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Abstract In this paper, we consider the existence of multiple positive solutions for
the following singular semipositone Dirichlet boundary value problem:{−x′′(t) = p(t)f (t, x) + q(t), t ∈ (0,1),

x(0) = 0, x(1) = 0,

where p : (0,1) → [0,+∞) and f : [0,1] × [0,+∞) → [0,+∞) are continuous,
q : (0,1) → (−∞,+∞) is Lebesgue integrable. Under certain local conditions and
superlinear or sublinear conditions on f , by using the fixed point theorem, some
sufficient conditions for the existence of multiple positive solutions are established
for the case in which the nonlinearity is allowed to be sign-changing.

Keywords Singular boundary value problem · Semipositone · Positive solutions ·
Fixed point · Cone
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1 Introduction

Nonlinear boundary value problems, as an important branch of modern applied math-
ematics, have been studied by many authors in recent years [1, 4, 7–11]. In the study
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of nonlinear boundary value problems, one often has to use the cone theory or upper
and lower solution methods. To use these theories and methods, the nonlinearity of
the boundary value problem has to be nonnegative and continuous. However, not all
the nonlinearities of the boundary value problems arising from real world applica-
tions are nonnegative. If the nonlinearity may take on negative values, we call this
type of problems as semipositone problems, which arise naturally in chemical re-
actor theory, design of suspension bridges, combustion and management of natural
resources [2, 3, 5].

Recently, Zhang [12] considered the following singular semipositone Dirichlet
boundary value problem:{

x′′(t) + f (t, x) + q(t) = 0, t ∈ (0,1),

x(0) = 0, x(1) = 0,
(1.1)

where f : C(0,1) × [0,+∞) → [0,+∞) is continuous, q(t) : (0,1) → (−∞,+∞)

is Lebesgue integrable. Under the superlinear condition, by using the fixed point in-
dex, the authors established the existence of positive solutions for the semipositone
problem (1.1). But Zhang [12] did not establish the conditions for the existence of
multiple positive solutions, and also did not consider the sublinear case. This paper
fills this gap in the literature, i.e, we concern with the multiple solutions of the fol-
lowing singular semipositone Dirichlet boundary value problem:{ − x′′(t) = p(t)f (t, x) + q(t), 0 < t < 1,

x(0) = 0, x(1) = 0,
(1.2)

where p : (0,1) → [0,+∞) and f : [0,1] × [0,+∞) → [0,+∞) are continuous,
q : (0,1) → (−∞,+∞) is Lebesgue integrable. Under certain local conditions and
superlinear or sublinear conditions on f , we find that there should at least exist two
positive solutions for the semipositone problem (1.2). In addition, our method can
also be applied to solve Sturm-Liouville boundary value problems or multi-point
boundary value problems.

This paper is organized as follows. Section 2 gives some preliminaries and lem-
mas. Section 3 is devoted to the main results and their proof. At the end, two examples
are given to demonstrate the application of our main results.

2 Preliminaries and lemmas

Definition 2.1 Let E be a real Banach space. A nonempty closed convex set P ⊂ E

is called a cone of E if it satisfies the following two conditions:

(1) For x ∈ P , λ∗ ≥ 0 implies λ∗x ∈ P ;
(2) For x ∈ P,−x ∈ P implies x = θ.

Definition 2.2 An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.



The existence of multiple positive solutions for a class of semipositone 147

Lemma 2.1 [6] Let E be a real Banach space, P ⊂ E be a cone. Assume �1,�2 are
two bounded open subsets of E with θ ∈ �1,�1 ⊂ �2, and let T : P ∩(�2 \�1) → P

be a completely continuous operator such that either

(1) ‖T x‖ ≤ ‖x‖, x ∈ P ∩ ∂�1 and ‖T x‖ ≥ ‖x‖, x ∈ P ∩ ∂�2, or
(2) ‖T x‖ ≥ ‖x‖, x ∈ P ∩ ∂�1 and ‖T x‖ ≤ ‖x‖, x ∈ P ∩ ∂�2.

Then T has a fixed point in P ∩ (�2 \ �1).

