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Abstract
We establish a new four-dimensional system of differential equations for a honeybee
colony to simultaneously model the spread of Varroa mites among the bees and the
spread of a virus transmitted by the mites. The bee population is divided to forager
and hive bees, while the latter are further divided into three compartments: suscepti-
bles, those infested by non-infectious vectors and those infested by infectious vectors.
The system has four potential equilibria. We identify three reproduction numbers that
determine the global asymptotic stability of the four possible equilibria. By using
Dulac’s criterion, Poincaré–Bendixson and persistence theory, we show that the solu-
tions always converge to one of the equilibria, depending on those three reproduction
numbers. Hence we completely describe the global dynamics of the system.

Keywords Epidemic model · Honeybees · Varroa infestation · Global stability ·
Persistence

Mathematics Subject Classification 34D23 · 92D30

1 Introduction

Honeybee is a member of the genus Apis which produces and stores honey and con-
structs perennial, colonial nests from wax. The best known species of the genus is the
Western honey bee (Apis mellifera, also called European or common honey bee) which
was domesticated for honey production and crop pollination or at least exploited for
honey and beeswax [1] at least since the time of the building of the Egyptian pyramids.
A. mellifera is the only species that has been moved extensively beyond its native ter-
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ritory. Aside from their ecological importance [2], honey bee populations have a large
economical impact on agriculture in the whole world [3–5].

Colony collapse disorder (CCD) is the phenomenon of the majority of worker bees
in a colony disappearing and leaving behind a queen, plenty of food and some nurse
bees to care for the remaining immature bees. The phenomenon was renamed colony
collapse disorder in 2006whenabnormally highdie-offs (30–70%ofhives) of common
honeybee colonies have occurred in North America and at first no explanation could be
given [6]. Several European countries have experienced the same phenomenon since
1998, and in the past few years countries in Africa and Asia also became affected by
it. The reason seems to be a combination of factors, possibly including neonicotinoid
pesticides or Israeli acute paralysis virus [7]. The collapse of honeybee colonies has
become widespread in several regions of the world, and has been the subject of much
discussion and research in recent years [8–10].

Varroamite is an external parasitic mite that attacks the honey beesApis cerana and
Apis mellifera. It attaches to the body of the bee and weakens the bee by sucking fat
bodies [11]. A significant mite infestation will lead to the death of a honey bee colony,
usually in the late autumn through early spring. TheVarroamite is the parasite with the
most pronounced economic impact on the beekeeping industry. Also, it is considered
to be one of multiple stress factors [12] contributing to the higher levels of bee losses
around the world. Varroa mites are carriers for many viruses that are damaging to
bees, including Kashmir bee virus, sac-brood virus, acute bee paralysis virus, Israeli
acuteparalysis virus, and deformed wing virus [13].

Several methods of treatment are currently applied to control thesemites, which can
be divided into chemical and mechanical controls. Usual chemical controls include
“hard” synthetic chemicals such as amitraz, fluvalinate and coumaphos, while “soft”
chemical controls (organic acids, essential oils) include thymol, sucrose octanoate
esters oxalic acid and formic acid.Mechanical controls are usually based on disruption
of some aspect of the mites’ life cycle and they are generally intended not to eliminate
all mites, but to keep the infestation at a tolerable level. Examples of mechanical
controls include sacrifice of drone brood as Varroa mites most commonly attach to
the drone brood, powdered sugar dusting which encourages cleaning behaviour and
dislodges part of the mites, screened bottom boards which allows dislodged mites to
fall through the bottom and away from the colony, brood interruption, application of
heat to isolated brood combs or whole colonies and downsizing of the brood cell size.
Another possibility in fighting the infestations is breeding more resistant colonies:
several families of bees are able to coexist with Varroa mites (e.g. Africanized bees
and Russian honey bees show a higher natural resistance against mites) [13–15].

A number of mathematical models have been established to model Varroa infesta-
tion and associated virus infections. Sumpter et al. [16] studied the disease in honey
bee colonies and modeled the effects of Varroa mites on the brood and on the adult
worker bees. The focus of the model was on the relationship between the mite popu-
lation within a hive and its role in virus transmission within the hive. A study by Ratti
et al. [17] examined the transmission of viruses via Varroa mites with the mites as
vectors for transmission. In Ratti et al. [17], the population of honeybees was divided
into honeybees that are virus free and that are infected with the virus, while the same
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population compartments of honeybees with adding mortality caused by mites in Ratti
et al. [18].

The model presented in Kang et al. [19] follows Sumpter et al. [16] and Ratti et
al. [18] with the same compartments for honeybees, but it also takes into account the
fact that virus transmission occurs at different biological stages of Varroa mites and
honeybees. The models of Ratti et al. [18] and Kang et al. [19] are extended in Ratti
et al. [20] by introducing uninfected forager bees as a new honeybees compartment,
also by adding different types of mortality.

The purpose of this work is to establish and analyse a novel mathematical model
for the dynamics of a honeybee colony affected by Varroa mites by providing a new
approach in comparison with earlier works: instead of considering separate compart-
ments for the mites, we divide the honeybees into compartments depending on their
infestation and infection status, based on earlier models for ectoparasite-borne dis-
eases [21–24]. In the present paper we set up the simplest model that is complex
enough to capture the fundamental features of the parallel transmission of the mite
infestation and the infection. The model is based on the ectoparasite model given in
[22], however, in the present model we consider different birth and death rates and
additional disease-induced mortality for infected bees. Most importantly, we extend
themodel with a new compartment by differentiating susceptible hive bees and forager
bees. Hence, our model consists of four nonlinear ODEs dividing the population of
hive bees into susceptible (uninfected and uninfested) hive bees, hive bees infested
by non-infectious vectors and hive bees infested by infectious vectors (infected hive
bees) with mortality caused by mites. The fourth compartment stands for forager bees.
We identify key variables that determine the collapse or survival of the bee colony,
namely the severity of the disease and the rate of transmission, and examine different
scenarios using different combinations of these variables.

