Correction to: Isotropicity of surfaces in Lorentzian 4-manifolds with zero mean curvature vector

Naoya Ando ${ }^{1}$

Received: 12 July 2023 / Published online: 13 November 2023
© The Author(s), under exclusive licence to Mathematisches Seminar der Universität Hamburg 2023

Abstract

In this paper, we see that the hypersurfaces $\mathcal{L}_{ \pm}$in Ando (Abh Math Semin Univ Hambg 92:105-123, 2022, Proposition 1) are neutral but not flat. Nonetheless, we find parallel almost complex structures $\mathcal{I}_{ \pm}$suitable for Ando (Abh Math Semin Univ Hambg 92:105-123, 2022, Theorem 1) and parallel almost paracomplex structures $\mathcal{J}_{ \pm}$suitable for Ando (Abh Math Semin Univ Hambg 92:105-123, 2022, Theorem 2).

Keywords Light cone • SO(3, 1)-orbit • Complex structure • Paracomplex structure
Mathematics Subject Classification 53B25 • 53C42 • 53C50

1 Introduction

Correction to: Abh. Math. Semin. Univ. Hambg. (2022) 92:105-123
https://doi.org/10.1007/s12188-021-00254-y
Let E_{1}^{4} be the Minkowski 4-space and $\bigwedge^{2} E_{1}^{4}$ the 2-fold exterior power of E_{1}^{4}. Then $\bigwedge^{2} E_{1}^{4}$ is of dimension 6 and the Minkowski metric of E_{1}^{4} induces an indefinite metric of $\bigwedge^{2} E_{1}^{4}$ with signature (3, 3). The $S O(3,1)$-action on E_{1}^{4} yields an $S O(3,1)$-action on $\bigwedge^{2} E_{1}^{4}$. In addition, each element of $S O(3,1)$ gives an isometry of $\bigwedge^{2} E_{1}^{4}$. In particular, we have an $S O(3,1)$-action on the light cone \mathcal{L} of $\bigwedge^{2} E_{1}^{4}$. In the paragraph just before [2, Proposition 1], two hypersurfaces $\mathcal{L}_{ \pm}$of \mathcal{L} are given. These are $S O(3,1)$-orbits in \mathcal{L}. In this proposition, it was asserted that $\mathcal{L}_{ \pm}$are neutral, that is, they have neutral metrics. This assertion has no problems. However, we will see in this paper that $\mathcal{L}_{ \pm}$are not flat, although it was asserted that $\mathcal{L}_{ \pm}$are flat in [2, Proposition 1]. By the equation of Gauss for submanifolds $\mathcal{L}_{ \pm}$of $\bigwedge^{2} E_{1}^{4}$, we can explicitly represent the curvature tensors of $\mathcal{L}_{ \pm}$, and we will see that they

[^0]The original article can be found online at https://doi.org/10.1007/s12188-021-00254-y.

[^1]do not vanish. In [2, Proposition 1], it was also asserted that $\mathcal{L}_{ \pm}$are neutral hyperKähler. However, according to the proof of [2, Proposition 1], this assertion is based on the flatness. Therefore the assertion that $\mathcal{L}_{ \pm}$are neutral hyperKähler must be cancelled. Hence we see that Proposition 1 of [2] should be stated as follows:

The 4 -submanifolds $\mathcal{L}_{ \pm}$are neutral and not flat.
In this paper, we will find one parallel almost complex structure and one parallel almost paracomplex structure on each of $\mathcal{L}_{ \pm}$. In addition, we will see that they are suitable for Theorems 1 and 2 in [2]. Therefore these theorems have no problems.

