
J. Appl. Math. Comput. (2018) 57:605–628
https://doi.org/10.1007/s12190-017-1124-1

ORIGINAL RESEARCH

Global analysis of an epidemic model with vaccination

Li-Ming Cai1 · Zhaoqing Li1 · Xinyu Song1

Received: 2 February 2017 / Published online: 21 July 2017
© Korean Society for Computational and Applied Mathematics 2017

Abstract In this paper, an epidemic dynamical model with vaccination is proposed.
Vaccination of both newborn and susceptible is included in the present model. The
impact of the vaccination strategy with the vaccine efficacy is explored. In particular,
the model exhibits backward bifurcations under the vaccination level, and bistability
occurrence can be observed. Mathematically, a bifurcation analysis is performed, and
the conditions ensuring that the system exhibits backward bifurcation are provided.
The global dynamics of the equilibrium in the model are also investigated. Numerical
simulations are also conducted to confirm and extend the analytic results.
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1 Introduction

Mathematical models have become important tools in analyzing the spread and control
of infectious diseases [2]. Based on the theory of Kermack and Mckendrick [19], the
spread of infectious diseases usually can be described mathematically by compart-
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mental models such as SIR, SIRS, SEIR, SEIRS models (where S represents the class
of the susceptible population, E is the exposed class in the latent period, I is infec-
tious class, R is the removed class, which has recovered with temporary or permanent
immunity). In recent years, a variety of compartmental models have been formulated,
and the mathematical analysis of epidemiology models has advanced rapidly, and the
analyzed results are applied to infectious diseases [2,18,32]. Vaccination campaigns
have been critical in attacking the spread of infectious diseases, e.g., pertussis,measles,
and influenza. The eradication of smallpox has been considered as the most spectac-
ular success of vaccination [44]. Although vaccination has been an effective strategy
against infectious diseases, current preventive vaccine consisting of inactivated viruses
do not protect all vaccine recipients equally. The vaccine-based protection is depen-
dent on the immune status of the recipient [2,32]. For example, influenza vaccines
protect 70–90% of the recipients among healthy young adults and as low as 30–40%
of the elderly and others with weakened immune systems (such as HIV-infected or
immuno-suppressed transplant patients) (see, [14,30,44]).

Since vaccination is the process of administering weakened or dead pathogens to
a healthy person or animal, with the intent of conferring immunity against a targeted
form of a related disease agent, the individuals having the vaccine-induced immunity
can be distinguished from the recovered individuals by natural immunity. Thus, vac-
cination can also be considered by adding some compartment naturally into the basic
epidemic models. Over the past few decades, a large number of simple compartmental
mathematical models with vaccinated population have been used in the literature to
assess the impact or potential impact of imperfect vaccines for combatting the trans-
mission diseases [1,3,11,16,20,21,23,31,43,45]. In someof these studies (e.g., papers
[16,31,43]), authors have shown that the dynamics of the model are determined by the
disease’s basic reproduction number�0. If�0 < 1 the disease can be eliminated from
the community; whereas an endemic occurs if�0 > 1. Therefore, if an efficient vacci-
nation campaign acts to reduce the disease’s basic reproduction number �0 below the
critical level of 1, then the disease can be eradicated. While in other studies, such as
Alexander et al. [1] and Arino et al. [3], they have shown that the criterion for �0 < 1
is not always sufficient to control the spread of a disease. A phenomenon known as a
backward bifurcation is observed. Mathematically speaking, when a backward bifur-
cation occurs, there are at least three equilibria for �0 < 1 in the model: the stable
disease-free equilibrium, a large stable endemic equilibrium, and a small unstable
endemic equilibrium which acts as a boundary between the basins of attraction for the
two stable equilibria. In some cases, a backward bifurcation leading to bistability can
occur. Thus, it is possible for the disease itself to become endemic in a population,
given a sufficiently large initial outbreak. These phenomena have important epidemio-
logical consequences for disease management. In recent years, backward bifurcation,
which leads tomultiple and subthreshold equilibria, has been attractingmuch attention
(see, [1,3,4,6,11,16,17,20,21,23,24,33,34,37,40]). Several mechanisms with vacci-
nation have been identified to cause the occurrence of backward bifurcation in paper
[33].

In this paper, we shall investigate the effects of a vaccination campaign with an
imperfect vaccine upon the spread of a non-fatal disease, such as hepatitis A, hepati-
tis B, tuberculosis and influenza, which features both exposed and infective stages.
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In particular, we focus on the vaccination parameters how to change the qualitative
behavior of the model, which may lead to subthreshold endemic states via backward
bifurcation. Global stability results for equilibria are obtained. The model constructed
in this paper is an extension of the model in paper [31], including a new compartment
for the latent class (an important feature for the infectious diseases eg. hepatitis A,
hepatitis B, tuberculosis and influenza) and the disease cycle. It is one of the aims of
this paper to strengthen the disease cycle to cause multiple endemic equilibria.

The paper is organized as follows. An epidemic model with vaccination of an
imperfect vaccine is formulated in Sect. 2, and the basic reproduction number, and
the existence of backward bifurcation and forward bifurcation are analyzed in Sect. 3.
The global stability of the endemic equilibrium is established in Sect. 4. The paper is
concluded with a discussion.

2 The model and the basic reproduction number

In order to derive the equations of the mathematical model, we divide the total
population N in a community into five compartments: susceptible, exposed (not
yet infectious), infective, recovered, and vaccinated; the numbers in these states are
denoted by S(t), E(t), I (t), R(t), and V (t), respectively. Let N (t) = S(t) + E(t) +
I (t) + R(t) + V (t). The flow diagram of the disease spread is depicted in Fig. 1.

All newborns are assumed to be susceptible. Of these newborns, a fraction α

of individuals are vaccinated, where α ∈ (0, 1]. Susceptible individuals are vacci-
nated at rate constant ψ . The parameter γ1 is the rate constant at which the exposed
individuals become infectious, and γ2 is the rate constant that the infectious individ-
uals become recovered and acquire temporary immunity. Finally, since the immunity
acquired by infection wanes with time, the recovered individuals have the possibility
γ3 of becoming susceptible again. β is the transmission coefficient (rate of effective
contacts between susceptible and infective individuals per unit time; this coefficient
includes rate of contacts and effectiveness of transmission). Since the vaccine does
not confer immunity to all vaccine recipients, vaccinated individuals may become
infected but at a lower rate than unvaccinated (those in class S). Thus in this case, the
effective contact rate β is multiplied by a scaling factor σ (0 ≤ σ ≤ 1, where 1 − σ

S E I R
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µS

µE µI

µR

αμN

µV

(1− α)μN

γ3R

βSI

N γ1E γ2I

ψS

σβV I

N

Fig. 1 Flowchart diagram for model (2.1)
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608 L.-M. Cai et al.

describes the vaccine efficacy, σ = 0 represents vaccine that offers 100% protection
against infection, while σ = 1 models a vaccine that offers no protection at all). It is
assumed that the natural death rate and birth rate are μ and the disease-induced death
rate is ignored. Thus the total population N is constant. Since the model consider the
dynamics of the human populations, it is assumed that all the model parameters are
nonnegative.