Let G(t, s) be the Green’s function for the following boundary value problem{ − x′′ = 0, 0 < t < 1,

x(0) = 0, x(1) = 0,

then

G(t, s) =
{

s(1 − t), 0 ≤ s ≤ t ≤ 1,

t (1 − s), 0 ≤ t ≤ s ≤ 1.

Remark 2.1 Clearly, for any t, s ∈ [0,1], we have

t (1 − t)s(1 − s) ≤ G(t, s) ≤ s(1 − s) or t (1 − t). (2.1)

In the rest of the paper, we adopt the following assumptions:

(H1) f : [0,1] × [0,+∞) → [0,+∞) is continuous.
(H2) p : (0,1) → [0,+∞) is continuous and q : (0,1) → (−∞,+∞) is Lebesgue

integrable, such that
∫ 1

0 q−(s)ds = r > 0 and

0 <

∫ 1

0
s(1 − s)[p(s) + q+(s)]ds = L < 2r, (2.2)

where q+(t) = max{q(t),0}, q−(t) = max{−q(t),0}.
(H3) For any (t, x) ∈ [0,1] × [0,2r],

f (t, x) ≤ 2r

L
− 1.

(H4) There exists a constant R > 2r such that, for any (t, x) ∈ [0,1] × [ 3
32R,R],

f (t, x) ≥ 16R

3l
,

where l = ∫ 3
4

1
4

s(1 − s)p(s)ds.

(H5)

lim
x→+∞

f (t, x)

x
= 0

for t uniformly on [0,1].
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(H6)

lim
x→+∞

f (t, x)

x
= +∞

for t uniformly holds on any close subinterval of (0,1).

Now let us consider the Banach space E = C[0,1] equipped with the standard
norm

‖x‖ = max
0≤t≤1

x(t).

Set

C+[0,1] = {x|x(t) ≥ 0, t ∈ [0,1]}, P = {x ∈ C+[0,1] : x(t) ≥ t (1 − t)|x|},

then P is a cone of E.

Consider the linear boundary value problem{
w′′(t) + q−(t) = 0, t ∈ (0,1),

w(0) = 0, w(1) = 0.
(2.3)

By (H2) and (2.1), the problem (2.3) has unique positive solution

w(t) =
∫ 1

0
G(t, s)q−(s)ds, 0 ≤ t ≤ 1.

Define the function, for u ∈ C[0,1],

[u(t)]∗ =
{

u(t), u(t) ≥ 0,

0, u(t) < 0.

Let us consider the following approximately singular nonlinear boundary value prob-
lem {

z′′(t) + p(t)f (t, [z(t) − w(t)]∗) + q+(t) = 0, t ∈ (0,1),

z(0) = 0, z(1) = 0.
(2.4)

Lemma 2.2 If z̃0, satisfying z̃0(t) ≥ w(t) for any t ∈ [0,1], is a unique positive so-
lution of the BVP (2.4), then x0(t) = z̃0(t) − w(t) is a positive solution of the BVP
(1.2).

Proof In fact, if z̃0 is a positive solution of (2.4) such that z̃0(t) ≥ w(t) for any t ∈
[0,1]. Let x0(t) = z̃0(t) − w(t), then x0(t) ≥ 0, t ∈ [0,1] (positive on (0, 1)). Since
w(t) is unique positive solution of (2.3), for any t ∈ [0,1], we have

z̃′′
0(t) + p(t)f (t, z̃0(t) − w(t)) + q+(t) = 0,
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i.e.,

x′′
0 (t) + w′′(t) + p(t)f (t, x0(t)) + q+(t) = 0.

It follows from

x′′
0 (t) + p(t)f (t, x0(t)) + q+(t) − q−(t) = 0,

that

x′′
0 (t) + p(t)f (t, x0(t)) + q(t) = 0.

On the other hand, clearly

x0(0) = z̃0(0) − w(0) = 0, x0(1) = z̃0(1) − w(1) = 0.

These guarantee that x0 is positive solution of the BVP (1.2). �

Now define an integral operator T : P → C[0,1] by

(T z)(t) =
∫ 1

0
G(t, s)[p(t)f (s, [z(s) − w(s)]∗) + q+(s)]ds.

Lemma 2.3 Assume that (H1) and (H2) hold. Then T (P ) ⊂ P and T : P → P is a
completely continuous operator.

