S, E, I ) ∈ R
3+, S >

1

ε

}

,

U5 =
{

(S, E, I ) ∈ R
3+, I >

1

ε

}

, U6 =
{

(S, E, I ) ∈ R
3+, E >

1

ε3

}

.

Clearly, R3+ \ U = U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6. By verifying the above six cases,
we will prove that LV (S, E, I ) ≤ −1 on R

3+ \ U .
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Table 2 Parameter values used
in model (1.2)

Parameters � β μ θ2 δ γ α

Value 10 0.2 0.3 0.1 0.3 0.2 0.2

Case 1When (S, E, I ) ∈ U1, then (3.5) and (3.6) imply that LV ≤ F +gu
2 +gu

3 − �
ε

≤
−1.
Case 2 When (S, E, I ) ∈ U2, it follows from (3.5) and (3.7) that

LV ≤ gu
1 + gu

2 + M
{

−η +
[

β(1 − θ1) + β(1 − θ1)θ2(γ + α + μ)

δ

]

ε

}

+β(1 − θ1)ε ≤ −1.

Case 3 When (S, E, I ) ∈ U3, we obtain from (3.5) and (3.8) that LV ≤ gu
1 + gu

2 +
gu
3 − β(1 − θ1)

1
ε

≤ −1.
Case 4When (S, E, I ) ∈ U4, (3.5) and (3.9) imply that LV ≤ F +gu

2 +gu
3 − κ

2
1

εq+1 ≤
−1.
Case 5 When (S, E, I ) ∈ U5, it follows from (3.5) and (3.10) that LV ≤ gu

1 + gu
2 +

C1 − κ
4

1
εq+1 ≤ −1, where

C1 = sup
I∈(0,+∞)

{

− κ

4
I q+1 + M

{

−η +
[

β(1 − θ1) + β(1 − θ1)θ2(γ + α + μ)

δ

]

I

}

+β(1 − θ1)I

}

.

Case 6 When (S, E, I ) ∈ U6, one obtains from (3.5) and (3.11) that LV ≤ gu
1 + gu

3 +
C2 − κ

4
1

ε3(q+1) ≤ −1, where C2 = supE∈(0,+∞){− κ
4 Eq+1 + β(1 − θ1)θ2E}.

From the above discussion, we obtain that LV ≤ −1 on R
3+ \ U , which implies

that (i i) in Lemma 3.1 also holds. This completes the proof. 
�

4 Numerical simulations

In this section, our analytical results will be verified by numerical simulations. Let us
choose initial value (S(0), E(0), I (0)) = (20, 15, 10), and the parameter values are
kept the same as in [38], see Table 2.

• Jiao et al. [38] discussed the effect of θ1 (see Fig. 1a and b), that is, the disease
I (t) of deterministic model (1.2) will die out if θ1 is large, and however the disease
I (t) will be persistent if θ1 is relative small. This fact shows that the strategy of the
homestead–isolation on the susceptible is very important in the epidemics of infectious
diseases.

• We choose σ1 = 0.4, σ2 = 3.5, σ3 = 1.3 and the same θ1 = 0.9 as Fig.
1b, then R̂0 ≈ 0.957823 < 1. It follows from Theorem 2.1 that the disease goes to
extinction (see Fig. 2). Comparedwith Fig. 1b, we can see that the noise will accelerate
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(a) (b)

Fig. 1 a θ1 = 0.7, R0 = 1.7619 > 1, then the positive equilibrium P∗ of deterministic model (1.2) is
globally asymptotically stable. b θ1 = 0.9, R0 = 0.5873 < 1, then its disease-free equilibrium P0 is
globally asymptotically stable

(a) (b)

Fig. 2 a The disease of stochastic model (1.3) is extinct. b Frequency histogram at time 100

the extinction of the disease although the disease tends to be extinct in deterministic
model (1.2).

• To illustrate the threshold of disease and the effect of the environment white
noises. To compare with Fig. 1a, we continue to select the same θ1 = 0.7 as Fig.
1a, and smaller noises with σ1 = 0.1, σ2 = 0.08, σ3 = 0.05. For the stochastic
model (1.3), a calculation shows that Rs

0 ≈ 1.3952064 > 1, then the conditions of
Theorems 2.2 and 3.1 are satisfied. As observed in Fig. 3 the disease of model (1.3)
goes to strong persistence in the mean, and moreover the conditions support model
(1.3) owns an ergodic stationary distribution, see Fig. 4. Recalling Fig. 1a, we know
that the disease will persist if θ1 = 0.7, and Figs. 3 and 4 shows that although it
is affected by environmental noise, the disease will persist if the noise intensity is
relatively low.

5 Discussions

In this paper, based on a deterministic SEIR epidemic model with infectivity in incu-
bation period and homestead–isolation on the susceptible proposed by Jiao et al. [38],
we incorporate white noise into the abovemodel and establish a stochastic version.We
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(a) (b)

Fig. 3 a The disease of stochasticmodel (1.3) will be strongly persistent in themean.bFrequency histogram
at time 100

(a) (b)

Fig. 4 a Solution of stochastic model (1.3). b Blue line frequency histogram of stochastic model (1.3)
at time 100; Red line the probability density function (PDF) of its corresponding stationary distribution
simulated by 3000 sample trajectories. (Color figure online)
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first discuss the extinction and strong persistence in the mean of the disease, and later
the stationary distribution is investigated by using Hasminskiis method and Lyapunov
function. Let us recall Theorems 2.1, 2.2 and 3.1, we reveal the biological conclusions
as follows:

•Theorem 2.1 shows that the disease will be extinct when R̂0 < 1. This fact implies
that if the noise intensities σ 2

i (i = 1, 2, 3) are suitably large and the cooperation from
the homestead–isolation rate θ1 is enough while the infective rate of the exposed
in incubation period θ2 is relatively small, then the disease I (t) is extinct. That is,
increasing the noise intensity and homestead–isolation rate are advantageous for the
extinction of the diseasewhile increasing the infective rate of the exposed in incubation
period is harmful for it.

• It follows from Rs
0 > 1 (see Theorem 2.2) that if the noise intensities σ 2

i (i =
1, 2, 3) are small and the cooperation from the homestead–isolation rate θ1 is inade-
quate, then the disease I (t) will be strong persistent in the mean.

•When Rs
0 > 1, Theorem 3.1 shows that model (1.3) has a unique stationary distri-

bution π(·) which is ergodic. This result indicates that decreasing the noise intensities
σ 2

i (i = 1, 2, 3) and the homestead–isolation rate θ1 may result in a high prevalence
level of the disease, and hence the governments should strictly implement the isolation
system to make every effort to curb propagation of disease.

In the end, it should be pointed out that, in order to compare with the global dynam-
ical results of model (1.2) established in [38], this work is only concerned with the
stochastic dynamics of the variables S, E , I inmodel (1.3) under the three noises Ḃi (t),
i = 1, 2, 3, however it alsowould deserve to introduce a noise into the variable R in the
fourth equation of model (1.1) and investigate the four-dimension stochastic model. In
addition, we would like to develop more complicated models by incorporating other
forms of stochastic perturbations (e.g., perturbed parameters [23,52–56]), Lévy jump
[14,45] or regime switching [62], andwe leave these interesting and challenging issues
for future consideration.
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NSF of Hubei Province, China (No. 2019CFB241).
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