Thus, the followingmodel of differential equations is formulated based on the above
assumptions and Fig. 1,

dS

dt
= (1 − α)μN − μS − βSI

N
− ψS + γ3R,

dV

dt
= μαN + ψS − σ

βV I

N
− μV,

dE

dt
= βSI

N
+ σ

βV I

N
− (μ + γ1)E,

d I

dt
= γ1E − (μ + γ2)I,

dR

dt
= γ2 I − (μ + γ3)R,

(2.1)

with nonnegative initial conditions and N (0) > 0. System (2.1) is well posed: solu-
tions remain nonnegative for nonnegative initial conditions. We illustrate here that
there are limiting cases in system (2.1): if σ = 0, the vaccine is perfectly effective,
and α = ψ = 0, there is no vaccination, system (2.1) will be reduced to the standard
SEIRS model in [28]; if γ3 = 0 and the limit γ1 → ∞, system (2.1) will be equiv-
alent to an SVIR model in [31]. If we let α = 0 and γ3 = 0, system (2.1) can be
reduced to an SVEIR epidemic model in [16], where authors aim to assess the poten-
tial impact of a SARS vaccine via mathematical modelling. To explore the effect of
the vaccination period and the latent period on disease dynamics, an SVEIR epidemic
model with ages of vaccination and latency are formulated in paper [10]. In papers
[10,16,28,31], authors have shown that the dynamics of the model are determined by
the disease’s basic reproduction number �0. That is, the disease free equilibrium is
globally asymptotically stable for �0 ≤ 1; and there is a unique endemic equilibrium
which is globally asymptotically stable if�0 > 1. Ifψ = 0 and limit γ1 → ∞, system
(2.1) will be reduced into an SIV epidemic model in [36], where authors investigate
the effect of imperfect vaccines on the disease’s transmission dynamics. In [36], it
is shown that reducing the basic reproduction number �0 to values less than one no
longer guarantees disease eradication. In this paper, we show that if a vaccination
campaign with an imperfect vaccine and the disease cycle is considered, a more com-
plicated dynamic behavior is observed in system (2.1). For example, the backward
bifurcation occurs in system (2.1). In the following, first, it is easy to obtain that the
total population N in system (2.1) is constant. To Simplify our notation, we define the
occupation variable of compartments S, E, I, V, and R as the respective fractions of
a constant population N that belong to each of the corresponding compartments. We
still write the occupation variable of compartments as S, E, I, V and R, respectively.
Thus, it is easy to verify that
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Global analysis of an epidemic model with vaccination 609

D = {(S, E, I, V, R) ∈ R5+ : S + V + E + I + R = 1} (2.2)

is positively invariant and globally attracting in R5+. It suffices to study the dynamics
of (2.1) on D. Thus, system (2.1) can be rewritten as the following system:

dS

dt
= (1 − α)μ − μS − βSI − ψS + γ3R,

dV

dt
= μα + ψS − σβV I − μV,

dE

dt
= βSI + σβ I V − (μ + γ1)E,

d I

dt
= γ1E − (μ + γ2)I,

dR

dt
= γ2 I − (μ + γ3)R.

(2.3)

In the case σ = 0, system (2.3) reduces to an SEIRS model without vaccination
[28], where R0 = βγ1

(μ+γ1)(μ+γ2)
, is considered as the basic reproduction number of the

model. The classical basic reproduction number is defined as the number of secondary
infections produced by a single infectious individual during his or her entire infectious
period. Mathematically, the reproduction number is defined as a spectral radius R0
(which is a threshold quantity for disease control) that defines the number of new
infectious generated by a single infected individual in a fully susceptible population
[39]. In the following,we shall use this approach to determine the reproduction number
of system (2.3). It is easy to see that system (2.3) has always a disease-free equilibrium,

P0 = (S0, E0, I 0, R0, V 0) =
(

μ(1 − α)

μ + ψ
, 0, 0, 0,

μα + ψ

μ + ψ

)
.

Let x = (E, I, R, S)T . System (2.3) can be rewritten as

x ′ = F(x) − V(x),

where

F(x) =

⎛
⎜⎜⎝

βSI + σβ I V
0
0
0

⎞
⎟⎟⎠ , V(x) =

⎛
⎜⎜⎝

(μ + γ1)E
−γ1E + (μ + γ2)I
−γ2 I + (μ + γ3)R

μS + βSI + ψS − γ3R − (1 − α)μ

⎞
⎟⎟⎠ .

The Jacobianmatrices ofF(x) andV(x) at the disease-free equilibrium P0 are, respec-
tively,

DF(P0) =
⎛
⎝ F 0 0

0 0 0
0 0 0

⎞
⎠ , DV(P0) =

⎛
⎝ V 0 0
0 − γ2 μ + γ3 0
0 βS0 −γ3 μ + ψ

⎞
⎠ ,
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610 L.-M. Cai et al.

where,

F =
(
0 βS0 + σβV0
0 0

)
, V =

(
μ + γ1 0
−γ1 μ + γ2

)
.

FV−1 is the next generation matrix of system (2.3). It follows that the spectral radius
of matrix FV−1 is

ρ(FV−1) = βγ1

(μ + γ1)(μ + γ2)

(
S0 + σV0).

According to Theorem 2 in [39], the basic reproduction number of system (2.3) is

Rvac = βγ1

(μ + γ1)(μ + γ2)

(
S0 + σV0)

= R0
μ(1 − α) + σ(μα + ψ)

μ + ψ
.