Proof For any z ∈ P, t ∈ [0,1], by (2.1), we have

(T z)(t) ≤
∫ 1

0
s(1 − s)[p(t)f (s, [z(s) − w(s)]∗) + q+(s)]ds,

and thus

‖T z‖ ≤
∫ 1

0
s(1 − s)[p(t)f (s, [z(s) − w(s)]∗) + q+(s)]ds.

On the other hand, it follows from (2.1) that

(T z)(t) ≥ t (1 − t)

∫ 1

0
s(1 − s)[p(t)f (s, [z(s) − w(s)]∗) + q+(s)]ds,

which implies

(T z)(t) ≥ t (1 − t)‖T z‖.
Therefore T (P ) ⊂ P .

Let B ⊂ P be any bounded set, then, for any z ∈ B , there exists a constant M > 0
such that ‖z‖ ≤ M. Thus, for any z ∈ B, s ∈ [0,1], noticing that [z(s) − w(s)]∗ ≤
z(s) ≤ ‖z‖ ≤ M , we have

|(T z)(t)| =
∫ 1

0
G(t, s)[p(t)f (s, [z(s) − w(s)]∗) + q+(s)]ds
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≤
∫ 1

0
s(1 − s)

[
max

[0,1]×[0,M]
f (t, x) + 1

]
[p(s) + q+(s)]ds

≤
[

max
[0,1]×[0,M]

f (t, x) + 1

]∫ 1

0
s(1 − s)[p(s) + q+(s)]ds

< +∞.

Therefore T (B) is uniformly bounded.
Now we show that T (B) is equicontinuous on [0,1]. For any z ∈ B, t ∈ [0,1], we

have

∣∣∣∣ d

dt
(T z)(t)

∣∣∣∣ =
∣∣∣∣∣−

∫ t

0
s[p(s)f (s, [z(s) − w(s)]∗) + q+(s)]ds

+
∫ 1

t

(1 − s)[p(s)f (s, [z(s) − w(s)]∗) + q+(s)]ds

∣∣∣∣∣
≤

[
max

[0,1]×[0,M]
f (t, x) + 1

](∫ t

0
s[p(s) + q+(s)]ds

+
∫ t

1
(1 − s)[p(s) + q+(s)]ds

)
.

By changing the order of integration, we obtain

∫ 1

0

(∫ t

0
s[p(s) + q+(s)]ds +

∫ 1

t

(1 − s)[p(s) + q+(s)]ds

)
dt

=
∫ 1

0
ds

∫ 1

s

s[p(s) + q+(s)]dt +
∫ 1

0
ds

∫ s

0
(1 − s)[p(s) + q+(s)]dt

= 2
∫ 1

0
s(1 − s)[p(s) + q+(s)]ds < +∞.

So for any z ∈ B , we have

0 ≤
∫ 1

0

∣∣∣∣ d

dt
(T z)(t)

∣∣∣∣dt ≤ 2

[
max

[0,1]×[0,M]
f (t, x) + 1

]∫ 1

0
s(1 − s)[p(s) + q+(s)]ds

< +∞.

From the absolute continuity of the integral, we know that T (P ) is equicontinuous
on [0,1]. Thus according to the Ascoli-Arzela Theorem, T (P ) is a relatively compact
set. Now, by the continuity of f and the Lebesgue control convergence theorem, it
is easy to know that T : P → P is continuous. Thus T is a completely continuous
operator. �
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3 Main results

Theorem 3.1 Suppose (H1)–(H5) hold. Then the BVP (1.2) has at least two positive
solutions x1(t) and x2(t) such that x1(t) ≥ rt (1 − t), x0(t) ≥ 1

2Rt(1 − t), t ∈ [0,1],
where r and R are defined by (2.2) and (H4), respectively.

Proof Let �r = {z ∈ P : ‖z‖ < 2r} and ∂�r = {z ∈ P : ‖z‖ = 2r}. Then, for any
z ∈ ∂�r, s ∈ [0,1], we have

0 ≤ [z(s) − w(s)]∗ ≤ z(s) ≤ ‖z‖ ≤ 2r.