The structure of the paper is the following. In Sect. 2, we establish our compart-
mental model describing the spread of the infestation and the disease. In Sect. 3, we
study the three-dimensional subsystem and determine the reproduction numbers and
prove the existence of the positive equilibria. In Sect.s 4 and 5, we investigate the local
stability of equilibria and prove the persistence of the compartments, while, using the
results of Sects. 4 and 5, we study the global stability of equilibria. In the last section,
we use the results of the previous sections to study the two-dimensional subsystem of
susceptible.

2 Mathematical model

Our mathematical model is based on the presence of a mite species which is a vector
for a disease as well and transmitted to a susceptible host only upon adequate contact
with an infested host. The honeybee population is divided into four compartments
depending on the presence of the vectors and the disease transmitted by them as
follows.
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(i) Susceptibles: those who can be infested by the vector. Following [20,25] the
healthy bee population is divided into hive bees and foragers. We denote by Hs

the compartment of susceptible hive bees and Fs the compartment of susceptible
forager bees.

(ii) Hm denotes hive bees infested by non-infectious vectors.
(iii) Hi denotes hive bees infested by infectious vectors, and thus infected with the

disease.

In our model we assume that the following assumptions hold.

1. Hive bees (from Hm) infested by non-infectious vectors can transmit the disease
to susceptibles (hive and forager bees), hive bees infested by infectious vectors
(from Hi ) can transmit the disease to susceptibles (hive and forager bees).

2. We assume that once infected or infested, forager bees are forced to stop their
foraging duties because of the infestation or infection and become hive bees.

3. A hive bee infested by infectious vectors can transmit the infection to a hive bee
infested by non-infectious vectors, i.e. a member of compartment Hm can move
to compartment Hi upon adequate contact with an individual from compartment
Hi .

4. We suppose that, upon adequate contact with a susceptible bee, an individual
from Hm can transmit the (non-infectious) mites carried by it at the same rate to
susceptibles (Hs and Fs), and we denote the transmission rate for non-infectious
vectors Hm to susceptibles by β1.

5. We assume that, upon adequate contact with a susceptible bee or a bee with non-
infectious parasites, an individual from Hi can transmit the mites carrying the
virus at the same rate to susceptibles (Hs and Fs) and to those who are already
infested by non-infectious vectors Hm . We denote this transmission rate by β2.

6. We assume that the disinfestation rates from the Hm and Hi compartments to the
susceptible compartment Hs are the same and denoted by α.

7. We denote by A(Hs, Fs) the natural birth rate of healthy hive bees Hs and by d
the death rate for the compartments Hs , Fs and Hm .

8. We assume that only infected hive bees die due to the mites transmitting viral
infection. So, we assume that the death rate of infected hive bees Hi is equal to
d + δ where δ is the death rate caused by mites.

9. In accordance with [26], we assume that the proportion of recruitment of suscep-
tible hive bees Hs to become forager bees and the rate of healthy forager bees Fs
that are reverting to hive duties following social inhibition has the same propor-
tion R(Hs, Fs). We formulate this process of recruitment and social inhibition as
a Holling-type II functional response, see [20,25,27].

Using the above assumptions, our model takes the form:

H ′
s(t) = A(Hs, Fs) − β1Hs(t)Hm(t) − β2Hs(t)Hi (t) + αHm(t) + αHi (t)

− dHs(t) − R(Hs, Fs)Hs(t) + R(Hs, Fs)Fs(t),

F ′
s(t) = R(Hs, Fs)Hs(t) − β1Fs(t)Hm(t) − β2Fs(t)Hi (t) − dFs(t)

− R(Hs, Fs)Fs(t),
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H ′
m(t) = β1Hs(t)Hm(t) + β1Fs(t)Hm(t) − β2Hm(t)Hi (t) − αHm(t)

− dHm(t),

H ′
i (t) = β2Hs(t)Hi (t) + β2Fs(t)Hi (t) + β2Hm(t)Hi (t) − αHi (t)

− dHi (t) − δHi (t), (1)

where the term R(Hs, Fs) in the first two equations represents the effect of social
inhibition on the recruitment rate and is formulated as

R(Hs, Fs) = σ1 − σ2
Fs

Hs + Fs
(2)

where the parameterσ1 is themaximum rate atwhich hive bees are recruited as foragers
when there are no foragers present in the colony. The term σ2

Fs
Hs+Fs

represents social
inhibition, that is, the process whereby a surplus of foragers causes the foragers to
revert to being hive bees. We assume that social inhibition is directly proportional to
the forager population present in the colony.