The basic reproduction number Rvac can be interpreted as follows: A proportion of
γ1

μ+γ1
of exposed individuals progress to the infective stage before dying; 1

μ+γ2
repre-

sents the number of the secondary infection generated by an infective individual when
he or she is in the infectious stage. Those newborns vaccinated individuals have gen-
erated the number βγ1

(μ+γ1)(μ+γ2)
μ(1−α)
μ+ψ

of the secondary infection. Average vaccinated

individuals with vaccination rate ψ have generated the fraction βγ1
(μ+γ1)(μ+γ2)

σ (μα+ψ)
μ+ψ

of the secondary infection.

3 Equilibria and bifurcations

Now we investigate the conditions for the existence of endemic equilibria of system
(2.3). Any equilibrium (S, V, E, I, R) of system (2.3) satisfies the following equa-
tions:

(1 − α)μ − μS − βSI − ψS + γ3R = 0,

βSI + σβ I V − (μ + γ1)E = 0,

γ1E − (μ + γ2)I = 0,

γ2 I − (μ + γ3)R = 0,

V = 1 − S − E − I − R.

(3.1)

From the second and third equation of (3.1), we haveβγ1(S+σV ) = (μ+γ1)(μ+γ2).

Since (S + σV ) < 1, this equation can be true only for βγ1 > (μ + γ1)(μ + γ2);
hence, there exists no endemic equilibrium for R0 ≤ 1. For R0 > 1, the existence of
endemic equilibria is determined by the presence in (0, 1] of positive real solutions of
the quadratic equation

P(I ) = AI 2 + BI + C = 0, (3.2)
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Global analysis of an epidemic model with vaccination 611

where,

A = σβ2(μ + γ3) + σβ2(μ + γ2)(μ + γ3)

γ1
+ σβ2γ2,

B = β(μ + γ2)(μ + γ3)

γ1

[
σ(μ + ψ) + μ + γ1

]

+ σβγ2(μ + ψ) + βγ2γ3(σ − 1) − σβ2(μ + γ3)

+ σβ(μ + ψ)(μ + γ3),

C = μβ(1 − α)(μ + γ3)(σ − 1) + (μ + γ3)(μ + ψ)
[ (μ + γ1)(μ + γ2)

γ1
− σβ

]

= (μ + γ1)(μ + γ2)(μ + γ3)(μ + ψ)

γ1

[
1 − βγ1(μ(1 − α) + σ(μα + ψ))

(μ + γ1)(μ + γ2)(μ + ψ)

]

= (μ + γ1)(μ + γ2)(μ + γ3)(μ + ψ)

γ1

(
1 − Rvac

)
.

(3.3)
From (3.2) and (3.3), we can see that the number of endemic equilibria of system
(2.3) is zero, one, or two, depending on parameter values. For σ = 0 (the vaccine
is totally effective), it is obviously that there is at most one endemic equilibrium
(P∗(S∗, E∗, I ∗, R∗, V ∗)) in system. From now on we make the realistic assumption
that the vaccine is not totally effective, and thus 0 < σ < 1.

We notice that if Rvac = 1, then we have

ψcri t
def= R0μ[1 + (σ − 1)α] − μ

1 − σ R0
.

Since all the model parameters are positive, it follows from (3.3) that A > 0. Further-
more, if Rvac > 1, then C < 0. Since

dRvac

dψ
= − βγ1

(β + γ1)(μ + γ2)

μ(1 − σ)(1 − α)

(μ + ψ)2
< 0.

Thus, Rvac is a continuous decreasing function of ψ for ψ > 0, and if ψ < ψcri t ,
then Rvac > 1 and C < 0. Therefore, it follows that P(I ) of Eq. (3.2) has a unique
positive root for Rvac > 1.

Now we consider the case for Rvac < 1. In this case, C > 0, and ψ ≥ ψcri t . From
(3.3), it is easy to see that B(ψ) is an increasing function of ψ . Thus, if B(ψcri t ) ≥ 0,
then B(ψ) > 0 for ψ > ψcri t . Thus, P(I ) has no positive real root which implies
system have no endemic equilibrium in this case. Thus, let us consider the case

B(ψcri t ) < 0. In this case, let �(ψ)
def= B2(ψ) − 4AC(ψ). It is obvious that if

C(ψcri t ) = 0, then�(ψcri t ) > 0. Notice that B(ψ) is an linear increasing function of
ψ . Thus, there is a unique ¯̄ψ > ψcri t such that B( ¯̄ψ) = 0, and thus �( ¯̄ψ) < 0. Since
�(ψ) is a quadratic function of ψ with positive coefficient forψ2, �(ψ) has a unique
root ψ̄ in [ψcri t ,

¯̄ψ]. Thus, for Rvac < 1 we have B(ψ) < 0, A > 0,C ≥ 0, and
�(ψ) > 0 for ψ ∈ (ψcri t , ψ̄). Therefore, P(I ) has two possible roots and system
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612 L.-M. Cai et al.

(2.3) has two endemic equilibria P∗
1 (S∗

1 , E
∗
1 , I

∗
1 , R∗

1 , V
∗), P∗

2 (S∗
2 , E

∗
2 , I

∗
2 , R∗

2 , V
∗))

for ψcri t < ψ < ψ̄. From the above discussion, we have B(ψ) > 0 for ψ > ¯̄ψ , and
�(ψ) < 0 for ψ ∈ (ψ̄, ¯̄ψ). Therefore, it follows that system (2.3) has no endemic
equilibria for ψ > ψ̄ .

If Rvac = 1, we haveC = 0. In this case, system has a unique endemic equilibrium
for B(ψ) < 0 and no endemic equilibrium for B(ψ) > 0.

Summarizing the discussion above, we have the following Theorem:

Theorem 3.1 If Rvac > 1 (i.e., ψ < ψcri t ), system (2.3) has a unique endemic
equilibrium P∗(S∗, E∗, I ∗, R∗, V ∗); If there exists Rvac < 1 (i.e., ψ̄ > ψcri t ), system
(2.3) has two endemic equilibria P∗

1 (S∗
1 , E

∗
1 , I

∗
1 , R∗

1 , V
∗
1 ), P∗

2 (S∗
2 , E

∗
2 , I

∗
2 , R∗

2 , V
∗
2 ) for

ψcri t < ψ < ψ̄ and has no endemic equilibria for ψ > ψ̄; If Rvac = 1(i.e., ψ =
ψcri t ), system (2.3) has a unique endemic equilibrium P∗(S∗, E∗, I ∗, R∗, V ∗) for
B(ψ) < 0 and no endemic equilibrium for B(ψ) > 0.

According to Theorem 2 of van den Driesche and Watmough [39], we have the
following result.

Theorem 3.2 The disease-free equilibrium P0 is locally asymptotically stable when
Rvac < 1 and unstable when Rvac > 1.