It follows from (H3) that

‖T z‖ = max
t∈[0,1]

∫ 1

0
G(t, s)[p(s)f (s, [z(s) − w(s)]∗)) + q+(s)]ds

≤
∫ 1

0
s(1 − s)

[(
2r

L
− 1

)
p(s) + q+(s)

]
ds

≤ 2r

L

∫ 1

0
s(1 − s)[p(s) + q+(s)]ds

= 2r = ‖z‖.

Therefore, ‖T z‖ ≤ ‖z‖, z ∈ P ∩ ∂�r .

On the other hand, let �R = {z ∈ P : ‖z‖ < R} and ∂�R = {z ∈ P : ‖z‖ = R}.
Then for any z ∈ ∂�R, t ∈ [ 1

4 , 3
4 ], noticing R > 2r , we have

z(t) − w(t) ≥ z(t) − t (1 − t)

∫ 1

0
q−(s)ds = z(t) − t (1 − t)r

≥ z(t) − z(t)‖z‖r = z(t) − r

R
z(t) ≥ 1

2
z(t)

≥ 1

2
t (1 − t)‖z‖ ≥ 3

32
R > 0. (3.1)

So for any z ∈ ∂�R, t ∈ [ 1
4 , 3

4 ], we have

3

32
R ≤ z(t) − w(t) ≤ R. (3.2)
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It follows from (H4) and (3.2) that, for any z ∈ ∂�R, t ∈ [ 1
4 , 3

4 ],

‖T z‖ ≥ (T z)(t) =
∫ 1

0
G(t, s)[p(s)f (s, [z(s) − x(s)]∗ + q+(s)]ds

≥
∫ 3

4

1
4

G(t, s)[p(s)f (s, z(s) − x(s)) + q+(s)]ds

≥ 16R

3l

∫ 3
4

1
4

G(t, s)p(s)ds ≥ 16R

3l
t (1 − t)

∫ 3
4

1
4

s(1 − s)p(s)ds

≥ R

l

∫ 3
4

1
4

s(1 − s)p(s)ds = R = ‖z‖.

Thus, we have ‖T z‖ ≥ ‖z‖, z ∈ P ∩ ∂�R .
Now, let us choose ε > 0 such that

ε

∫ 1

0
s(1 − s)p(s)ds < 1.

Then for the above ε, by (H5), there exists M > R > 0 such that, for any t ∈ [0,1]
and for any x ≥ M ,

f (t, x) ≤ εx.

Let

R∗ = σ
∫ 1

0 s(1 − s)[p(s) + q+(s)]ds + ∫ 1
0 s(1 − s)q+(s)ds

1 − ε
∫ 1

0 s(1 − s)p(s)ds
+ M,

where

σ = max
[0,1]×[0,M]

f (t, x) + 1,

then R∗ > M > R. Let �R∗ = {z ∈ P : ‖z‖ < R∗} and ∂�R∗ = {z ∈ P : ‖z‖ = R∗}.
Then, for any z ∈ P ∩ ∂�R∗ , we have

‖T z‖ ≤
∫ 1

0
s(1 − s)[p(s)f (s, [z(s) − w(s)]∗ + q+(s))ds

≤
{(

max
[0,1]×[0,M]

f (t, x) + 1

)∫ 1

0
s(1 − s)[p(s) + q+(s)]ds

+
∫ 1

0
s(1 − s)[εp(s)[z(s) − w(s)]∗ + q+(s)]ds

}

≤
{(

max
[0,1]×[0,M]

f (t, x) + 1

)∫ 1

0
s(1 − s)[p(s) + q+(s)]ds
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+
∫ 1

0
s(1 − s)q+(s)ds

}
+ εR∗

∫ 1

0
s(1 − s)p(s)ds < R∗ = ‖z‖,

which implies that

‖T z‖ ≤ ‖z‖, z ∈ P ∩ ∂�R∗ .

By Lemma 2.1, T has two fixed points z1(t) and z2(t) such that

2r ≤ ‖z1‖ ≤ R ≤ ‖z2‖ ≤ R∗.