In the present paper, following [16] and for technical reasons, we will consider a
constant birth rate and study the special case

H ′
s(t) = A − β1Hs(t)Hm(t) − β2Hs(t)Hi (t) + αHm(t) + αHi (t)

− dHs(t) − R(Hs, Fs)Hs(t) + R(Hs, Fs)Fs(t),

F ′
s(t) = R(Hs, Fs)Hs(t) − β1Fs(t)Hm(t) − β2Fs(t)Hi (t) − dFs(t)

− R(Hs, Fs)Fs(t),

H ′
m(t) = β1Hs(t)Hm(t) + β1Fs(t)Hm(t) − β2Hm(t)Hi (t) − αHm(t)

− dHm(t),

H ′
i (t) = β2Hs(t)Hi (t) + β2Fs(t)Hi (t) + β2Hm(t)Hi (t) − αHi (t)

− dHi (t) − δHi (t). (3)

The transmission chart of the model is depicted in Fig. 1.
Let us introduce the notation S(t) = Hs(t) + Fs(t). With this notation, we can

transcribe system (3) to the three-dimensional system

S′(t) = A − β1S(t)Hm(t) − β2S(t)Hi (t) + αHm(t) + αHi (t) − dS(t),

H ′
m(t) = β1S(t)Hm(t) − β2Hm(t)Hi (t) − αHm(t) − dHm(t),

H ′
i (t) = β2S(t)Hi (t) + β2Hm(t)Hi (t) − αHi (t) − dHi (t) − δHi (t).

(4)

Let us note that this system has a similar structure as the model given by Dénes and
Röst in [21,22] and the rodent subsystem given by Dénes and Röst in [23], however,
in the present case, in contrary to those papers, birth and death rates are different and
there is additional mortality for infected hive bees. Because of these differences in
the models and to make the present paper self-contained, we give all the proofs of the
results on the dynamics of model (3). We also note that the methods applied in the
analysis are also different: in the earlier papers, Lyapunov functions were used in the
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β2HmHi

A
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Fig. 1 Transmission diagram of the dynamics of the honey bee colony combined with the dynamics of
a non-infectious and infectious disease. Brown nodes are susceptible bees and red nodes are infested by
non-infectious (Hm ) and by infectious (Hi ). Black solid arrows show the progression of infection. Blue
dashed arrows show disinfestation. Red dash-dotted lines show movement between the susceptible hive
bee and susceptible forager bee compartments. Green solid arrows show natural birth death. (Color figure
online)

proofs of global stability, however, in the present paper we apply Bendixson–Dulac
criterion instead.

3 Equilibria, reproduction numbers

To determine the equilibria of the full system (3), we start by calculating those of the
subsystem (4). These are easily obtained by solving the algebraic system of equations

0 = A − β1S
∗H∗

m − β2S
∗H∗

i + αH∗
m + αH∗

i − dS∗,
0 = β1S

∗H∗
m − β2H

∗
mH∗

i − αH∗
m − dH∗

m,

0 = β2S
∗H∗

i + β2H
∗
mH

∗
i − αH∗

i − dH∗
i − δH∗

i .

We can determine four possible equilibria of system (4), one of which is disease- and
infestation-free, one is disease-free with infestation, one is endemic where all vectors
are infectious, and one is endemic where both infectious and non-infectious vectors
are present:

Es = ( A
d , 0, 0

)
,

Em =
(
d+α
β1

, A
d − d+α

β1
, 0

)
,

Ei =
(
d+α+δ

β2
, 0, −d(d+α+δ)+Aβ2

β2(d+δ)

)
,

Emi =
(

αδ+aβ2
β1(d+δ)

,
(d+δ)(d+α+δ)β1−β2(αδ+aβ2)

β1β2(d+δ)
,

−d(d+α+δ)+Aβ2
β2(d+δ)

)
.

(5)
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Due to the biological interpretation of the model, we are only interested in non-
negative equilibria. In the sequel, we say that a given equilibrium exists, if each of its
three coordinates is non-negative.

We can determine four reproduction numbers by introducing a single infested
(infectious or non-infectious) individual into a population in which neither infected
nor non-infected parasites are present (Es), or into a population where only non-
infected parasites are present (Em), or into a population where only infected parasites
are present (Ei ), and calculating the expected number of generated secondary cases.

If we introduce an individual infested by non-infectious mites into the infestation-
and disease-free equilibrium Es , we obtain the reproduction number

R1 = Aβ1

d(d + α)
,

by introducing an individual infested by infested mites into the same equilibrium we
obtain the reproduction number

R2 = Aβ2

d(d + α + δ)
.

Calculating the expected number of secondary infections caused by the introduction of
an individual infested by infectious mites into a population in the equilibrium Em , we
obtain the same reproduction number R2, as the transmission rate from Hi individuals
is the same for the S and Hm compartment.

Finally, let us introduce an individual infested by non-infectious mites into a pop-
ulation in the equilibrium Ei . In this case, the expected sojourn time of an individual
infected with the first strain in the Hm compartment is (β2H∗

i + α + d)−1, and the
number of new infections generated by this individual is β1S∗, where S∗ and H∗

i
stand for the first, resp. Taking the product of these two expressions and substituting
the values of S∗ and H∗

i at the equilibrium Ei , we obtain the reproduction number

R3 = (d + δ)(d + α + δ)β1

β2(αδ + Aβ2)
.

In the next propositionwe showhow the reproduction numbers determine the existence
of the four equilibria.

Proposition 3.1 The equilibrium Es always exists. The equilibrium Em exists if and
only if R1 > 1. The equilibrium Ei exists if and only if R2 > 1. The equilibrium Emi

exists if and only if R2 > 1 and R3 > 1.