In the following, we first give a global result of the disease-free equilibrium of
system (2.3) under some conditions.

Theorem 3.3 If R0 < 1, P0 is globally asymptotically stable in the feasible positively
invariant region.

Proof Consider the following Lyapunov functional

L = γ1E + (μ + γ1)I.

By directly calculating the derivative of L along system (2.3) and notice that S+σV <

1, thus, we have

dL

dt
= γ1

dE

dt
+ (μ + γ1)

d I

dt= βγ1[S + σV ]I − (μ + γ1)(μ + γ2)I
≤ (μ + γ1)(μ + γ2)(R0 − 1)I ≤ 0, forR0 ≤ 1.

It is easy to verify that the maximal compact invariant set in {(S, E, I, R, V ) ∈ 	 :
dL

dt
= 0} is {P0} when R0 ≤ 1. The global stability of P0 follows from the LaSalle

invariance principle [22]. 
�
From the above discussion, we know that system (2.3) may undergo a bifurcation

at the disease-free equilibrium when Rvac = 1. Now we establish the conditions on
the parameter values that cause a forward or backward bifurcation to occur. To do so,
we shall use the following theorem whose proof is found in Castillo-Chavez and Song
[5], which based on the use of the center manifold theory [15].
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Global analysis of an epidemic model with vaccination 613

For the following general system with a parameter φ.

dx

dt
= f (x, φ) : f : Rn × R → Rn, f ∈ C2(Rn × R). (3.4)

Without loss of generality, it is assumed that x = 0 is an equilibrium for system (3.4)
for all values of the parameters φ, that is, f (0, φ) = 0 for all φ.

Theorem 3.4 Assume that:

(A1) A = Dx f (0, 0) is the linearizationmatrix of system (3.4)around the equilibrium
x = 0 with φ evaluated at 0. Zero is simple eigenvalue of A and all other
eigenvalue of A have negative real parts;

(A2) Matrix A has a (non-negative ) right eigenvector ω and a left eigenvector v

corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i, j=1

vkωiω j
∂2 fk

∂xi∂x j
(0, 0),

b =
n∑
k,i

vkwi
∂2 fk
∂xi∂φ

(0, 0).

Then the local dynamics of system (3.4) around x = 0 are totally determined by a and
b.

(i) a > 0, b > 0. When φ < 0 with |φ| � 1, x = 0 is locally asymptotically stable
and there exists a positive unstable equilibrium; when 0 < φ � 1, x = 0 is
unstable and there exists a negative and locally asymptotically equilibrium;

(ii) a < 0, b < 0. When φ < 0, with |φ| � 1, x = 0 is unstable; when 0 < φ �
1, x = 0 is locally asymptotically stable and there exists a negative unstable
equilibrium;

(iii) a > 0, b < 0.When φ < 0, with |φ| � 1, x = 0 is unstable and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ � 1, x = 0 is
stable and a positive unstable equilibrium appears;

(iv) a < 0, b > 0. When φ changes from negative to positive, x = 0 changes its sta-
bility from stable to unstable. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Now by applying Theorem 3.4, we shall show system (2.3) may exhibit a forward
or a backward bifurcation when Rvac = 1. Consider the disease-free equilibrium
P0 = (S0, 0, 0, 0) and choose β as a bifurcation parameter. Solving Rvac = 1 gives

β = β∗ = (μ + γ1)(μ + γ2)(μ + ψ)

γ1[μ(1 − α) + σ(μα + ψ)]

123



614 L.-M. Cai et al.

Let J0 denote the Jacobian of the system (2.3) evaluated at the DFE P0 with β = β∗.
By directly computing, we have

J0(P0, β
∗) =

⎡
⎢⎢⎣

−μ − ψ 0 −β∗S0 γ3
0 −(μ + γ1) β∗S0 + σβ∗(1 − S0) 0
0 γ1 −μ − γ2 0
0 0 γ2 −μ − γ3

⎤
⎥⎥⎦ .

Let ∣∣∣λ − J0(P0, β
∗)

∣∣∣ = 0.

It is easy to obtain that J0(P0, β∗) has eigenvalues given by

λ1 = −(μ + ψ); λ2 = −(μ + γ3); λ3 = 0; λ4 = −(2μ + γ1 + γ2).

Thus, λ3 = 0 is a simple zero eigenvalue of the matrix J (P0, β∗) and the other
eigenvalues are real and negative. Hence, when β = β∗, the disease free equilibrium
P0 is a non-hyperbolic equilibrium. Thus, assumptions (A1) of Theorem3.4 is verified.
Now, we denote with ω = (ω1, ω2, ω3, ω4), a right eigenvector associated with the
zero eigenvalue λ3 = 0.
Thus,

− (μ + ψ)ω1 − β∗S0ω3 + γ3ω4 = 0,

− (μ + γ1)ω2 + [β∗S0 + σβ∗(1 − S0)]ω3 = 0,

γ1ω2 − (μ + γ2)ω3 = 0,

γ2ω3 − (μ + γ3)ω4 = 0.

Thus, we have

ω =
(

γ2γ3

(μ + γ3)(μ + ψ)
− μ(1 − α)(μ + γ1)(μ + γ2)

γ1(μ + ψ)[μ(1 − α) + σ(μα + ψ)] ,
μ + γ2

γ1
, 1,

γ2

μ + γ3

)
.

The left eigenvector v = (v1, v2, v3, v4) satisfying vω = 1 is given by

− (μ + ψ)v1 = 0,

− (μ + γ1)v2 + γ1v3 = 0,

− β∗S0v1 + β∗(S0 + σ(1 − S0))v2 − (μ + γ2)v3 + γ2v4 = 0,

γ3v1 − (μ + γ3)v4 = 0.

From the above, we obtain that

v = (
0,

γ1

μ + γ1
, 1, 0

)
.
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Global analysis of an epidemic model with vaccination 615

Let a and b be the coefficients defined as in Theorem 3.4.
Computation of a, b. For system (2.3), the associated non-zero partial derivatives

of f (evaluated at the DFE (P0), x1 = S, x2 = I, x3 = E, x4 = R.) are given by

a = 2v2ω1ω3
∂2 f2
∂S∂ I

(
P0, β

∗) + 2v2ω2ω3
∂2 f2
∂E∂ I

(
P0, β

∗) + v2ω3ω3
∂2 f2
∂ I 2

(
P0, β

∗)

+ 2v2ω3ω4
∂2 f2
∂ I∂R

(
P0, β

∗)

= 2β∗γ1
μ + γ1

[
γ2γ3(1 − σ)

(μ + γ3)(μ + ψ)
− μ(1 − σ)(1 − α)(μ + γ1)(μ + γ2)

γ1(μ + ψ)[μ(1 − α) + σ(μα + ψ)]
− σ

(μ + γ3)(μ + γ2) + γ1γ2 + γ1(μ + γ3)

γ1(μ + γ3)

]
.

b = v2

4∑
j=1

wi
∂2 f2

∂x j∂β∗
(
P0, β

∗)

= 2γ1
μ + γ1

(
S0(1 − σ) + σ

)
> 0.

