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Abstract
In this paper, we see that the hypersurfaces L± in Ando (Abh Math Semin Univ Hambg
92:105–123, 2022, Proposition 1) are neutral but not flat. Nonetheless, we find parallel almost
complex structures I± suitable for Ando (Abh Math Semin Univ Hambg 92:105–123, 2022,
Theorem 1) and parallel almost paracomplex structures J± suitable for Ando (Abh Math
Semin Univ Hambg 92:105–123, 2022, Theorem 2).

Keywords Light cone · SO(3, 1)-orbit · Complex structure · Paracomplex structure

Mathematics Subject Classification 53B25 · 53C42 · 53C50

1 Introduction

Correction to: Abh. Math. Semin. Univ. Hambg. (2022) 92:105–123
https://doi.org/10.1007/s12188-021-00254-y

Let E4
1 be theMinkowski 4-space and

∧2 E4
1 the 2-fold exterior power of E

4
1 . Then

∧2 E4
1

is of dimension 6 and the Minkowski metric of E4
1 induces an indefinite metric of

∧2 E4
1

with signature (3, 3). The SO(3, 1)-action on E4
1 yields an SO(3, 1)-action on

∧2 E4
1 . In

addition, each element of SO(3, 1) gives an isometry of
∧2 E4

1 . In particular, we have an
SO(3, 1)-action on the light cone L of

∧2 E4
1 . In the paragraph just before [2, Proposition

1], two hypersurfaces L± of L are given. These are SO(3, 1)-orbits in L. In this proposition,
it was asserted that L± are neutral, that is, they have neutral metrics. This assertion has no
problems. However, we will see in this paper that L± are not flat, although it was asserted
that L± are flat in [2, Proposition 1]. By the equation of Gauss for submanifolds L± of∧2 E4

1 , we can explicitly represent the curvature tensors of L±, and we will see that they
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do not vanish. In [2, Proposition 1], it was also asserted that L± are neutral hyperKähler.
However, according to the proof of [2, Proposition 1], this assertion is based on the flatness.
Therefore the assertion that L± are neutral hyperKähler must be cancelled. Hence we see
that Proposition 1 of [2] should be stated as follows:

The 4-submanifolds L± are neutral and not flat.

In this paper, we will find one parallel almost complex structure and one parallel almost
paracomplex structure on each of L±. In addition, we will see that they are suitable for
Theorems 1 and 2 in [2]. Therefore these theorems have no problems.

2 The curvature tensors

As was used in the proof of [2, Proposition 1], let ∇̃+ be the Levi-Civita connection of
the metric of L+ induced by the metric ĥ of

∧2 E4
1 and S a surface in L+ given by S =

{T̃P3,1 ◦ T̃P3,2(E+,1) | θ, t ∈ R}, where E±,i (i = 1, 2, 3) are given in the second paragraph
of [2, Section 2] and T̃Pk,l (k = 1, 2, 3, l = 1, 2) are given in the proof of [2, Proposition 1].
Then vector fields E ′±,2, E

′±,3 along S given in the proof of [2, Proposition 1] are parallel with

respect to ∇̃+. Let ∇̂ be the Levi-Civita connection of ĥ. Then E ′±,3 are parallel with respect

to ∇̂, while E ′±,2 are not parallel with respect to ∇̂. Let ωi j be as in the second paragraph of
[2, Section 2]. Then ω13, ω42, ω23, ω14 form a pseudo-orthonormal basis of the tangent space
of L+ at a point E+,1. In addition, ω13, ω42 form a pseudo-orthonormal basis of the tangent
plane of S at the same point. Letω′

i j be vector fields along S given byω′
i j = T̃P3,1 ◦ T̃P3,2(ωi j ).

Then using
T̃P3,1(E±,2) = − sin θE±,1 + cos θE±,2,

T̃P3,2(E∓,2) = ∓sinh t E±,1 + cosh t E∓,2,

which were already obtained in the proof of [2, Proposition 1], we obtain

∇̂ω13ω
′
13 = −∇̂ω42ω

′
42 = − 1√

2
(ω12 − ω34),

∇̂ω13ω
′
42 = ∇̂ω42ω

′
13 = − 1√

2
(ω12 + ω34).

(1)

Referring to the previous paragraph, we have an analogous study along a surface S⊥
in L+ given by S⊥ = {T̃P2,1 ◦ T̃P2,2(E+,1) | θ, t ∈ R}. Then ω23, ω14 form a pseudo-
orthonormal basis of the tangent plane of S⊥ at E+,1. Let ω′′

i j be vector fields along S⊥ given

by ω′′
i j = T̃P2,1 ◦ T̃P2,2(ωi j ). Then we obtain

∇̂ω23ω
′′
23 = −∇̂ω14ω

′′
14 = − 1√

2
(ω12 − ω34),

∇̂ω14ω
′′
23 = ∇̂ω23ω

′′
14 = − 1√

2
(ω12 + ω34).