Proof The first coordinate of Em is less than A
d if and only if R1 > 1. If this holds,

also the second coordinate of this equilibrium is between 0 and A
d . Similarly, we have

that Ei exists if and only if R2 > 1, also the second coordinate of this equilibrium
is between 0 and A

d+δ
. In the case of the equilibrium Emi , the third coordinate being

between 0 and A
d+δ

is equivalent to R2 > 1. If R2 > 1, then the second coordinate
being positive is equivalent to R3 > 1. Thus for the existence of Emi , it is necessary
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that R2 > 1 andR3 > 1. To see the sufficiency, notice that A
d

1
R2R3

= (d+δ)β1
αδ+Aβ2

, which
is the first coordinate, thus if R2 > 1 andR3 > 1, then the first and second coordinates
of Emi are between 0 and A

d and the third between 0 and A
d+δ

. ��

4 Local stability

Proposition 4.1 The stability of equilibria is determined by the reproduction numbers
as follows.

(i) Es is locally asymptotically stable if R1 < 1 and R2 < 1, and unstable if R1 > 1
and R2 > 1.

(ii) Em is locally asymptotically stable if R1 > 1 and R2 < 1, and unstable if R1 < 1
and R2 > 1.

(iii) Ei is locally asymptotically stable if R2 > 1 and R3 < 1, and unstable if R3 > 1.
(iv) Emi is locally asymptotically stable if R2 > 1 and R3 > 1 (i.e. always when it

exists).

Proof (i) The eigenvalues of the Jacobian of the linearized equation around the
equilibrium Es are λS1 = −b, λS2 = −d − α + Aβ1

d = (d + α)(R1 − 1) and

λS3 = Aβ2−d(d+α+δ)
d = (d +α + δ)(R2 − 1). All of the eigenvalues are negative

if R1 < 1 and R2 < 1, while at least one of them is positive if R1 > 1 and
R2 > 1.

(ii) If we linearize around the equilibrium Em , we find the eigenvalues λHm1
= λS1 ,

λHm2
= −λS2 and λHm3

= λS3 , thus we can argue similarly as in case (i).
(iii) Linearization around the equilibrium Ei yields the three eigenvalues

λHi1
= (d + α + δ)β1

β2
− αδ + Aβ2

(d + δ)
= (d + α + δ)(R3 − 1),

λHi2,3
= dα−Aβ2

2(d+δ)

±
√

d(d(2d+α)2+4d(3d+2α)δ+4(3d+α)δ2+4δ3)+Aβ2(−2(d(2d+α)+4dδ+2δ2)Aβ2)

2(d+δ)
.

R2 > 1 is needed for the existence of Ei . If we add the terms in λHi1
, it is easy

to see that the numerator of the fraction is the difference of the numerator and
the denominator of the reproduction numberR3, which means that it is negative
if and only if R3 < 1. The absolute value of the term under the square root in
the nominator of λHi2

resp. λHi3
is less than that of the first term which itself is

negative as dα < Aβ2 follows from R2 > 1. Thus λHi2
and λHi3

always have
negative real parts if R2 > 1.

(iv) Linearizing around Emi , we get the eigenvalues λHmi1
= −λHi1

, so it is negative
if R3 > 1 and λHmi2

= λHi2
and λHmi3

= λHi3
, fromwhich the assertion follows.

��
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5 Persistence

Before we can state our results on the persistence of the three compartments, we will
need some notions and theorems from [28].

Definition 5.1 Let X be a nonempty set and ρ : X → R+. A semiflowΦ : R+ × X →
X is called uniformly weakly ρ-persistent, if there exists some ε > 0 such that
lim supt→∞ ρ(Φ(t, x)) > ε for all x ∈ X , ρ(x) > 0.Φ is called uniformly (strongly)
ρ-persistent if there exists some ε > 0 such that lim inf t→∞ ρ(Φ(t, x)) > ε for all
x ∈ X , ρ(x) > 0. A set M ⊆ X is called weakly ρ-repelling if there is no x ∈ X such
that ρ(x) > 0 and Φ(t, x) → M as t → ∞.

System (4) generates a continuous flow on the feasible state space

X := (S, Hm, Hi ) ∈ R
3+

Theorem 5.2 S(t) is always uniformly persistent. Hm(t) is uniformly persistent if
R1 > 1 and R2 < 1 as well as if R2 > 1 and R3 > 1. Hi (t) is uniformly persistent if
R2 > 1.

Proof To prove the persistence of S(t) we use the method of fluctuation (see for
example Appendix A of [28]). Let S∞ denote the limit inferior of S(t) as t → ∞.
From the fluctuation lemma we know that there exists a sequence tk → ∞ such that
S(tk) → S∞ and S′(tk) → 0 as k → ∞. If we apply this to the equation for S(t), we
obtain

S′(tk) + β1S(tk)Hm(tk) + β2S(tk)Hi (tk) + dS(tk) = A + αHm(tk) + αHi (tk)

It is easy to see that for the total bee population we have limt→∞(S(t) + Hm(t) +
Hi (t)) ≤ A

d , thus, 0 ≤ Hm(tk) ≤ A
d and 0 ≤ Hi (tk) ≤ A

d . Using this and letting
k → ∞, we obtain

S∞ ≥ Ad

A(β1 + β2) + d2
> 0.

To show persistence of the infested compartments, we need some theory from [28].
We use the notation x = (S, Hm, Hi ) ∈ X for the state of the system and the usual
notation ω(x) for the ω-limit set of a point x defined as

ω(x) := {y ∈ X : ∃ tn such that tn → ∞ and Φ(tn, x) → y as n → ∞}.