(3.5)
Since the coefficient b is always positive, according to Theorem 3.4, it is the sign of the
coefficient a, which decides the local dynamics around the disease-free equilibrium
P0 for β = β∗. If the coefficient a is positive, the direction of the bifurcation of system
(2.3) at β = β∗ is backward; otherwise, it is forward.

Thus, we formulate a condition, which is denoted by (H3) :

γ2γ3

(μ + γ3)(μ + ψ)
>

μ(1 − α)(μ + γ1)(μ + γ2)

γ1(μ + ψ)[μ(1 − α) + σ(μα + ψ)]
+ σ((μ + γ2)(μ + γ3) + γ1γ2 + γ1(μ + γ3))

γ1(1 − σ)(μ + γ3)
.

Thus, if (H3) holds, we have a > 0, otherwise, a < 0.
Summarizing the above results, we have the following theorem.

Theorem 3.5 If (H3) holds, system (2.3) exhibits a backward bifurcation at Rvac = 1
(or equivalently β = β∗). Otherwise, system (2.3) exhibits a forward bifurcation at
Rvac = 1 (or equivalently when β = β∗).

Remark 1 From Theorem 3.5, it can follows that the occurrence of either a backward
or forward bifurcation may be expected. In fact, in system (2.3), let α = 0.3, μ =
0.00004566, β = 0.4, ψ = 0.01, γ1 = 0.1, γ2 = 0.05, γ3 = 0.033, σ = 0.15. It
is easy to verify that the condition (H3) is satisfied. By applying Xpp plot software
and choosing the above parameters, we can describe the backward bifurcation dia-
gram of system (2.3) (see, Fig. 2). Let all parameter values be same as in Fig. 2,
except ψ is changed as 0.2. The condition (H3) is not satisfied and we have forward
bifurcation diagram Fig. 3 at Rvac = 1. So it is clear that there is one threshold
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Fig. 2 The backward bifurcation diagram for model (2.3)
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Fig. 3 The forward bifurcation diagram for model (2.3)

value of ψ say ψ∗ such that backward bifurcation occurs of ψ < ψ∗ and forward
bifurcation occurs if ψ > ψ∗. Both of these bifurcation diagrams are obtained
by considering β as bifurcation parameter and later it is plotted with respect to
Rvac.
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4 Global stability of the endemic equilibrium

In this section, we shall investigate the global stability of the unique endemic equilib-
rium for Rvac > 1.Herewe shall apply the geometric approach [25,27,38] to establish
the global stability of the unique endemic equilibrium. In recent years, many authors
[3,16,26,28,29] have applied this method to show global stability of the positive equi-
libria in system. Here, we follow the techniques and approaches in paper [3,16] to
investigate global stability of the endemic equilibrium in system (2.3). Here, we omit
the introduction of the general mathematical framework of these theorems and only
focus on their applications.

In the previous section, we have showed that if Rvac > 1, system (2.3) has a
unique endemic equilibrium inD. Furthermore, Rvac > 1 implies that the disease-free
equilibrium P0 is unstable (Theorem3.2). The instability of P0, togetherwith P0 ∈ ∂D,
implies the uniform persistence of the state variables. This result can be also showed
by using the same arguments from Proposition 4.2 in [27] and Proposition 2.2 in [29].
Hence, there exists a constant 0 < δ < 1 such that any solution of x̃ = (S, V, E, I, R)

of system (2.3) with the initial conditions x̃0 = (S(0), V (0), E(0), I (0), R(0)) ∈ 	

satisfies

lim
t→∞ inf x̃ > δ, x̃ = (S, V, E, I, R).

Thus, we first give the following result:

Proposition 4.1 System (2.3) is uniformly persist in D for Rvac > 1 .

To prove our conclusion, we set the following differential equation

ẋ = f (x), (4.1)

where f : D(⊂ Rn) → Rn , D is open set and simply connected and f ∈ C ′(Rn).
Let

μ̄(Q) = Pf P
−1 + P

∂ f [2](x)
∂x

P−1, (4.2)

where, P(x) be a nonsingular (
n
2

) × (
n
2

) matrix-valued function, which is C1 on D

and Pf (x) is the derivative of P(x) in the direction of the vector field f (x).
∂ f [2](x)

∂x

is also (
n
2

)×(
n
2

)matrix, the second additive compound of the Jacobianmatrix ∂ f/∂x .

μ̄ is the Lozinski ĭ measure with respect to a vector norm | · |. The following result
comes from Corollary 2.6 in paper [25].

Theorem 4.1 Suppose that (i)D is simply connected andD0 is a compact set which is
absorbing with respect to system (4.1); (ii) For some matrix P, there exists a positive
constant ν such that μ̄(Q) ≤ −ν < 0 for all x ∈ D0. Then the unique equilibrium x0
in system (4.1) is global asymptotically stable.
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From Proposition 4.1, it is easy to verify that the condition (i) in Theorem 4.1 holds.
Therefore, to prove our conclusion, we only verify that (ii) in Theorem 4.1 holds.
According to paper [35], the Lozinskiĭ measure in Theorem 4.1 can be evaluated as
follow:

μ̄(Q) = inf{κ : D+||z|| ≤ κ||z||, for all solutions of ż = Pz},

where D+ is the right-hand derivative.
Now we state our main result in this section.

Theorem 4.2 Suppose that the parameters in system (2.3) satisfy the following
inequalities

γ3 < γ1, μ + ψ > 2γ1, μ > γ1. (4.3)

Then the unique equilibrium P∗ in system (2.3) is globally asymptotically stable for
Rvac > 1.