(2)

Let R̃+, R̂ be the curvature tensors of ∇̃+, ∇̂ respectively. Then using (1), (2) and the
equation of Gauss for L+:
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0 = ĥ(R̂(X , Y )Z ,W )

= ĥ(R̃+(X , Y )Z ,W ) + ĥ(σ (X , Z), σ (Y ,W )) − ĥ(σ (X ,W ), σ (Y , Z))

(σ is the second fundamental form of L+ in
∧2 E4

1), we obtain

Proposition 1 If we set

A =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦ ,

then the following hold:
R̃+(ω13, ω42) = 0,

R̃+(ω23, ω14) = 0,

(R̃+(ω13, ω23)ω13 R̃+(ω13, ω23)ω42 R̃+(ω13, ω23)ω23 R̃+(ω13, ω23)ω14)

= −(R̃+(ω42, ω14)ω13 R̃+(ω42, ω14)ω42 R̃+(ω42, ω14)ω23 R̃+(ω42, ω14)ω14)

= (ω13 ω42 ω23 ω14)A,

(R̃+(ω13, ω14)ω13 R̃+(ω13, ω14)ω42 R̃+(ω13, ω14)ω23 R̃+(ω13, ω14)ω14)

= (R̃+(ω42, ω23)ω13 R̃+(ω42, ω23)ω42 R̃+(ω42, ω23)ω23 R̃+(ω42, ω23)ω14)

= (ω13 ω42 ω23 ω14)B.

From Proposition 1, we see that L+ is not flat. Similarly, we see that L− is not flat.

3 Complex structures and paracomplex structures

Let TE+,1(L+) denote the tangent space of L+ at a point E+,1. Let ∧̂ denote the exterior

product of the exterior algebra of TE+,1(L+). Then we denote by
∧̂2

TE+,1(L+) the 2-fold
exterior power of TE+,1(L+). We set

X1 := ω23, X2 := ω14, Y1 := ω13, Y2 := ω42.

Then
∧̂2

TE+,1(L+) is decomposed into

∧̂2
TE+,1(L+) =

∧̂2

+TE+,1(L+) ⊕
∧̂2

−TE+,1(L+),

where

(i)
∧̂2

+TE+,1(L+) is generated by

1√
2
(X1∧̂Y1 − X2∧̂Y2), 1√

2
(X1∧̂X2 + Y2∧̂Y1), 1√

2
(X1∧̂Y2 + Y1∧̂X2),

(ii)
∧̂2

−TE+,1(L+) is generated by

1√
2
(X1∧̂Y1 + X2∧̂Y2), 1√

2
(X1∧̂X2 − Y2∧̂Y1), 1√

2
(X1∧̂Y2 − Y1∧̂X2).
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The stabilizer G(E+,1) of SO(3, 1) at E+,1 is generated by P1,1, ±P1,2 (θ , t ∈ R). Then

G(E+,1) acts on TE+,1(L+). Therefore G(E+,1) acts on
∧̂2

TE+,1(L+).

We see that (1/
√
2)(X1∧̂Y1 − X2∧̂Y2) is an invariant element of

∧̂2
+TE+,1(L+) by the

G(E+,1)-action, which is unique up to a constant, and (1/
√
2)(X1∧̂Y1 − X2∧̂Y2) defines an

almost complex structure I+ on L+ by the SO(3, 1)-action. Using (1) and (2), and referring
to [1], we see that I+ is parallel with respect to ∇̃+.

We see that (1/
√
2)(X1∧̂Y2 − Y1∧̂X2) is an invariant element of

∧̂2
−TE+,1(L+) by the

G(E+,1)-action, which is unique up to a constant, and −(1/
√
2)(X1∧̂Y2 − Y1∧̂X2) defines

an almost paracomplex structure J+ on L+ by the SO(3, 1)-action. Using (1) and (2), and
referring to [1], we see that J+ is parallel with respect to ∇̃+.

We have similar discussions for L− and we obtain an almost complex structure I− and an
almost paracomplex structure J− on L−, which are parallel with respect to the Levi-Civita
connection ∇̃− of the metric of L− induced by ĥ. Hence we obtain

Proposition 2 For ε ∈ {+,−}, Lε has just two almost complex structures ±Iε and just
two almost paracomplex structures ±Jε by the SO(3, 1)-action and these are parallel with
respect to ∇̃ε .

We see that I±,J± satisfy (5), (6) in the proof of [2, Proposition 1] respectively. Therefore
Theorems 1 and 2 have no problems.
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