2 The curvature tensors

As was used in the proof of [2, Proposition 1], let $\tilde{\nabla}^{+}$be the Levi-Civita connection of the metric of \mathcal{L}_{+}induced by the metric \hat{h} of $\bigwedge^{2} E_{1}^{4}$ and S a surface in \mathcal{L}_{+}given by $S=$ $\left\{\tilde{T}_{P_{3,1}} \circ \tilde{T}_{P_{3,2}}\left(E_{+, 1}\right) \mid \theta, t \in \boldsymbol{R}\right\}$, where $E_{ \pm, i}(i=1,2,3)$ are given in the second paragraph of [2, Section 2] and $\tilde{T}_{P_{k, l}}(k=1,2,3, l=1,2)$ are given in the proof of [2, Proposition 1]. Then vector fields $E_{ \pm, 2}^{\prime}, E_{ \pm, 3}^{\prime}$ along S given in the proof of [2, Proposition 1] are parallel with respect to $\tilde{\nabla}^{+}$. Let $\hat{\nabla}$ be the Levi-Civita connection of \hat{h}. Then $E_{ \pm, 3}^{\prime}$ are parallel with respect to $\hat{\nabla}$, while $E_{ \pm, 2}^{\prime}$ are not parallel with respect to $\hat{\nabla}$. Let $\omega_{i j}$ be as in the second paragraph of [2, Section 2]. Then $\omega_{13}, \omega_{42}, \omega_{23}, \omega_{14}$ form a pseudo-orthonormal basis of the tangent space of \mathcal{L}_{+}at a point $E_{+, 1}$. In addition, ω_{13}, ω_{42} form a pseudo-orthonormal basis of the tangent plane of S at the same point. Let $\omega_{i j}^{\prime}$ be vector fields along S given by $\omega_{i j}^{\prime}=\tilde{T}_{P_{3,1}} \circ \tilde{T}_{P_{3,2}}\left(\omega_{i j}\right)$. Then using

$$
\begin{aligned}
& \tilde{T}_{P_{3,1}}\left(E_{ \pm, 2}\right)=-\sin \theta E_{ \pm, 1}+\cos \theta E_{ \pm, 2}, \\
& \tilde{T}_{P_{3,2}}\left(E_{\mp, 2}\right)=\mp \sinh t E_{ \pm, 1}+\cosh t E_{\mp, 2},
\end{aligned}
$$

which were already obtained in the proof of [2, Proposition 1], we obtain

$$
\begin{align*}
& \hat{\nabla}_{\omega_{13}} \omega_{13}^{\prime}=-\hat{\nabla}_{\omega_{42}} \omega_{42}^{\prime}=-\frac{1}{\sqrt{2}}\left(\omega_{12}-\omega_{34}\right), \\
& \hat{\nabla}_{\omega_{13}} \omega_{42}^{\prime}=\hat{\nabla}_{\omega_{42}} \omega_{13}^{\prime}=-\frac{1}{\sqrt{2}}\left(\omega_{12}+\omega_{34}\right) . \tag{1}
\end{align*}
$$

Referring to the previous paragraph, we have an analogous study along a surface S^{\perp} in \mathcal{L}_{+}given by $S^{\perp}=\left\{\tilde{T}_{P_{2,1}} \circ \tilde{T}_{P_{2,2}}\left(E_{+, 1}\right) \mid \theta, t \in \boldsymbol{R}\right\}$. Then ω_{23}, ω_{14} form a pseudoorthonormal basis of the tangent plane of S^{\perp} at $E_{+, 1}$. Let $\omega_{i j}^{\prime \prime}$ be vector fields along S^{\perp} given by $\omega_{i j}^{\prime \prime}=\tilde{T}_{P_{2,1}} \circ \tilde{T}_{P_{2,2}}\left(\omega_{i j}\right)$. Then we obtain

$$
\begin{align*}
& \hat{\nabla}_{\omega_{23}} \omega_{23}^{\prime \prime}=-\hat{\nabla}_{\omega_{14}} \omega_{14}^{\prime \prime}=-\frac{1}{\sqrt{2}}\left(\omega_{12}-\omega_{34}\right), \\
& \hat{\nabla}_{\omega_{14}} \omega_{23}^{\prime \prime}=\hat{\nabla}_{\omega_{23}} \omega_{14}^{\prime \prime}=-\frac{1}{\sqrt{2}}\left(\omega_{12}+\omega_{34}\right) . \tag{2}
\end{align*}
$$