Proof Let f (x) = ( f1(x), f2(x), f3(x), f4(x))T , where f1(x) = (1 − α)μ − μS −
βSI − ψS + γ3R, f2(x) = μ + ψS − σβV I − μV, f3(x) = βSI + σβ I V − (μ +
γ1)E, f4(x) = γ1E − (μ + γ2)I, and x = (S, V, E, I )T . Then, the Jacobian matrix
of system (2.3) can be written as

∂ f

∂x
=

⎡
⎢⎢⎣

−ψ − β I − μ − γ3 −γ3 −γ3 −βS − γ3
ψ −σβ I − μ 0 −σβV
β I σβ I −γ1 − μ βS + σβV
0 0 γ1 −γ2 − μ

⎤
⎥⎥⎦ .

The second additive compound [25](see, “Appendix”) of Jacobian matrix is the 6× 6
matrix given by

∂ f [2]

∂x
= −diag

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ + β I (1 + σ) + 2μ + γ3
ψ + β I + 2μ + γ1 + γ3
ψ + β I + 2μ + γ2 + γ3
γ1 + σβ I + 2μ
γ2 + σβ I + 2μ
γ1 + γ2 + 2μ

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −σβV γ3 βS + γ3 0
σβ I 0 βS + σβV −γ3 0 βS + γ3
0 γ1 0 0 −γ3 −γ3

−β I ψ 0 0 βS + σβV σβV
0 0 ψ γ1 0 0
0 0 β I 0 σβ I 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Let

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E
0 0 0 0 0

0
1

E
0 0 0 0

0 0 0
1

E
0 0

0 0
1

I
0 0 0

0 0 0 0
1

I
0

1

E
0 0 0 0

1

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Set Q = Pf P−1 + P
∂ f [2]

∂x
P−1, where Pf is the derivative of P in the direction of

the vector field f . Thus, we have

Pf P
−1 = −diag(Ė/E, Ė/E, Ė/E, İ/I, İ/I, İ/I ).

From (2.3), we have

Ė

E
= (βS + σβV )

I

E
− μ − γ1

İ

I
= γ1

E

I
− μ − γ2

Thus, we obtain that

Q = Pf P
−1 + P

∂ f [2]

∂x
P−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 0 γ3 −σβV
I

E
(βS + γ3)

I

E
0

σβ I Q22 −γ3 (βS + σβV )
I

E
0 (βS + γ3)

I

E
−β I ψ Q33 0 (βS + σβV )

I

E
σβV

I

E
0 γ1

E

I
0 Q44 −γ3 −γ3

0 0 γ1
E

I
ψ Q55 0

0 0 0 β I σβ I Q66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

Q11 = −(ψ + β I + μ + σβ I + γ3) + γ1 − (βS + σβV )
I

E
,

Q22 = −(ψ + β I + μ + γ3) − (βS + σβV )
I

E
,

Q33 = −(σβ I + μ) − (βS + σβV )
I

E
, Q44 = −(ψ + β I + μ + γ3) − γ1

E

I

Q55 = −(σβ I + μ) − γ1
E

I
, Q66 = −(γ1 + μ) − γ1

E

I
.

As in [3,16], we define the following norm on R6:

||z|| = max{U1,U2}, (4.4)

where z ∈ R
6, with components zi , i = 1, . . . , 6 and

U1(z1, z2, z3)

=

⎧⎪⎪⎨
⎪⎪⎩

max{|z1|, |z2| + |z3|}, if sgn(z1) = sgn(z2) = sgn(z3)
max{|z2|, |z1| + |z3|}, if sgn(z1) = sgn(z2) = −sgn(z3)
max{|z1|, |z2|, |z3|}, if sgn(z1) = −sgn(z2) = sgn(z3)
max{|z1| + |z3|, |z2| + |z3|}, if − sgn(z1) = sgn(z2) = sgn(z3)

and let

U2(z4, z5, z6)

=

⎧⎪⎪⎨
⎪⎪⎩

|z4| + |z5| + |z6|, if sgn(z1) = sgn(z2) = sgn(z3)
max{|z4| + |z5|, |z4| + |z6|}, if sgn(z1) = sgn(z2) = −sgn(z3)
max{|z5|, |z4| + |z6|}, if sgn(z1) = −sgn(z2) = sgn(z3)
max{|z4| + |z6|, |z5| + |z6|}, if − sgn(z1) = sgn(z2) = sgn(z3)

Now we demonstrate the existence of some κ > 0 such that

D+||z|| ≤ −κ||z||. (4.5)

By linearity, if this inequality is true for some z, then it is also true for −z. Similar to
analyzing methods in paper [3,16], our proof is subdivided into eight separate cases,
based on the different octants and the definition of the norm (4.4). To facilitate our
analysis, we use the following inequalities:

U1(t) ≥ |z2|, |z3|, |z2 + z3|,
U2(t) ≥ |z4|, |z5|, |z6|, |z5 + z6|, |z4 + z5 + z6|,

for all z = (z1, z2, z3, z4, z5, z2, z6)T ∈ R
6.

Case 1. Let U1(z) > U2(z),z1, z2, z3 > 0 and |z1| > |z2| + |z3|.
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Global analysis of an epidemic model with vaccination 621

Then we have ||z|| = z1 and U2(z) < z1. Taking the right derivative of ||z||, we
have

D+||z|| = ż1

= −(
ψ + β I (1 + σ) + μ + γ3 + (βS + σβV )

I

E
− γ1

)
z1

+ γ3z3 − σβV
I

E
z4 + (βS + γ3)

I

E
z5

≤ −(
ψ + β I (1 + σ) + μ + γ3 + (βS + σβV )

I

E
− γ1

)|z1|
+ γ3|z3| + σβV

I

E
|z4|

+ (βS + γ3)
I

E
|z5|.

Since |z1| > |z3|, |z4|, |z5| ≤ U2(z) < |z1|, and |z1| = ||z||, thus, we obtain

D+||z|| ≤ γ1|z1| − (
ψ + β I (1 + σ) + μ)|z1| + γ3

I

E
|z5|

≤ (γ1 − (
ψ + β I (1 + σ) + μ) + max{γ1, γ3 I

E
})||z||.

(4.6)

Case 2. Similarly, it is easy to verify that Eq. (4.6) also holds for U1 > U2 and
z1, z2, z3 < 0 when |z1| > |z2| + |z3|.

Thus, if we require that 2γ1 < ψ +μ holds, then the inequality (4.5) holds for case
1 and case 2.

