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Abstract
We call a smooth irreducible projective curve a Castelnuovo curve if it admits a birational
map into the projective r-space such that the image curve has degree at least 2r+1 and the
maximum possible geometric genus (which one can calculate by a classical formula due to
Castelnuovo). It is well known that a Castelnuovo curve must lie on a Hirzebruch surface
(rational ruled surface). Conversely, making use of a result of W. Castryck and F. Cools
concerning the scrollar invariants of curves on Hirzebruch surfaces we show that curves on
Hirzebruch surfaces are Castelnuovo curves unless their genus becomes too small w.r.t. their
gonality. We analyze the situation more closely, and we calculate the number of moduli of
curves of fixed genus g and fixed gonality k lying on Hirzebruch surfaces, in terms of g and
k.
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1 Introduction

C always denotes a smooth irreducible projective curve of genus g > 1 defined over C,
and we let k ≥ 2 be its gonality. Among the curves C with fixed g and k those lying on a
Hirzebruch surface X (i.e. a rational ruled surface, [1], V, Sect. 2) form a distinguished class
for which these invariants are determined by the geometry of X . For g this is clear by the
adjunction formula; as for k, if f denotes a fibre of the natural projection X → P

1 we can
arrange [2] that the linear series | f |C | on C (cut out by the ruling | f | of X ) is a “gonality
pencil” g1k ofC . Associated with a gonality pencil g1k on (in fact, any curve)C are its scrollar
invariants e1 ≤ e2 ≤ ... ≤ ek−1 which determine the function dim|ng1k | (0 ≤ n ∈ Z); more
precisely, we have dim|(n + 1)g1k | = dim|ng1k | + i for ei−1 < n ≤ ei (i ∈ Z, 1 ≤ i < k;
e0 := −1), and |(n + 1)g1k | is non-special for n > ek−1. In particular, i = 1 yields e1 + 1 =
Max{0 ≤ n ∈ Z : dim|ng1k | = n}.
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The invention of the ei is apparently due to Christoffel [3]. (Concerning their name we
recall: For the canonicalmodel ofC inP

g−1 the divisors in g1k span secant spaces of dimension
k − 2 whose union constitutes a (k − 1)-dimensional rational normal scroll S of degree
g− (k − 1) in P

g−1, and then S ∼= P(£) where £ is the vector bundleO(e1)⊕ · · ·⊕O(ek−1)

of rank k − 1 over P
1.)

For C on a Hirzebruch surface X = Xe of invariant e Castryck and Cools [4, 10.2]
observed that the distribution of the scrollar invariants ei (1 ≤ i < k) of the chosen pencil g1k
on C is determined by the ambient space X : they are equidistantly distributed with distance
e, i.e. we have ei = e1 + (i − 1)e. Since e1 + · · · + ek−1 = g − (k − 1) holds it follows that

e1 + 1 = g

k − 1
− k − 2

2
e.

Hence e1 does not depend on the choice of the gonality pencil g1k on C . Consequently,
e1, ..., ek−1 and for k ≥ 3 also e are even invariants of the curve C ⊂ X .

For short, we call the latter formula for e1 the CC-formula.
In this paper we study “howmuch” the geometry of X may affect the geometry ofC ⊂ X .

Since for k = 3 this is already performed by Maroni’s theory of trigonal curves (e.g., [5],
Sect. 1) we may assume that k > 3. In the next section we apply the CC-formula for a simple
proof of the fact that C ⊂ X cannot be a general k-gonal curve of genus g. In Sect. 3 we see
that X induces, by sections, on C a certain finite set of very ample linear series (which in
Sect. 5 is shown to depend on C only). We use this set in Sect. 4 (cf. Theorem 4.1) to find in
it (and only in it) a series making C an extremal curve, in the sense of Arbarello et al. [6], III,
provided that g >> k, and we discuss related questions, then (results 4.2–4.6). In the final
Sect. 5 we ascertain the number of moduli of curves on Hirzebruch surfaces for fixed g and
k thereby making the result of Sect. 2 much more precise.

2 On general k-gonal curves

Proposition 2.1 For k > 3 a general k-gonal curve cannot lie on a Hirzebruch surface.