Let \tilde{R}^{+}, \hat{R} be the curvature tensors of $\tilde{\nabla}^{+}, \hat{\nabla}$ respectively. Then using (1), (2) and the equation of Gauss for \mathcal{L}_{+}:

$$
\begin{aligned}
0 & =\hat{h}(\hat{R}(X, Y) Z, W) \\
& =\hat{h}\left(\tilde{R}^{+}(X, Y) Z, W\right)+\hat{h}(\sigma(X, Z), \sigma(Y, W))-\hat{h}(\sigma(X, W), \sigma(Y, Z))
\end{aligned}
$$

(σ is the second fundamental form of \mathcal{L}_{+}in $\bigwedge^{2} E_{1}^{4}$), we obtain
Proposition 1 If we set

$$
A=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right],
$$

then the following hold:

$$
\begin{aligned}
& \tilde{R}^{+}\left(\omega_{13}, \omega_{42}\right)=0, \\
& \tilde{R}^{+}\left(\omega_{23}, \omega_{14}\right)=0 \\
& \left(\tilde{R}^{+}\left(\omega_{13}, \omega_{23}\right) \omega_{13} \tilde{R}^{+}\left(\omega_{13}, \omega_{23}\right) \omega_{42} \tilde{R}^{+}\left(\omega_{13}, \omega_{23}\right) \omega_{23} \tilde{R}^{+}\left(\omega_{13}, \omega_{23}\right) \omega_{14}\right) \\
& \quad=-\left(\tilde{R}^{+}\left(\omega_{42}, \omega_{14}\right) \omega_{13} \tilde{R}^{+}\left(\omega_{42}, \omega_{14}\right) \omega_{42} \tilde{R}^{+}\left(\omega_{42}, \omega_{14}\right) \omega_{23} \tilde{R}^{+}\left(\omega_{42}, \omega_{14}\right) \omega_{14}\right) \\
& \quad=\left(\omega_{13} \omega_{42} \omega_{23} \omega_{14}\right) A, \\
& \left(\tilde{R}^{+}\left(\omega_{13}, \omega_{14}\right) \omega_{13} \tilde{R}^{+}\left(\omega_{13}, \omega_{14}\right) \omega_{42} \tilde{R}^{+}\left(\omega_{13}, \omega_{14}\right) \omega_{23} \tilde{R}^{+}\left(\omega_{13}, \omega_{14}\right) \omega_{14}\right) \\
& \quad=\left(\tilde{R}^{+}\left(\omega_{42}, \omega_{23}\right) \omega_{13} \tilde{R}^{+}\left(\omega_{42}, \omega_{23}\right) \omega_{42} \tilde{R}^{+}\left(\omega_{42}, \omega_{23}\right) \omega_{23} \tilde{R}^{+}\left(\omega_{42}, \omega_{23}\right) \omega_{14}\right) \\
& \quad=\left(\omega_{13} \omega_{42} \omega_{23} \omega_{14}\right) B .
\end{aligned}
$$

From Proposition 1, we see that \mathcal{L}_{+}is not flat. Similarly, we see that \mathcal{L}_{-}is not flat.

3 Complex structures and paracomplex structures

Let $\mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$denote the tangent space of \mathcal{L}_{+}at a point $E_{+, 1}$. Let $\hat{\wedge}$ denote the exterior product of the exterior algebra of $\mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$. Then we denote by $\hat{\wedge}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$the 2 -fold exterior power of $\mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$. We set

$$
X_{1}:=\omega_{23}, \quad X_{2}:=\omega_{14}, \quad Y_{1}:=\omega_{13}, \quad Y_{2}:=\omega_{42}
$$

Then $\hat{\Lambda}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$is decomposed into

$$
\hat{\bigwedge}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)=\hat{\bigwedge}_{+}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right) \oplus \widehat{\bigwedge}_{-}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)
$$

where
(i) $\hat{\Lambda}_{+}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$is generated by

$$
\frac{1}{\sqrt{2}}\left(X_{1} \hat{\wedge} Y_{1}-X_{2} \hat{\wedge} Y_{2}\right), \frac{1}{\sqrt{2}}\left(X_{1} \hat{\wedge} X_{2}+Y_{2} \hat{\wedge} Y_{1}\right), \frac{1}{\sqrt{2}}\left(X_{1} \hat{\wedge} Y_{2}+Y_{1} \hat{\wedge} X_{2}\right),
$$