Case 3. Let U1(z) > U2(z), z1, z2, z3 > 0 and |z1| < |z2| + |z3|. Thus, we have
||z|| = |z2| + |z3| = z2 + z3 and U2(z) < |z2| + |z3|. So,we have

D+||z|| = ż2 + ż3

= −(1 − σ)β I z1 − (
β I + μ + γ3 + (βS + σβV )

I

E

)
z2

− (σβ I + μ + (βS + σβV )
I

E

+ γ3)z3 + (βS + σβV )
I

E
(z4 + z5 + z6) + γ3

I

E
z6

≤ −(1 − σ)β I |z1| − (
β I + μ + γ3 + (βS + σβV )

I

E

)|z2|
− (σβ I + μ + (βS + σβV )

I

E
+ γ3)|z3|

+ (βS + σβV )
I

E
|(z4 + z5 + z6)| + γ3

I

E
|z6|.

Using the inequalities |z6|, |z4 + z5 + z6| ≤ U2(z) < |z2| + |z3|, from the above, we
obtain that
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D+||z|| ≤ −(
β I + μ + γ3

)|z2| − (σβ I + μ + γ3)|z3| + γ3
I

E
|z6|

≤ (
max

{
γ1, γ3

I

E

} − (
σβ I + μ + γ3

))||z||.
(4.7)

Case 4. By linearity, Eq. (4.7) also holds for U1 > U2 and z1, z2, z3 < 0 when
|z1| < |z2| + |z3|.

Thus, if we require that γ1 < γ3 + μ holds, then the inequality (4.5) holds for case
3 and case 4.

Case 5. Let U1(z) > U2(z), z1 < 0 < z2, z3 and |z1| > |z2|. Thus, we have
||z|| = |z1| + |z3|, and U2(z) < |z1| + |z3|. By directly calculating, we obtain that

D+||z|| = −ż1 + ż3

= (
ψ + σβ I + μ + γ3 − γ1 + (βS + σβV )

I

E

)
z1 − γ3z3 − γ3

I

E
z5

+ ψz2 − (σβ I + μ + (βS + σβV )
I

E
z3 + σβV

I

E
(z4 + z5 + z6)

≤ −(
ψ + σβ I + μ + γ3 − γ1 + (βS + σβV )

I

E

)|z1| − γ3|z3| + γ3
I

E
|z5|

+ ψ |z2| − (σβ I + μ + (βS + σβV )
I

E
|z3| + σβV

I

E
|z4 + z5 + z6|

Using the inequalities |z5|, |z4 + z5 + z6| ≤ U2(z) < |z1| + |z3| , we have

D+||z|| ≤ −(
σβ I + μ + γ3 + βS

I

E

)|z1| + γ1|z1| + γ3
I

E
|z5|

− (σβ I + μ + βS
I

E
)|z3|

≤ (max{γ1, γ3 I

E
} − (σβ I + μ + βS

I

E
))||z||.

(4.8)

Case 6. By linearity, Eq. (4.8) also holds for U1 > U2 and z2, z3 < 0 < z1, when
|z1| < |z2|.

Thus, if we require that γ1 < μ holds, then the inequality (4.5) holds for case 5
and case 6.

Case 7. Let U1(z) > U2(z), z1 < 0 < z2, z3 and |z1| < |z2|. Thus, we have
||z|| = |z2| + |z3| = z2 + z3 and U2(z) < |z2| + |z3|. Thus, we have

D+||z|| = ż2 + ż3

= (σ − 1)β I z1 − (
β I + μ + γ3 + (βS + σβV )

I

E

)
z2 + γ3

I

E
z5

− (σβ I + μ + γ3 + (βS + σβV )
I

E
z3 + (βS + σβV )

I

E
(z4 + z5 + z6)
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≤ (1 − σ)β I |z1| − (
β I + μ + γ3 + (βS + σβV )

I

E

)|z2| + γ3
I

E
|z5|

− (σβ I + μ + γ3 + (βS + σβV )
I

E
)|z3| + (βS + σβV )

I

E
|z4 + z5 + z6|

Using the inequalities , |z5|, |z4 + z5 + z6| ≤ U2(z) < |z2| + |z3|, and |z1| ≤ |z2|, we
have

D+||z|| ≤ −(
σβ I + μ + γ3

)|z2| + γ3
I

E
|z5| − (σβ I + μ + γ3)|z3|

≤ (max{γ1, γ3 I

E
} − (

σβ I + μ + γ3
)
)||z||.

(4.9)

Case 8. By linearity, Eq. (4.9) also holds for U1 > U2 and z2, z3 < 0 < z1, when
|z1| < |z2|.

Thus, if we require that γ1 < γ3 + μ holds, then the inequality (4.5) holds for case
7 and case 8.

Therefore, from the discussion above, we know that if inequalities (4.3)hold, then
there exists κ > 0 such that D+||z|| ≤ −κ||z|| for all z ∈ R

4 and all nonnegative
S, V, E and I . All conditions in Theorem 4.1 can be satisfied when inequalities (4.3)
hold. Therefore, by Theorem 4.1, we can determine that if inequalities (4.3) hold, then
the unique endemic equilibrium of system (2.3) is globally stable in D for Rvac > 1.


�
Remark 2 In Sect. 3, we have shown that system (2.3) exhibit a backward bifurcation
for Rvac ≤ 1. As stressed in [3], for cases in which the model exhibits bistability, the
compact absorbing set required in Theorem 4.1 does not exist. By applying similar
methods in [3], a sequence of surfaces that exists for time ε > 0 and minimizes the
functional measuring surface area may be obtained. Therefore, the global dynamics
of system (2.3) in the bistability region can be further investigated as it has been done
in paper [3].

5 Discussion

In this paper, an epidemic model with vaccination has been investigated. By analysis,
it is showed that the proposed model exhibits a more complicated dynamic behavior.
Backward bifurcation under the vaccination level conditions, and bistability phenom-
ena can be observed. The global stability of the unique endemic equilibrium in the
model is demonstrated for Rvac > 1. Note that the model (2.3) can be solved in an
efficient way by means of the multistage Adomian decomposition method (MADM)
as a relatively new method [8,9,12,13]. The MADM has some superiority over the
conventional solvers such as the R-K family. To illustrate the various theoretical results
contained in this paper, the effect of some important parameter values on the dynamical
behavior of system (2.3) is investigated in the following.

Now we consider first the role of the disease cycle on the backward bifurcation.
If γ3 = 0, [i.e., the disease cycle-free in model (2.3)], then the expression for the
bifurcation coefficient, a, given in Eq. (3.5) reduces to
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a = − 2β∗γ1
μ + γ1

[
μ(1 − α)(μ + γ1)(μ + γ2)

γ1(μ + ψ)(μ(1 − α) + σ(μα + ψ))
+ μ + γ2

γ1
σ + γ2

μ
σ + σ

]
< 0.