Proof According to Ballico [7], for a general k-gonal curve of genus g (so g ≥ 2k − 3,
by Meis’ bound for the gonality k) the scrollar invariant e1 of a pencil of degree k satisfies
e1 = [ g

k−1

] − 1, i.e. e1 attains its maximum possible value.
Claim: LetC be a curve of genus g and gonality k > 3 admitting a g1k with e1 = [ g

k−1

]−1.
Assume that C lies on a Hirzebruch surface Xe of invariant e. Then e = 0.

To prove the Claim we use the terminology of Hartshorne [1], V, Sect. 2. So let Pic(Xe) =
ZC0 ⊕ Z f where C0 ⊂ Xe is a section of self-intersection C2

0 = −e and f is a fibre of
the natural projection Xe → P

1 whence f 2 = 0 and C0 · f = 1. By [2] we may assume
that k = C · f ; then C ∼ kC0 + x f for some integer x > 0. Write g = m(k − 1) + ε

with m := [ g
k−1

]
(so ε ∈ Z such that 0 ≤ ε < k − 1); note that m = e1 + 1, by our

hypothesis. By the CC-formula we know that e1 + 1 = g
k−1 − k−2

2 e, and it follows that
(k−1)(k−2)e = 2 g−2(k−1)(e1+1) = 2 g−2(k−1)m = 2 g−2(g−ε) = 2ε ≤ 2(k−2),
i.e. e ≤ 2

k−1 < 1 for k > 3. Thus we obtain e = 0 (and since e is even, k − 1 divides g). The
Claim is proved.

For C as in the Claim we easily can calculate x : since X := Xe has the canonical
divisor KX ∼ −2C0 − (2 + e) f we know, by adjunction, that C has the canonical divisor
KC ∼ (KX + C)|C = ((k − 2)C0 + (x − 2 − e) f )|C . Hence 2 g − 2 = (KX + C) · C =
−(k − 2)ke+ k(x − 2− e) + x(k − 2) = 2(k − 1)x − (k − 1)ke− 2k. By the Claim, e = 0;
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so it follows that x = g
k−1 + 1 and that x = C0 · C . Hence the second ruling |C0| of X cuts

out on C a complete and base point free pencil g1x . Clearly, then, x ≥ k, and since C0 · f = 1
we have g1x 	= g1k .

We observe that k > 3 implies that k ≤ x = g
k−1 +1 <

g
2 +1. Since on the general curve

of genus g and gonality k <
g
2 + 1 its g1k is the only complete and base point free pencil of

degree strictly smaller than g
2 + 1 [8, 2.6] we see that the existence of our g1x 	= g1k on C

forces C to be a special curve w.r.t. moduli of k-gonal curves of genus g. 
�
Note that the proof makes the meaning of “general k-gonal curve” more transparent here:

For k > 3 a k-gonal curve having a g1k with maximal e1 but lacking a complete and base
point free pencil of degree e1 + 2 cannot exist on a Hirzebruch surface.

In Sect. 5 we clarify “how special” curves on Hirzebruch surfaces are w. r. t. moduli.

3 A criterion

We call a complete linear series |D| on a curve C very special if its index of speciality h1(D)

is at least 2, i.e. if the dual series |KC − D| of |D| contains a pencil. Inspired by [9], we note
Lemma 3.1 Let C be a curve of genus g and gonality k > 3. Choosing a pencil g1k on C the
following statements are equivalent:

(i) C is contained in a Hirzebruch surface X such that g1k = | f |C | for a fibre f of the natural
map X → P

1.
(ii) C has a complete, very special and very ample linear series G on which the g1k imposes

only two conditions (i.e. dim|G − g1k | = dim(G) − 2).

Proof (ii) implies (i) according to (the proof of) [10], 3.1 if dim(G) > 2. If dim(G) = 2 then
C is a smooth plane curve, k = deg(G) − 1; so |G − g1k | is a point P0 of C and P

2 functions
as the cone with vertex P0 over a line whence by blowing up P0 we obtain C (more precisely
the strict transform of C) as a smooth curve on the Hirzebruch surface X1 of invariant 1 [1,
V, 2.11.5].