Firstly, we show the persistence of Hm(t). Let ρ(x) = Hm(t). Let us consider the
invariant extinction space of Hm(t), defined as Xm := {x ∈ X , ρ(x) = 0}. Following
[[28], Chapter 8], we examine the set � := ∪x∈Xmω(x). Applying the Bendixson–
Dulac criterion with Dulac function 1

Hi
and the Poincaré–Bendixson theorem, we

obtain that all solutions in the extinction space Xm tend to an equilibrium.
Let us consider the first case, when R1 > 1 and R2 < 1. Clearly, in this case

� = {Es}. As a first step, we prove weak ρ-persistence. In order to apply [[28],
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Theorem 8.17], we let M1 = {Es}. Then � is a subset of M1, which is isolated (by
Proposition 4.1, compact, invariant and acylic. We have to show that M1 is weakly
ρ-persistent, from which we obtain persistence.

Let us suppose that this does not hold, i.e. there exists a solution such that
limt→∞(S(t) + Hm(t) + Hi (t)) = ( A

d , 0, 0
)
and Hm(t) > 0. Then for any ε > 0,for

sufficiently large t , we have S(t) > A
d − ε and Hi (t) < ε. For such t , we can give the

following estimation for H ′
m(t):

H ′
m(t) = Hm(t)(β1S(t) − β2Hi (t) − α − d)

> Hm(t)

(
β1

A

d
− (α + d) − (β1 + β2)ε

)
,

which is positive if ε is sufficiently small as β1
A
d > (α + d) follows from R1 > 1.

This contradicts Hm(t) → 0.
Second, let us consider the case R2 > 1 and R3 > 1, also Ei exists, so we have

� = {Es, Ei }. Now we let M1 = {Es} and M2 = {Ei }. Clearly, � ⊂ M1 ∪ M2 and
{M1, M2} is acyclic and M1 and M2 are invariant, compact and isolated. We have to
show that M1 and M2 are weakly ρ-repelling.

Suppose first that M1 is not weakly ρ-repelling. Then there exists a solution such
that limt→∞(S(t) + Hm(t) + Hi (t)) = ( A

d , 0, 0
)
and Hm(t) > 0. Again, for ε > 0,

for sufficiently large t , we have S(t) > A
d − ε and Hi (t) < ε. For such t , we can give

the following estimation for H ′
m(t):

H ′
m(t) = Hm(t)(β1S(t) − β2Hi (t) − α − d)

> Hm(t)

(
A

d
β1 − (α + d) − (β1 + β2)ε

)
.

From R2R3 > 1, we have A
d β1 >

αδ+Aβ2
d+δ

, so we can write the following estimation
for H ′

m(t):

H ′
m(t) > Hm(t)

(
1

d + δ

(
A

d
β2 − d(d + α + d)

)
− (β1 + β2)ε

)
.

This expression is positive for ε small enough as
( A
d β2 > d(d+α+δ)

)
, which follows

from R2 > 1. This contradicts Hm(t) → 0.
Now, let us assume that M2 is not weakly ρ-repelling. Then there exists a

solution such that limt→∞(S(t) + Hm(t) + Hi (t)) = ( d+α+δ
β2

, 0, −d(d+α+δ)+Aβ2
(d+δ)β2

)

and Hm(t) > 0. Then for sufficiently large t , we have S(t) > d+α+δ
β2

− ε and

Hi (t) <
−d(d+α+δ)+Aβ2

(d+δ)β2
+ ε. For such t , we can give the following estimation for

H ′
m(t):

H ′
m(t) > Hm(t)

(
β1

β2
(d + α + δ) − αδ + Aβ2

d + δ
− (β1 + β2)ε

)
,
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which is positive if ε is sufficiently small as β1
A
d > (α + d), follows from R3 > 1.

This contradicts Hm(t) → 0.
Toprove the persistence of Hi (t),we chooseρ(x) = Hi (t).Wehave the equilibrium

Es if R1 ≤ 1 and the two equilibria Es and Em if R1 > 1. We define the extinction
space as Xi := {x ∈ X : ρ(x) = 0} = {(S(t), Hm, 0) ∈ R3+}, i.e. in this case if
R1 ≤ 1 we have

� :=
⋃

x∈Xm

ω(x) = M1,

and if R1 > 1 we have

� :=
⋃

x∈Xm

ω(x) = M2

where M1 = {ES} and M2 = {Em}.
Similarly as in the proof of the persistence of Hm , is invariant, and M1 and M2 are

isolated and acyclic.
Firstly, to show that M1 is weakly ρ-repelling, let us suppose that M1 is not weakly

ρ-repelling. Then there exists a solution such that limt→∞(S(t) + Hm(t) + Hi (t)) =( A
d , 0, 0

)
and Hi (t) > 0. Then for any ε > 0, for sufficiently large t , we have

S(t) > A
d − ε and Hi (t) < ε. For such t , we can give the following estimation for

H ′
i (t):

H ′
i (t) = Hi (t)(β2(S(t) + Hi (t)) − (d + α + δ))

> Hm(t)

(
β2

A

d
− (d + α + δ) − (β1 + β2)ε

)
,

which is positive if ε is sufficiently small as β2
A
d > (d +α + δ) follows from R2 > 1.

This contradicts Hi (t) → 0.
Now let us consider the case R1 > 1, i.e. when also {Em} exists. Suppose that M1

is not weakly ρ-repelling, i.e. there exists a solution such that

lim
t→∞(S(t) + Hm(t) + Hi (t)) =

(
d + α

β1
,
A

d
− d + α

β1
, 0

)

and Hi (t) > 0. Then for any ε > 0, for sufficiently large t , we have S(t) > d+α
β1

− ε

and Hm(t) < A
d − d+α

β1
+ε. For such t , we can give the following estimation for H ′

i (t):

H ′
i (t) > Hm(t)

(
β2

A

d
− (d + α + δ) − (β1 + β2)ε

)
.