It follows from ‖z1‖ ≥ 2r that

z1(t) − w(t) ≥ ‖z1‖t (1 − t) −
∫ 1

0
G(t, s)q−(s)ds

= ‖z1‖t (1 − t) − t (1 − t)

∫ 1

0
q−(s)ds

= (‖z1‖ − r)t (1 − t)

≥ rt (1 − t) > 0, t ∈ (0,1),

and

z2(t) − w(t) ≥ z2(t) − t (1 − t)

∫ 1

0
q−(s)ds

= z2(t) − t (1 − t)r ≥ z2(t) − z2(t)

‖z‖ r

≥ z2(t) − r

R
z2(t) ≥ 1

2
z2(t) ≥ 1

2
t (1 − t)‖z2‖

≥ R

2
t (1 − t) > 0, t ∈ (0,1).

Let x1(t) = z1(t) − w(t), x2(t) = z2(t) − w(t), then by Lemma 2.2, we have that

x1(t) = z1(t) − w(t) > 0, x2(t) = z2(t) − w(t) > 0, t ∈ (0,1)

are two positive solutions of the BVP (1.2). The proof is completed. �

Theorem 3.2 Suppose (H1), (H2), (H4) and (H6) hold, and in addition, the follow-
ing condition is satisfied:

(H∗3) There exists a constant R̃ > ( 16R
3l

+ 1)L such that, for any (t, x) ∈ [0,1] ×
[0, R̃],

f (t, x) ≤ R̃

L
,

where L is defined by (H2).
Then the BVP (1.2) has at least two positive solutions x1(t) and x2(t) such that

x1(t) ≥ rt (1 − t), x2(t) ≥ 1
2 R̃t (1 − t), t ∈ [0,1], where r and R̃ are defined by (H2)

and (H∗3), respectively.
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Proof Let �R = {z ∈ P : ‖z‖ < R} and ∂�R = {z ∈ P : ‖z‖ = R}. Then for any
z ∈ ∂�R, t ∈ [ 1

4 , 3
4 ], noticing R > 2r , we have

z(t) − w(t) ≥ z(t) − t (1 − t)

∫ 1

0
q−(s)ds = z(t) − t (1 − t)r

≥ z(t) − z(t)‖z‖r = z(t) − r

R
z(t) ≥ 1

2
z(t)

≥ 1

2
t (1 − t)‖z‖ ≥ 3

32
R > 0.

So for any z ∈ ∂�R, t ∈ [ 1
4 , 3

4 ], we get

3

32
R ≤ z(t) − w(t) ≤ R. (3.3)

It follows from (H4) and (3.3) that, for any z ∈ ∂�R, t ∈ [ 1
4 , 3

4 ],

‖T z‖ ≥ (T z)(t) =
∫ 1

0
G(t, s)[p(s)f (s, [z(s) − x(s)]∗ + q+(s)]ds

≥
∫ 3

4

1
4

G(t, s)[p(s)f (s, z(s) − x(s)) + q+(s)]ds

≥ 16R

3l

∫ 3
4

1
4

G(t, s)p(s)ds ≥ 16R

3l
t (1 − t)

∫ 3
4

1
4

s(1 − s)p(s)ds

≥ R

l

∫ 3
4

1
4

s(1 − s)p(s)ds = R = ‖z‖.

Thus, we have ‖T z‖ ≥ ‖z‖, z ∈ P ∩ ∂�R .
Next, let �

R̃
= {z ∈ P : ‖z‖ < R̃} and ∂�

R̃
= {z ∈ P : ‖z‖ = R̃}. Then for any

z ∈ ∂�
R̃
, s ∈ [0,1], we have

R̃ > R > 2r > 0,
R̃

L
− 1 >

16R

3l
,

and

0 ≤ [z(s) − w(s)]∗ ≤ z(s) ≤ ‖z‖ ≤ R̃.
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It follows from (H∗3) that

‖T z‖ = max
t∈[0,1]

∫ 1

0
G(t, s)[p(s)f (s, [z(s) − w(s)]∗)) + q+(s)]ds

≤
∫ 1

0
s(1 − s)

[
R̃

L
− 1

]
[p(s) + q+(s)]ds

≤ R̃

L

∫ 1

0
s(1 − s)[p(s) + q+(s)]ds

= R̃ = ‖z‖.