To see that (i) implies (ii) let C ⊂ X , X = Xe a Hirzebruch surface of invariant e. As
in the proof of Proposition 2.1 we have C ∼ kC0 + x f for some x ∈ Z, and since C is
(smooth and) irreducible we have x ≥ ke and x > 0 [1, V, 2.18]. The linear series |C0 + e f |
on X is base point free of dimension e + 1, and for e > 0 the morphism it defines maps X
birationally onto a cone over a rational normal curve in P

e (by blowing downC0 to the vertex
of the cone, [1], V, 2.11.4). Let � := |(C0 + e f )|C |; we claim that dim(�) = e + 1, i.e. that
|C0 + e f | cuts out on C the complete and base point free linear series � being then a ge+1

x
which is (by the above) for e > 0 also a simple series on C . To compute dim(�) we note that
x − e ≥ (k − 1)e implies that the linear series |C − (C0 + e f )| = |(k − 1)C0 + (x − e) f |
contains a (smooth and) irreducible curve D [1, V, 2.18]; in particular, then, h0(X ,−D) = 0.
So the exact sequence

0 → OX (−D) → OX → OD → 0

implies that h1(X ,−D) = h0(D,OD) − h0(X ,OX ) = 0 since h1(X ,OX ) = 0 and
h0(D,OD) = 1 = h0(X ,OX ). Hence from the exact sequence

0 → OX (−D) → OX (C0 + e f ) → OC (C0 + e f ) → 0

we conclude that dim(�) + 1 = h0(C, (C0 + e f )|C ) = h0(X ,C0 + e f ) = e+ 2, as wanted.
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In the proof of Proposition 2.1weobserved already that 2g−2 = 2(k−1)x−(k−1)ke−2k.
Hence we have g = (k−1)(x−1− 1

2ke) and x = g
k−1 +1+ 1

2ke = ( g
k−1 −1− k−2

2 e
)+2+

(k−1)e = e1 +2+ (k−1)e, the latter by the CC-formula. (This formula for x will be useful
also later on.)Hencewe see that KX+C ∼ (k−2)C0+(x−2−e) f = (k−2)(C0+e f )+(x−
2−(k−1)e) f = (k−2)(C0+e f )+e1 f whence |KC | = |(KX +C)|C | = |(k−2)�+e1g1k |
since | f |C | = g1k . In particular, this implies that |�+e1g1k | = |KC −(k−3)�| is very special
since we assume k > 3.

Claim: dim|(k − 3)�| = dim|(k − 3)(C0 + e f )| = 1
2 (k − 3)((k − 2)e + 2).

In fact, as before for � we obtain the first of these two equalities. Concerning the second
one the theorem of Riemann–Roch for X shows that for an integer λ ≥ 0 we have

h0(λ(C0 + e f )) = 1
2λ(C0 + e f )(λ(C0 + e f ) − KX ) + 1 + h1(λ(C0 + e f )) = 1

2λ((λ +
1)e + 2) + 1 + h1(λ(C0 + e f ))
which for λ = k − 3 gives us the desired result provided that h1(λ(C0 + e f )) = 0. Now, by
Serre-duality andRamanujam’s vanishing theorem (e.g., [11], 3.5)we have h1(λ(C0+e f )) =
h1(KX−λ(C0+e f )) = h1(−((λ+2)C0+(λe+e+2) f )) = 0 since |(λ+2)C0+(λe+e+2) f |
contains a numerically 2-connected divisor: in fact, |(λ+ 1)C0 + (λe+ e+ 2) f | contains an
irreducible curve E since λe+e+2 > (λ+1)e [1, V, 2.18]; so (λ+2)C0 + (λe+e+2) f ∼
C0 + E with C0 · E = 2. This proves the Claim. (And, by the way, more generally we
can prove this way that any irreducible curve D 	= C0 on X is non-special, i.e. satisfies
h1(D) = 0.)