Thus, the backward bifurcation phenomenon of system (2.3) will not occur if γ3 = 0.
This is in line with results in papers [16,31], where the disease cycle-free model (2.3)
has a globally asymptotically stable disease-free equilibrium if the basic reproduction
number is less than one.

Differentiating a, given in Eq. (3.5), with respect to γ3 gives

∂a

∂γ3
= 2β∗γ1γ2

μ + γ1

[
μ(1 − σ) + σ(μ + ψ)

(μ + ψ)(μ + γ )2

]
> 0.

Hence, the bifurcation coefficient, a is an increasing functions of γ3. Thus, the feasi-
bility of backward bifurcation occurring increases with disease cycle.

Now we consider the role of vaccination on the backward bifurcation. Let α =
ψ = σ = 0, then the expression for the bifurcation coefficient, a, given in Eq. (3.5),
is reduces to

a = 2β∗γ1
μ + γ1

[
γ2γ3

μ(μ + γ3)
− (μ + γ1)(μ + γ2)

γ1μ

]

<
2β∗γ1

2μ + γ1 + γ2

(
γ2

μ
− (1 + μ

γ1
)(1 + γ2

μ
)

)

< − 2β∗γ1
2μ + γ1 + γ2

(
1 + μ + γ2

γ1

)

< 0.

Thus, the backward bifurcation phenomenon of system (2.3)will not occur ifα = ψ =
σ = 0 (i.e., the model (2.3) will not undergo backward bifurcation in the absence of
vaccination). This is also in line with results in paper [26], where the vaccination-free
model (2.3) has a globally asymptotically stable equilibrium if the basic reproduction
number R0 is less than one. Furthermore, the impact of the vaccine-related parameters
(ψ, σ ) on the backward bifurcation is assessed by carrying out an analysis on the
bifurcation coefficient a as follows. Differentiating a, given in Eq. (3.5), partially with
respect to ψ, gives

∂a

∂ψ
= −2β∗γ1(1 − σ)

μ + γ1

[
γ2γ3

(μ + γ3)(μ + ψ)2

+ μ(1 − α)(μ + γ1)(μ + γ2)[μ(1 − α) + σ(μα + μ + 2ψ)]
γ1(μ + ψ)2[μ(1 − α) + σ(μα + ψ)]2

]

< 0.

Thus, the backward bifurcation coefficient, a is a decreasing function of the vaccina-
tion rate ψ . Hence, the possibility of backward occurring decreases with increasing
vaccination rate ( i.e., vaccinatingmore susceptible individuals decrease the likelihood
of the occurrence of backward bifurcation).
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Fig. 4 The backward bifurcation diagram with respect to vaccine efficacy σ = 0.15

Differentiating the bifurcation coefficient a, given in Eq. (3.5), partiallywith respect
to σ gives

∂a

∂σ
= 2β∗γ1

μ + γ1
M1,

with

M1 = −
(

γ2γ3

(μ + γ3)(μ + ψ)
+ μ(1 − α)(μ + γ1)(μ + γ2)(μ + ψ + σ(μα + ψ))

γ1(μ + ψ)[μ(1 − α) + σ(μα + ψ)]2

+μ + γ2

γ1
+ γ2

μ + γ3
+ 1

)
.

Thus, the bifurcation coefficient, a is a decreasing function with respect to σ . That
is, the likelihood of backward bifurcation occurring decreases with increasing vaccine
efficacy. Let α = 0.3, μ = 0.00004566, β = 0.4, ψ = 0.005, γ1 = 0.1, γ2 =
0.05, γ3 = 0.033. By direct calculating, it is easy to verify that M1 is negative and
also condition (H3) is satisfied. Figure 4 depicts the backward bifurcation occurring
phenomena with lower vaccine efficacy with σ = 0.15; Fig. 5 depicts the likelihood
of backward bifurcation occurring with higher vaccine efficacy σ = 0.45.

In addition, it is obvious that our expression for the basic reproduction number in
system (2.3), i.e.,

Rvac = βγ1

(μ + γ1)(μ + γ2)

μ(1 − α) + σ(μα + ψ)

μ + ψ

is independent of the loss rate of immunity γ3. From the above analysis, we have found
that the dynamics of the model are not determined by the basic reproduction number,
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Fig. 5 The backward bifurcation diagram with respect to vaccine efficacy σ = 0.45

and the phenomena of the backward bifurcation in system may occur. Moreover, it is
found that the occurrence feasibility is increasing with the loss rate of immunity γ3.

From the following expression,

dRvac

dψ
= −R0

μ(1 − σ)(1 − α)

(μ + ψ)2
< 0,

dRvac

dα
= −R0

μ(1 − σ)

μ + ψ
< 0,

it is easy to see that the policy of vaccinations with imperfect vaccines can decrease the
the basic reproduction number Rvac. Thus, the imperfect vaccine may be beneficial
to the community. This is also a positive point, sice it is know that the use of some
imperfect vaccine can sometime result in detrimental consequences to the community
[3,20].

At last, we must point out that although the system (2.3) with (2.2) is well posed
mathematically, we acknowledge the biological reality that the fraction of the constant
total population which occupies a compartment can only be within the subset Q of
rational values within R5+, and furthermore only within a sub-subset of values within
Q belonging to n/N where n belongs to the integers Z ∈ [0, N ]. In addition, we
also point out that the analysis of the model (2.1) may become somewhat different if
disease fatalities and more complex vital dynamics are included, in particular, if the
population size is no longer constant. In the future, we may investigate many various
modeling possibilities to simulate a real world biological process based on model
(2.1). On the other hand, we note that the population in our model (2.1) is assumed to
be homogeneously mixed. In fact, different individual may have different number of
contacts. Thus, a complex network-based approach on diseases transmission may be
closer to a realistic situation [7,41,42]. In the future, we shall investigate dynamics of
the proposed model based on a complex network.
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Appendix

The second additive compound matrix A[2] for a 6 × 6 matrix A = (ai j ) is

A[2] =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 + a22 a23 a24 −a13 −a14 0
a32 a11 + a33 a34 a12 0 −a14
a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24
−a41 0 a21 a43 a22 + a44 a23
0 −a41 a31 −a42 a32 a33 + a44

⎞
⎟⎟⎟⎟⎟⎟⎠
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