This expression is positive if ε is sufficiently small as follows from R2 > 1, which
contradicts Hi (t) → 0.
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We have shown uniform weak persistence in all cases, to show uniform (strong)
persistence, we apply Theorem 4.5 from [28]. Our flow is clearly continuous, the
subspaces Xm , Xi , X\Xm and X\Xi are invariant. The existence of a compact attractor
is also clear, as all solutions enter a compact region after some time. This means
that all conditions of [28, Theorem 4.5] hold and thus we obtain uniform strong
persistence. ��

6 Global stability

In this section we extend the statements about local stability in the previous sec-
tion to global asymptotic stability by means of the Bendixson–Dulac criterion and
the Poincaré–Bendixson theorem, where we also apply the persistence results of the
previous section.

Theorem 6.1 (1) For R2 ≤ 1 the following statements hold.

(i) Equilibrium Es is globally asymptotically stable if R1 ≤ 1.
(ii) Equilibrium Em is globally asymptotically stable on X\Xm if R1 > 1. On

Xm, Es is globally asymptotically stable.

(2) For R2 > 1 the following statements hold.

(i) If R1 ≤ 1 and R3 ≤ 1, then Ei is globally asymptotically stable on X\Xi

and Es is globally asymptotically stable on Xi .
(ii) If R1 > 1 and R3 ≤ 1, then Ei is globally asymptotically stable on X\Xi

and Em is globally asymptotically stable on Xi .
(iii) If R3 > 1, then Emi is globally asymptotically stable on X\(Xm ∪ Xi ), Em is

globally asymptotically stable on Xi and Ei is globally asymptotically stable
on Xm.

Proof Let us introduce the notation G(t) := S(t)+ Hm(t). With this notation, we can
transcribe system (4) to the two-dimensional system

G ′(t) = A − β2G(t)Hi (t) + αHi (t) − dG(t),

H ′
i (t) = β2G(t)Hi (t) − (d + α + δ)Hi (t).

(6)

This system has the two positive equilibria
( A
d , 0

)
and

(G∗, H∗
i ) =

(
d + α + δ

β2
,
Aβ2 − d(d + α + δ)

β2(d + δ)

)
.

To show that the limit of each solution of this system is one of these two equilibria,
according to the Poincaré–Bendixson theorem, all we have to prove is that system (6)
does not have any periodic solutions. To show this, we apply the Bendixson–Dulac
criterion using the Dulac function D(G, Hi ) = 1

Hi
. We have
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∂

∂G

A − β2G(t)Hi (t) + αHi (t) − dG(t)

Hi
+ ∂

∂Hi

β2G(t)Hi (t) − (d + α + δ)Hi (t)

Hi

= −β2Hi + d

Hi
< 0.

In the first case, when R2 ≤ 1, only the first equilibrium exists. Thus, in this case
Hi (t) → 0 and G(t) → A

d as t → ∞, and therefore, the second Eq. of (6) takes the
following form on the limit set:

H ′
m(t) = −β1H

2
m + γ Hm (7)

with γ = Aβ1
d −α−d. The solution started from Hm(0) = 0 is the function Hm(0) ≡ 0

while the nontrivial solutions of this equation have the form

Hm(t) = Cγ eγ t

Cβ1eγ t + γ
for C ∈ R+.

Clearly, for R1 ≤ 1 (which is equivalent to γ ≤ 0), the solutions tend to zero on
the limit set, therefore, for all solutions, Hm(t) → 0 as t → ∞ and the limit set of
any solution is the equilibrium Es .

It is easy to see that γ > 0 if and only if R1 > 1. Thus, for R1 > 1 we obtain

lim
t→∞ Hm(t) = γ

β1
= A

d
− α + d

β1

on the limit set and by using the persistence of Hm(t) we obtain that for all solutions,
Hm(t) → A

d − α+d
β1

as t −→ ∞. From this follows the assertion of the first case of
the theorem.

Secondly, for R2 > 1 also the second equilibrium exists. However, we know from
the previous section that Hi (t) is persistent for R2 > 1, thus for each solution of (6)
started in X\Xi we have limt→∞(S(t) + Hm(t)) = G∗. Thus, on the limit set the
equation for Hm(t) takes the form

H ′
m(t) = β1(G

∗ − Hm)Hm − β2H
∗
i Hm − (α + d)Hm = −β1H

2
m + ηHm, (8)

where η = β1G∗ − β2H∗
i − α − d. Similarly to the previous case, the nontrivial

solutions of this logistic equation have the form

Hm(t) = Cηeηt

Cβ1eηt + η
for C ∈ R+.

It is easy to see that η > 0 if and only if R3 > 1.
Thus, for R3 ≤ 1, limt→∞ Hm(t) = 0 and the limit of solutions started in X\Xi is

Ei . In the case R3 > 1 we have

lim
t→∞ Hm(t) = η

β1
= d + α + δ

β2
− αδ + Aβ2

β1(d + δ)
,
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Table 1 Reproduction numbers, existing equilibria and global stability: the complete characterization of
the dynamics

Case Reproduction numbers Equilibria Global stability

1. R1 ≤ 1, R2 ≤ 1 Es Es GAS

2. R1 > 1, R2 ≤ 1 Es ,Em Em GAS on X\Xm , Es GAS on Xm

3. R1 ≤ 1, R2 > 1, R3 ≤ 1 Es ,Ei Ei GAS on X\Xi , Es GAS on Xi

4. R1 > 1, R2 > 1, R3 ≤ 1 Es , Em ,Ei Em GAS on Xi , Ei GAS on X\Xi

5. R1 > 1, R2 > 1, R3 > 1 Es , Em , Ei , Emi Em GAS onXi , Ei GAS on Xm ,
Emi GAS on X\(Xm ∪ Xi )

thus we obtain that the limit of solutions started in X\(Xm ∪ Xi ) is Emi . Solutions
started in Xm tend to Ei .