As a consequence of the Claim we obtain that dim|� + e1g1k | = dim|KC − (k − 3)�| =
g − 1 − (k − 3)x + k−3

2 ((k − 2)e + 2) = g − 1 − (k − 3)
(
x − k−2

2 e − 1
)
, and since we

observed that x = g
k−1 + 1+ 1

2ke we see that dim|� + e1g1k | = g− 1− (k − 3)
( g
k−1 + e

) =
2 g
k−1 − 1 − (k − 3)e where, by the CC-formula, 2 g

k−1 = 2e1 + 2 + (k − 2)e. Hence we find
that dim|� + e1g1k | = e+ 1+ 2e1. Since |C0 + (e+ i) f | is very ample for i > 0 [1, V, 2.17]
so is |� + ig1k |, and this implies that dim|� + ig1k | ≥ dim|� + (i − 1)g1k | + 2 (i > 0). From
dim|� + e1g1k | = e+ 1+ 2e1 it follows that dim|� + ig1k | = dim(�)+ 2i for i = 0, 1, ..., e1.
In particular, for e1 > 0 the very special seriesG := |�+g1k | onC is very ample and satisfies
dim|G − g1k | = dim(G) − 2.

It remains the case e1 = 0. In that case, recalling that ke ≤ x = e1 + 2 + (k − 1)e we
obtain 0 < e ≤ e1 + 2 = 2, and since 0 = e1 = g

k−1 − 1 − k−2
2 e we have x = k + 1,

� = g2k+1, g = 1
2 (k − 1)k for e = 1, resp. x = 2k, � = g32k , g = (k − 1)2 for e = 2. Since

e > 0 the series � is simple and therefore here, according to Castelnuovo’s genus bound
([12], or [6], III, Sect. 2), even very ample; so C is a smooth plane curve of degree k + 1 and
dim|� − g1k | = 0, resp. � = |2g1k | embeds C in a quadric cone in P

3 and |� − g1k | = g1k . 
�
We add some comments.

Remark (i) The genus of C in the Lemma is rather big for its gonality; in fact, we have
g ≥ (k−1)k

2 , and equality holds if and only if C is isomorphic to a smooth plane curve. To
see this we use the series � = ge+1

x from the proof of the Lemma. We know that x ≥ ke
and x ≥ k, and 2g = (k − 1)(2x − 2 − ke). Hence we obtain g ≥ (k − 1)2 for e 	= 1, and
then g >

(k−1)k
2 (since k > 2). For e = 1 we have � = g2x whence x > k which implies

then that g ≥ (k−1)k
2 . Let g = (k−1)k

2 . Then e = 1, (k − 1)k = 2 g = (k − 1)(2x − 2 − k),
i.e. x = k + 1, and so � = g2k+1 must be very ample (i.e. C a smooth plane curve) since
otherwise C would have a g1k−1. (Conversely, a smooth plane curve of degree d ≥ 4 satisfies

k = d − 1, g = (d−2)(d−1)
2 = (k−1)k

2 , and we observed already that it lies on X1; so
the CC-formula implies that e1 = 0 and that any Hirzebruch surface containing it must
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have invariant e = 1.) (ii) Any complete and very ample linear series grd on a k-gonal
curve C satisfying dim|grd − g1k | = r − 2 maps C birationally onto a (linearly normal)
smooth curve on a rational normal scroll (maybe, a cone) of degree r − 1 in P

r . On the
related Hirzebruch surface Xe the grd is cut out on C ⊂ Xe by |C0 + n f | for some n ≥ e
such that r − 1 = 2n − e ( [1], V, 2.17, 2.19). Hence we have grd = |� + ig1k | with
i = n − e ≥ 0, and so dim|� + ig1k | = r = 2n − e + 1 = e + 1 + 2i = dim(�) + 2i .
In the proof of the Lemma we obtained the basic relation dim|� + ig1k | = dim(�) + 2i
(i ≥ 0) for 0 ≤ i ≤ e1; in fact, it is still true for i = e1 + 1 since it can be shown that
h0(KC −(�+(e1+1)g1k )) = h0(((k−3)(C0+e f )− f )|C ) = h0((k−3)(C0+e f )− f )) =
h0((k − 3)C0 + ((k − 3)e − 1) f )) = h0((k − 4)C0 + ((k − 3)e − 1) f )) = (k−3)(k−2)

2 e.
(Observe, however, that for e = 0 the series |� + (e1 + 1)g1k | is non-special.)