(ii) $\hat{\bigwedge}_{-}^{2} \mathcal{I}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$is generated by

$$
\frac{1}{\sqrt{2}}\left(X_{1} \hat{\wedge} Y_{1}+X_{2} \hat{\wedge} Y_{2}\right), \frac{1}{\sqrt{2}}\left(X_{1} \hat{\wedge} X_{2}-Y_{2} \hat{\wedge} Y_{1}\right), \frac{1}{\sqrt{2}}\left(X_{1} \hat{\wedge} Y_{2}-Y_{1} \hat{\wedge} X_{2}\right) .
$$

The stabilizer $G\left(E_{+, 1}\right)$ of $S O(3,1)$ at $E_{+, 1}$ is generated by $P_{1,1}, \pm P_{1,2}(\theta, t \in \boldsymbol{R})$. Then $G\left(E_{+, 1}\right)$ acts on $\mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$. Therefore $G\left(E_{+, 1}\right)$ acts on $\hat{\Lambda}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$.

We see that $(1 / \sqrt{2})\left(X_{1} \hat{\wedge} Y_{1}-X_{2} \hat{\wedge} Y_{2}\right)$ is an invariant element of $\hat{\Lambda}_{+}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$by the $G\left(E_{+, 1}\right)$-action, which is unique up to a constant, and $(1 / \sqrt{2})\left(X_{1} \hat{\wedge} Y_{1}-X_{2} \hat{\wedge} Y_{2}\right)$ defines an almost complex structure \mathcal{I}_{+}on \mathcal{L}_{+}by the $S O(3,1)$-action. Using (1) and (2), and referring to [1], we see that \mathcal{I}_{+}is parallel with respect to $\tilde{\nabla}^{+}$.

We see that $(1 / \sqrt{2})\left(X_{1} \hat{\wedge} Y_{2}-Y_{1} \hat{\wedge} X_{2}\right)$ is an invariant element of $\hat{\Lambda}_{-}^{2} \mathcal{T}_{E_{+, 1}}\left(\mathcal{L}_{+}\right)$by the $G\left(E_{+, 1}\right)$-action, which is unique up to a constant, and $-(1 / \sqrt{2})\left(X_{1} \hat{\wedge} Y_{2}-Y_{1} \hat{\wedge} X_{2}\right)$ defines an almost paracomplex structure \mathcal{J}_{+}on \mathcal{L}_{+}by the $S O\left(3, \tilde{\tilde{V}}^{\text {- }}\right.$-action. Using (1) and (2), and referring to [1], we see that \mathcal{J}_{+}is parallel with respect to $\tilde{\nabla}^{+}$.

We have similar discussions for \mathcal{L}_{-}and we obtain an almost complex structure \mathcal{I}_{-}and an almost paracomplex structure \mathcal{J}_{-}on \mathcal{L}_{-}, which are parallel with respect to the Levi-Civita connection $\tilde{\nabla}^{-}$of the metric of \mathcal{L}_{-}induced by \hat{h}. Hence we obtain

Proposition 2 For $\varepsilon \in\{+,-\}, \mathcal{L}_{\varepsilon}$ has just two almost complex structures $\pm \mathcal{I}_{\varepsilon}$ and just two almost paracomplex structures $\pm \mathcal{J}_{\varepsilon}$ by the $S O(3,1)$-action and these are parallel with respect to $\tilde{\nabla}^{\varepsilon}$.

We see that $\mathcal{I}_{ \pm}, \mathcal{J}_{ \pm}$satisfy (5), (6) in the proof of [2, Proposition 1] respectively. Therefore Theorems 1 and 2 have no problems.

Acknowledgements The author would like to express his cordial gratitude to the referee for helpful comments.

References

1. Ando, N.: Surfaces with zero mean curvature vector in neutral 4-manifolds. Differ. Geom. Appl. 72, 101647 (2020)
2. Ando, N.: Isotropicity of surfaces in Lorentzian 4-manifolds with zero mean curvature vector. Abh. Math. Semin. Univ. Hambg. 92, 105-123 (2022)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Vicente Cortés.

[^1]: Naoya Ando
 andonaoya@kumamoto-u.ac.jp
 1 Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