Therefore, ‖T z‖ ≤ ‖z‖, z ∈ P ∩ ∂�
R̃

.
On the other hand, choose constants α,β and a real number K > 0 such that

[α,β] ⊂ (0,1), 1 ≤ 1

2
β2(1 − α)2K

∫ β

α

s(1 − s)p(s)ds.

From (H6), there exists R1 > R̃ such that, for any t ∈ [α,β],

f (t, x) ≥ Kx, x ≥ R1. (3.4)

Take R∗ = max{ 2R1
β(1−α)

,R1}, then R∗ > R1 > R̃ > R > 2r. Let R∗ = {z ∈ P : ‖z‖ <

R∗}, then for any z ∈ P ∩ ∂�R∗ and for any t ∈ [α,β], we have

z(t) − w(t) ≥ z(t) − t (1 − t)

∫ 1

0
q−(s)ds

= z(t) − t (1 − t)r

≥ z(t) − z(t)‖z‖r = z(t) − r

R∗ z(t)

≥ 1

2
z(t) ≥ 1

2
t (1 − t)‖z‖ ≥ 1

2
β(1 − α)R∗

≥ R1 > 0. (3.5)

Therefore from (3.4)–(3.5), for any z ∈ P ∩ ∂�R∗ and t ∈ [α,β], we have

(T z)(t) =
∫ 1

0
G(t, s)[p(s)f (s, [z(s) − w(s)]∗) + q+(s)]ds

≥
∫ 1

0
G(t, s)p(s)f (s, [z(s) − w(s)]∗)ds

≥
∫ β

α

G(t, s)p(s)f (s, [z(s) − w(s)]∗)ds
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≥
∫ β

α

G(t, s)p(s)K[z(s) − w(s)]∗)ds

=
∫ β

α

G(t, s)p(s)K[z(s) − w(s)]ds

≥ 1

2
β(1 − α)KR∗

∫ β

α

G(t, s)p(s)ds

≥ 1

2
β(1 − α)KR∗t (1 − t)

∫ β

α

s(1 − s)p(s)ds

≥ 1

2
β2(1 − α)2KR∗

∫ β

α

s(1 − s)p(s)ds ≥ R∗.

Thus, ‖T z‖ ≥ ‖z‖, z ∈ P ∩ ∂�R∗ .
By Lemma 2.1, T has two fixed points z1(t) and z2(t) such that

2r ≤ ‖z1‖ ≤ R̃ ≤ ‖z2‖ ≤ R∗.

It follows from |z1| ≥ 2r that

z1(t) − w(t) ≥ ‖z1‖t (1 − t) −
∫ 1

0
G(t, s)q−(s)ds

= ‖z1‖t (1 − t) − t (1 − t)

∫ 1

0
q−(s)ds

= (‖z1‖ − r)t (1 − t)

≥ rt (1 − t) > 0, t ∈ (0,1),

and

z2(t) − w(t) ≥ z2(t) − t (1 − t)

∫ 1

0
q−(s)ds

= z2(t) − t (1 − t)r ≥ z2(t) − z2(t)‖z‖r

= z2(t) − r

R̃
z2(t) ≥ 1

2
z2(t) ≥ 1

2
t (1 − t)‖z2‖

≥ 1

2
t (1 − t)R̃ > 0, t ∈ (0,1).

Let x1(t) = z1(t) − w(t), x2(t) = z2(t) − w(t), then by Lemma 2.2, we have that

x1(t) = z1(t) − w(t) > 0, x2(t) = z2(t) − w(t) > 0, t ∈ (0,1)

are two positive solutions of the BVP (1.2). The proof is completed. �
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4 Applications

Example 4.1 Consider the following singular semipositone boundary value problem⎧⎪⎨
⎪⎩

− x′′ = f (t, x)

t (1 − t)
− 1√

t
, t ∈ (0,1),

x(0) = 0, x(1) = 0,

(4.1)

where

f (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2x, 0 ≤ x ≤ 4,

349x − 1394, 4 ≤ x ≤ 6,

x + 694, 6 ≤ x ≤ 64,

− 187
9 x + 18790

9 , 64 ≤ x ≤ 100,

x
1
2 , x ≥ 100.