Already for i = e1+2 this dimension relation fails. For e = 0 this simply follows from the
Riemann–Roch theorem for C : more generally, since � = ge+1

x with x = e1 + 2+ (k − 1)e
we compute dim|�+(e1+ j)g1k | = dim|KC −((k−3)�− jg1k )| = g−1−((k−3)x− jk)+
dim|(k−3)�− jg1k | ≥ g−2− ((k−3)x − jk) = g−2− (k−3)(e1 +2+ (k−1)e)+ jk =
g−2−(k−1)(e1+2)+2(e1+2)− (k−3)(k−1)e+ jk = g−2−(k−1)

( g
k−1 +1− k−2

2 e
)+

2(e1+2)−(k−3)(k−1)e+ jk =−k−1+ (k−2)(k−1)
2 e+2(e1+2)−(k−3)(k−1)e+ jk = ( j−

1)(k−2)+2(e1+ j)+1− k−1
2 (k−4)e =dim(�)+2(e1+ j)−e+( j−1)(k−2)− k−1

2 (k−4)e =
dim(�)+2(e1+ j)+( j−1)(k−2)− 1

2 (k−3)(k−2)e; hencewe obtain dim|�+(e1+ j)g1k | >

dim(�) + 2(e1 + j) if e <
2 j−2
k−3 .

Furthermore, since |� + ig1k | = |(C0 + (e + i) f )|C | and dim|C0 + (e + i) f | = 2(e +
i) − e + 1 = e + 1 + 2i for i ≥ 0 we note that the failure of our dimension relation just
means that the series cut out on C by |C0 + (e + i) f | is incomplete.

4 Reduction to Castelnuovo curves

Now we return to the description of k-gonal curves on a Hirzebruch surface. To begin with,
we recall that, according to Arbarello et al. [6], an integral and non-degenerate curve of
degree d > 2r in P

r (r ≥ 2) is called an extremal curve in P
r if its geometric genus

attains its maximum possible value, expressed by a well-known genus bound π(d, r) due to
Castelnuovo ([6, 12], III, Sect. 2; [13], 3.7). An extremal curve in P

r is smooth and linearly
normal (even projectively normal), and for r > 2 it lies on a scroll of degree r − 1 in P

r

(hence on a Hirzebruch surface Xe of invariant e < r ) unless r = 5 in which case it is also
possible that it lies on a Veronese surface in P

5 and is then isomorphic to a smooth plane
curve of degree d

2 which we can embed into X1. And an extremal curve in P
2 (r = 2) is a

smooth plane curve whence it lies on X1.
We call a curve a Castelnuovo curve if it is an extremal curve in P

r for some integer
r ≥ 2. So we may rephrase the above by simply saying that a Castelnuovo curve lies on a
Hirzebruch surface.

A trigonal curveC lies always on a Hirzebruch surface, and if g ≥ 6 it is easy to see that it
is a Castelnuovo curve via the series |KC −g13 | (in fact, via |KC −ng13 | for n = 1, ...,

[ g−3
3

]
).

Theorem 4.1 Let C be a curve of gonality k ≥ 4 and genus g >
(k−2)(k−1)2

2 which lies on a
Hirzebruch surface. Then C is, in a definite way, a Castelnuovo curve.

Before the proof we introduce resp. recall some terminology. Let C = Ce ⊂ Xe, C ∼
kC0+x f , g1k = | f |C |,� = |(C0+e f )|C | = |eg1k +C0|C | (with h0(C,C0|C ) = h0(X ,C0) =
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1 for e > 0 since C2
0 = −e < 0), and

We = We(g
1
k ) := {|� + ig1k | : i = 0, 1, ..., e1}

be the data considered in the proof of Lemma 3.1. We observed that the members of We

are very special and very ample series ge+1+2i
x+ik for 0 < i ≤ e1 (and for e1 = 0), and

� = ge+1
x is base point free and for e > 0 also simple. Moreover, by construction the series

in We are primitive, i.e. also their dual series are base point free. To prove the Theorem we
constructively specify a grd in We such that C becomes, via this series, an extremal curve of
degree d in P

r . For short, we call a series making C an extremal curve an extremal series on
C .