The limit set of solutions of Eq. (6) started in Xm is the equilibrium
( A
d , 0

)
. Thus,

in this case the equation for Hm(t) on the limit set has the form (7). Similarly to the
previous cases, the nontrivial solutions of this equation have the form

Hm(t) = Cγ eγ t

Cβ1eγ t + γ
for C ∈ R+.

We have γ > 0 if and only if R1 > 1. Thus, for R1 ≤ 1, Hm(t) → 0 (as t → ∞)
and the limit of solutions started in Xi is Es , while for R1 > 1 we obtain the solutions
started in Xi tend to Emi . To complete the proof of the theorem, we notice that R2 > 1
and R3 > 1 imply R1 > 1:

1 < R2R3 = R1
(d + δ)(d + α)

αδ + R2d(d + α + δ)
< R1,

and for R1 > 1 we already established the global asymptotic stability of Em on Xi .
The proof of (iii) is complete. ��

The results of Theorem 6.1 are summarized in Table 1. In Figs. 2, 3, 4, 5
and 6, we denoted Es by black , Em by red , Ei by blue and Emi by green.

7 The two-dimensional subsystem of susceptible bees

In this section we consider the two-dimensional subsystem of (3) consisting of the first
two equations and make a discussion about the equilibrium points, local and global
stability. Also, we assume that the subsystem (4) is in a steady state, and substitute any
of the equilibria of the subsystem (4) into these to obtain the two-dimensional system
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Fig. 2 Case 1: R1 ≤ 1, R2 ≤ 1. Representation of the flow and the global attractor consisting of the
equilibrium Es

Fig. 3 Case 2: R1 > 1, R2 ≤ 1. Representation of the flow and the global attractor consisting of the
equilibrium Es and Em
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Fig. 4 Case 3: R1 ≤ 1, R2 > 1 and R3 ≤ 1. Representation of the flow and the global attractor consisting
of the equilibria Es and Ei

Fig. 5 Case 4: R1 > 1, R2 > 1 and R3 ≤ 1. Representation of the flow and the global attractor consisting
of the equilibria Es , Em , Ei and connecting orbits from Es to Ei
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Fig. 6 Case 5: R1 > 1, R2 > 1 and R3 > 1. Representation of the flow and the global attractor consisting
of the equilibria Es , Em , Ei , Emi and connecting orbits from Es to Emi

H ′
s(t) = L1 − L2Hs(t) −

(
σ1 − σ2

Fs

Fs + Hs

)
Hs(t)

+
(

σ1 − σ2
Fs

Fs + Hs

)
Fs(t)

F ′
s(t) =

(
σ1 − σ2

Fs

Fs + Hs

)
Hs(t) − L2Fs(t)

−
(

σ1 − σ2
Fs

Fs + Hs

)
Fs(t),

(9)

where

L1 = A + αH∗
m + αH∗

i ,

L2 = d + β1H
∗
m + β2H

∗
i

(10)

and H∗
m and H∗

i are the second, resp. third coordinates in any of the four equilibria
(5).

We calculate the equilibria of the subsystem (9) by solving the algebraic system of
equations
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0 = L1 − L2Hs(t) −
(

σ1 − σ2
Fs(t)

Fs(t) + Hs(t)

)
Hs(t)

+
(

σ1 − σ2
Fs(t)

Fs(t) + Hs(t)

)
Fs(t)

0 =
(

σ1 − σ2
Fs(t)

Fs(t) + Hs(t)

)
Hs(t) − L2Fs(t) −

(
σ1 − σ2

Fs(t)

Fs(t) + Hs(t)

)
Fs(t)

This system has two equilibrium points:

(
−J+

√
J 2+8σ2(J−σ1+2σ2)

4L2σ2
L1

,
(J−σ1+4σ2)−

√
J 2+8σ2(J−σ1+2σ2)

4L2σ2
L1

)

and

(
−J−

√
J 2+8σ2(J−σ1+2σ2)

4L2σ2
L1

,
(J−σ1+2σ2)+

√
J 2+8σ2(J−σ1+2σ2)

4L2σ2
L1

)

denoted by E1 and E2 respectively, with J = L2 + 2σ1 − 3σ2, and L1 and L2 are
defined in (10).

It can easily be seen that the first equilibrium E1 is always positive and the second
equilibrium E2 is positive if J is negative.

Proposition 7.1 The local stability of the equilibria of (9) is determined as follows:

(i) E1 is locally asymptotically stable;
(ii) E2 is unstable.

Proof The statements of the proposition can be shown in a straightforward way by
calculating the eigenvalues of the Jacobian of the linearized system at the equilibria.
The Jacobian has the form

⎛

⎝
2F2s σ2

(Fs+Hs )2
−L2−σ1

σ2(−F2s −2Fs Hs+H2
s )

(Fs+Hs )2
+σ1

σ1− 2F2s σ2
(Fs+Hs )2

σ2(F2s +2Fs Hs−H2
s )

(Fs+Hs )2
−L2−σ1

⎞

⎠.

(i) The eigenvalues of the Jacobian of the linearized equation around the equilibrium
E1 are λ11 = −L2 and λ12 = −√

J 2 + 8σ2(J − σ1 + 2σ2). Both eigenvalues
have negative real part, whichmeans that the first equilibrium E1 is locally asymp-
totically stable.