(4.2)

The BVP (4.1) has at least two positive solutions x1(t) and x2(t) such that

4 ≤ ‖x1‖ ≤ 64 ≤ ‖x2‖,
and

x1(t) ≥ 2t (1 − t), t ∈ [0,1], x2(t) ≥ 8t (1 − t), t ∈ [0,1].

Proof In fact, let

p(t) = 1

t (1 − t)
, q+(0) ≡ 0, q−(t) = 1√

t
,

then

r =
∫ 1

0

1√
s
ds = 2, L =

∫ 1

0
s(1 − s)[p(s) + q+(s)ds] = 1 < 2r = 4.

For any (t, x) ∈ [0,1] × [0,4], we have

f (t, x) ≤ 2 ≤ 2r

L
− 1 = 3.

So (H1)–(H3) hold.

Next, let R = 64, then R > 2r = 4, l = ∫ 3
4

1
4

s(1 − s)p(s)ds = 1
2 . Thus, for any

(t, x) ∈ [0,1] × [6,64], we have

f (t, x) ≥ 700 ≥ 16R

3l
= 32 × 64

3
≈ 682.7,

and

lim
x→+∞

f (t, x)

x
= lim

x→+∞x− 1
2 = 0.
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Therefore (H4)–(H5) hold. By Theorem 3.1, the BVP (4.1) has at least two positive
solutions x1(t) and x2(t) such that

4 ≤ ‖x1‖ ≤ 64 ≤ ‖x2‖,
and

x1(t) ≥ 2t (1 − t), t ∈ [0,1], x2(t) ≥ 8t (1 − t), t ∈ [0,1].
�

Example 4.2 Consider the following singular semipositone boundary value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− x′′ = f (x)

3t (1 − t)
− 1

2 + 3 3
√

4

⎧⎨
⎩ 1√

t
+ 1

3
√

(t − 1
2 )2

⎫⎬
⎭ , t ∈ (0,1),

x(0) = 0, x(1) = 0.

(4.3)

where

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x
1
2 + x2, 0 ≤ x ≤ 1,

511x − 509, 1 ≤ x ≤ 3,

76
29x + 29468

29 , 3 ≤ x ≤ 32,

25
184x + 25200

23 , 32 ≤ x ≤ 400,

x2

400 + 750, x ≥ 342.

(4.4)

The BVP (4.3) has at least two positive solutions x1(t) and x2(t) such that

x1(t) ≥ t (1 − t), t ∈ [0,1], x2(t) ≥ 200t (1 − t), t ∈ [0,1].

Proof In fact, Let

p(t) = 1

3t (1 − t)
, q+(0) ≡ 0, q−(t) = 1

2 + 3 3
√

4

⎧⎨
⎩ 1√

t
+ 1

3
√

(t − 1
2 )2

⎫⎬
⎭ ,

then

r =
∫ 1

0
q−(s)ds = 1, l =

∫ 3
4

1
4

s(1 − s)
1

3s(1 − s)
ds = 1

6
,

L =
∫ 1

0
s(1 − s)[p(s) + q+(s)ds] = 1

3
< 2r = 2.

Let R = 32 > 2r = 2, then for any x ∈ [3,32], we have

f (x) ≥ 16R

3l
= 1024.
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On the other hand, let R̃ = 400 > ( 16R
3l

+ 1)L = 1025
3 , then, for any x ∈ [0,400],

f (t, x) ≤ 1150 ≤ 1199 = R̃

L
− 1.

Obviously,

lim
x→+∞

f (t, x)

x
= +∞,

for t uniformly holds on any close subinterval of (0, 1). It follows from Theorem 3.2
that the BVP (4.3) has at least two positive solutions x1(t) and x2(t) such that

x1(t) ≥ t (1 − t), t ∈ [0,1], x2(t) ≥ 200t (1 − t), t ∈ [0,1].
�

Remark 4.1 In Example 4.2, we notice that the nonlinearity is singular at t = 0 and
t = 1

2 , which shows that the singularity of the semipositone boundary value problem
(1.2) may occur not only at the endpoints of the interval (0,1), but also in the internal
area of the interval (0,1). Moreover, since q : (0,1) → [0,+∞) only needs to be
Lebesgue integrable, this implies that q may be singular at some zero measure set
of (0,1).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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