Proof For fixed k and g but increasing ewe considerWe subject to the conditions 0 ≤ e1(e) =
g

k−1 − 1 − k−2
2 e ∈ Z (the CC-formula) and x(e) = e1(e) + 2 + (k − 1)e (as noticed in the

proof of the Lemma). We have e1(e) − e1(e + 2) = k − 2 and x(e + 2) − x(e) = k. Hence
x(e+2i) = x(e)+ ik and so |ge+1

x(e) + ig1k | = ge+1+2i
x(e)+ik = g(e+2i)+1

x(e+2i) for 0 ≤ i ≤ e1(e), i.e. the
(i +1)-th member ofWe has the same degree and dimension as the first member ofWe+2i (as
long as e1(e+ 2i) ≥ 0). It follows thatWe+2i is “numerically contained” in We, i.e. to every
grd ∈ We+2i (onCe+2i ) we find a grd ∈ We (onCe). Formally we can proceed like this until the

last (i.e. the smallest non-negative) value e(0)
1 of e1 is reached. Since e1(e)−e1(e+1) = k−2

2

we have e(0)
1 ≤ k−4

2 for even k resp. e(0)
1 ≤ k − 3 for odd k; for even k this implies that

e(1)
1 ≤ k − 3 if e(1)

1 is the last but one value of e1 in this proceeding, and for odd k we see
that all e’s must have the same parity.

Now, let g >
(k−2)(k−1)2

2 and e be defined by e1(e) = e(0)
1 . (So we choose e to be maximal

for leaving e1(e) non-negative.) Since e
(0)
1 ≤ k − 3 and e1(e) + 1 = g

k−1 − k−2
2 e it follows

that e = 2
k−2

( g
k−1 − (e(0)

1 + 1)
)

> k − 3 ≥ e(0)
1 ; in particular we have e ≥ 2 (since k ≥ 4).

Furthermore, we see that x(e) = e1(e)+2+ (k −1)e ≥ 2+ (k −1)e > 2(e+1). Following
[12] we write x(e) = m · e + q for suitable q = 2, 3, ..., e + 1. Then m = k − 1 and
q = e(0)

1 + 2 ≤ e+ 1. Applying [12], 3.3, Castelnuovo’s genus bound w.r.t. the simple series
ge+1
x(e) (the first member of We, for our special choice for e) is the number π(x(e), e + 1) :=

m(m−1) e2 +m(q−1) = (k−1)((k−2) e2 +e(0)
1 +1) = (k−1)((k−2) e2 + g

k−1 − k−2
2 e) = g.

Hence the ge+1
x(e) is extremal, and we observed before that such a series occurs in all We′ with

e′ ≤ e, e′ ≡ e mod 2. If k is odd then e′ ≡ e mod 2 holds and so all We′ contain an extremal
series. For even k we also consider e to be defined by e1(e) = e(1)

1 ; since e(1)
1 ≤ k−3 for even

k we can repeat the above argument (with e(1)
1 instead of e(0)

1 ), and we see that the simple

series ge+1
x(e), for e with e1(e) = e(1)

1 , is also extremal, and such a series occurs in those We′
left out before. Consequently, all We′ contain an extremal series, regardless if k is odd or
even.

However, there is still a word to be said. Making e run until e1(e) becomes negative
(as we did) does not completely fit into the situation since we have (by [1], V, 2.18) that
ke ≤ x(e) = e1 + 2+ (k − 1)e, i.e. e ≤ e1(e) + 2; so the We become of only computational
appearance if e grows beyond e1(e)+2 (i.e. if k

2e >
g

k−1+1). But since the related series ge+1
x(e)

just considered above nevertheless are numerically contained in "honest" We′ for smaller e′
such series exist and are simple whence our conclusion concerning their extremality persists.
(That is, our procedure just makes the calculation w.r.t. Castelnuovo’s genus bound more
amenable.) 
�
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The genus bound in Theorem 4.1 is not the best possible; there may exist extremal series
on C which we did not consider in the proof of the Theorem. For instance, for k = 4 we
need no bound at all (as is also seen from [9]), for k = 5 we must exclude only g = 14
and for k = 6 only g = 20, g = 25 and g = 35. In fact, a refinement of the discussion in

the proof of Theorem 4.1 shows that we may replace the genus bound g >
(k−2)(k−1)2