(ii) If we linearize around the equilibrium E2, we find the eigenvalues λ21 = −L2 and
λ22 = √

J 2 + 8σ2(J − σ1 + 2σ2). Thus, the second equilibrium E2 is unstable.

��
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In the sequel, we want to find the limit set of each solution of Hs and Fs . So, let us
consider Fs = S∗ − Hs and substituting this into (9) we get

H ′
s(t) = −

(
2σ2
S∗ H2

s (t) + J Hs(t) − L1 + (σ1 − σ2)S
∗
)

= − (Hs(t) − r1) (Hs(t) − r2)

(11)

where

r1 =
−J +

√
J 2 + 8σ2

S∗ (L1 + (σ1 − σ2)S∗)
4σ2
S∗

and

r2 =
−J −

√
J 2 + 8σ2

S∗ (L1 + (σ1 − σ2)S∗)
4σ2
S∗

.

Also, it is easy to prove that r1 − r2 > 0.
The solutions of (11) take the form

Hs(t) = r1 − r2ce−(r1−r2)t

1 − ce−(r1−r2)t
(12)

for c ∈ R+. Thus, we have

lim
t→∞ Hs(t) = r1

and

lim
t→∞ Fs(t) = S∗ − r1.

Let us first consider the case H∗
i = 0, (i.e. when the subsystem (4) tends to the

equilibrium Es or Em , which is equivalent to R2 ≤ 1). In this case, if R1 ≤ 1 the
solutions of subsystem (4) tend to the equilibrium Es with S∗ = A

d , L1 = A, L2 = d
and

r1 =
−(d + 2σ1 − 3σ2) +

√
(d + σ2)2 + 4σ 2

1

4dσ2
A

.

So, we obtain

lim
t→∞ Hs(t) =

−(d + 2σ1 − 3σ2) +
√

(d + σ2)2 + 4σ 2
1

4dσ2
A
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and

lim
t→∞ Fs(t) =

(d + 2σ1 + σ2) −
√

(d + σ2)2 + 4σ 2
1

4dσ2
A

.

If R1 > 1 the solutions of subsystem (4) tends to the equilibrium Em with S∗ = d+α
β1

,

H∗
m = A

d − d+α
β1

, L1 = A + α
( A
d − d+α

β1

)
, L2 = d + β1

( A
d − d+α

β1

)
and

r1 = −D + √
D2 + 8σ2D

4β1σ2
d+α

,

where D = β1
A
d + 2σ1 − 3σ2 − α. In this case, we get

lim
t→∞ Hs(t) = −D + √

D2 + 8σ2D
4β1σ2
d+α

and

lim
t→∞ Fs(t) = D − √

D2 + 8σ2D
4β1σ2
d+α

.

Thus, we obtain that all solutions of (9) tend to the equilibrium E1.
Similarly, in the case R2 > 1, i.e. when H∗

i > 0 , the subsystem (4) tends to the
equilibrium Ei or Emi . If R3 ≤ 1 the solutions tends to the equilibrium Ei and if
R3 > 1 the solutions tends to the equilibrium Emi . Also, in this case we have that all
solutions of (9) tend to the equilibrium E1.

Consequently, for all of the different cases all solutions of (9) tend to the equilibrium
E1 globally asymptotically stable.

8 Discussion

In this paper we established a novel compartmental model consisting of a four-
dimensional system of differential equations for a honeybee colony to simultaneously
describe the spread Varroa mites among the bees and the spread of the disease trans-
mitted by the mites. Our work provides a different approach from existing models for
Varroa infestation of honeybees as instead of separate compartments for the mites, we
consider bee compartments, differentiated by the presence of infectious, resp. nonin-
fectious parasites, hence, in contrast to earlier works, our model allows to keep track
of infestation by non-infectious, resp. infectious mites separately and hence to give
suggestions concerning the level control measures necessary to eliminate one or the
other.
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We calculated four potential equilibria of the system and three reproduction num-
bers. These threshold numbers determine which of the four possible equilibria of the
system is globally asymptotically stable, depending on the parameters. By using per-
sistence theory, the Bendixson–Dulac criterion and the Poincaré–Bendixson theorem,
we showed that the solutions always converge to one of the equilibria, depending
on the reproduction numbers. Consequently, we gave a complete description of the
global dynamics of the system for all possible cases. Our model allows us to study the
interplay between forager and hive bees, also to determine whether the recruitment
and social inhibition rate will effect the stability of our system or not.

Our results suggest that to eradicate the disease, we have to decrease R2 to be
less than 1, which is possible by reducing the transmission rate β2 or increasing
the disinfestation rate α. If we also want to eliminate the infestation, then besides
decreasing R2, we also have to decrease R1 (possible by reducing the transmission
rate β1 or increasing α). The reduction of transmission rates is possible by breeding
more resistant bees, while there are several methods to increase the disinfestation rate
α, including the use of synthetic, resp. organic chemicals, aswell asmechanical control
measures e.g. heating, powdered sugar dusting or drone brood sacrifice. In case of the
presence of the infection, decreasing only R1 is not enough for the elimination of the
infestation. The reproduction number R3 is a threshold parameter which, in the case
when the disease persists, shows whether all parasites become infectious.

We emphasize that the model given in this paper is the minimal model that is com-
plex enough to include the essential features of the parallel transmission mechanism
of the infestation and the infection. In this simplest model, which is a starting point
for further research, we applied a simple birth function for technical reasons. It is a
topic of a future work to make the model more realistic by including further compart-
ments, different types of birth functions, as well as periodic parameters to account for
seasonal variability.
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