2 by

g ≥ (k−2)2(k−1)
2 . (Only in the cases g = (k−2)(k−1)2

2 and g = (k−2)2(k−1)
2 the choice of the

series made in the proof of Theorem 4.1 has partly to be modified, by adding the g1k once,
then.) We omit the related details since the new bound is still of degree 3 in k. Instead, we
explain these facts by two examples.

Example 1 (k = 6, g = (k−2)2(k−1)
2 = 40): let C be a curve of gonality k = 6 and genus

g = 40 on a Hirzebruch surface Xe. Again using the formulae e1 = g
k−1 − 1 − k−2

2 e and
x = e1+2+(k−1)ewe obtain e1 = 7−2e and so e ≤ 3 and x = (7−2e)+2+5e = 9+3e.
Hence using the terminology of the proof of Theorem 4.1 we have W0 = {g19, g315, g521, ...},
W1 = {g212, g418, ...}, W2 = {g315, g521, ...} and W3 = {g418, g624}; so e(0)

1 = 1 (e = 3), e(1)
1 = 3

(e = 2), and the g4x(3) = g418 is extremal but the g3x(2) = g315 is not. (The g315 ∈ W0 is very

ample and moves C = C0 into a smooth quadric in P
3 thus being of type (6, 9) thereon

whereas the g315 ∈ W2 is not very ample moving C = C2 in a quadric cone whose vertex
becomes a triple point of the image curve.) However, inW2 the second series g521 = |g315+g16 |
turns out to be extremal. Thus C is (for any e) a Castelnuovo curve.

Example 2 (k = 5, g = 14): let C be a 5-gonal curve of genus g = 14 on a Hirzebruch
surface Xe. Then e1 = g

4 − 1 − 3
2e whence e = 1 = e1 and x = e1 + 2 + 4e = 7; so

W1 = {g27, g412}. In particular, C is birational to a plane septic with a single double point (an
ordinary node or cusp).

Conversely, let C be the normalization of an integral plane septic with a single double
point. Then C has genus 14 and a base point free g15 (obtained by this double point), and
if C would have gonality k < 5 then C would have genus g ≤ (5 − 1)(k − 1) ≤ 12, a
contradiction. The series |g27 +g15 | is a gr12 with r ≥ 4, and if r > 4 thenC has Clifford index
c ≤ 12 − 2r ≤ 2, a contradiction. Since the g27 is simple so is the g412 obtained. The g

4
12 is

not extremal but, according to its construction (or by Harris [13], 3.15 i), it moves C into
a cubic scroll in P

4. Since C is 5-gonal this scroll cannot be a cone; hence it is isomorphic
to X1, and the image curve C ′ ∼ 5C0 + 7 f of C upon it has arithmetic genus 14 whence
it is isomorphic to C . (Writing C ′ ∼ 7(C0 + f ) − 2C0 we observe that C ′ likewise is the
blowing-up of our plane septic at its singularity, [1], V, 4.8.1.)

Some elementary calculation concerning Castelnuovo’s genus bound shows that a Castel-
nuovo curve of genus 14 must be trigonal. Consequently, if C is birational to a plane septic
with a single double point then it is not a Castelnuovo curve though it lies on a Hirzebruch
surface.

In the exceptional cases g = 20, 25, 35 for k = 6 mentioned above there exist 6-gonal
curves on Hirzebruch surfaces which are not Castelnuovo curves: for g = 20 always; for
g = 25 iff e = 1, and for g = 35 iff e 	= 1. This follows easily from the following Proposition

implying that extremal series on Ce cannot be found outside We unless g = (k−1)k
2 (a fact

already hinted at by remark (ii) in Sect. 3).

Proposition 4.2 Let C be a curve of gonality k ≥ 4 which is not a smooth plane curve.
Then an extremal series on C (thus moving C in a Hirzebruch surface Xe such that

k−2
2 e =

g
k−1 − (e1 + 1)) is one of the e1 + 1 series in We.
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Proof Let grd on C be extremal, and assume that C is not a smooth plane curve of degree
k + 1 ≥ 5. Then r ≥ 3, and C lies via this series on a scroll S of degree r − 1 in P

r , hence
on a Hirzebruch surface Xe such that for some section H ∼ C0 + n f (n ≥ e) the series
|H | on Xe maps Xe birationally on S (even S ∼= Xe for n > e); so H corresponds to a
hyperplane section of S and |H |C | = grd . In particular, r − 1 = deg(S) = H2 = 2n − e and
d = C · H = (kC0 + x f ) · (C0 + n f ) = x + k(n − e).

Assume that grd /∈ We.
Since grd = |(C0 + n f )|C | = |((C0 + e f ) + (n − e) f )|C | = |� + (n − e)g1k | we see

that (according to the definition of We) n − e > e1; then the scroll S is smooth, and we have
n ≤ n + e1 < n + (n − e) = 2n − e = r − 1. There is also a lower bound for n: The
(complete) grd has Clifford index cliff(grd) = d − 2r = (x + k(n − e)) − 2(2n − e + 1) =
x+(k−4)n−(k−2)e−2 = (e1+2+(k−1)e)+(k−4)n−(k−2)e−2 = e1+e+(k−4)n <

n + (k − 4)n = (k − 3)n, i.e. we have n > 1
k−3 cliff(g

r
d).

Since H · f = 1 we may write C ∼ kH +β f (as, in fact, is done in [6], p. 121, or [13], p.
91; note that β = x − kn may be negative); then d = C · H = k(r − 1) + β, and (as is noted
loc. cit.) the grd is extremal iff−(r−2) ≤ β ≤ 1. Since our grd is extremal we have β ≥ 2−r ,

and so we obtain n > d−2r
k−3 = k(r−1)+β−2r

k−3 = r − 1 + r−3+β
k−3 ≥ r − 1 − 1

k−3 ≥ r − 2, a
contradiction.

If, however, C is a smooth plane curve of degree d = k + 1 ≥ 5 then e = 1, e1 = 0,
W1 = {g2d}, and |2g2d | = g52d /∈ W1 is extremal (moving C in a Veronese surface) unless
k = 4 in which case |2g2d | = g510 = |KC |, and according to our definition the canonical
series is not considered as being extremal. 
�

The following Corollary generalizes Example 2.

Corollary 4.3 A Hirzebruch surface of invariant 1 contains for every integer k ≥ 5 a k-gonal
curve which is not a Castelnuovo curve.

Proof The linear series |kC0 + (k + 2) f | = |(k + 2)(C0 + f ) − 2C0| on X1 contains for
k ≥ 2 a smooth irreducible curve C ([1], V, 2.18; C is the blowing-up of an integral plane
curve of degree d = k+2 at its single double point, an ordinary node or cusp ([1], V, 4.8.1)).
Hence C is k-gonal [2, Corollary 1] of genus g = (k − 1)

(
(k + 2) − 1 − 1

2ke
) = (d−3)d

2 =
(d−2)(d−1)

2 − 1 > 1, and e1 = g
k−1 − 1− k−2

2 e = d
2 − 1− d−4

2 = 1. For k ≥ 4 we thus have

W1 = {g2d , g42d−2}. One easily computes that π(2d − 2, 4) ≥ (d−3)(2d−3)
3 >

(d−3)d
2 = g

for d > 6, and by Proposition 4.2 this suffices to conclude that C is for k ≥ 5 never a
Castelnuovo curve. 
�

Note that g = (k−1)k
2 + (k − 1) in Corollary 4.3; this is near to the lower bound for g

(cf. the Remark (i) in Sect. 3). One observes (by combining [6], III, Theorem 2.5 and [2],
Corollary 1) that an extremal curve of degree d in P

r has gonality k satisfying k = m0 + 1
resp. m0 ≤ k ≤ m0 + 1 with m0 := [ d−1

r−1

]
if (r − 1) � (d − 1) resp. (r − 1) | (d − 1);

hence computing m0 for grd in We it is easy to check that for k ≥ 5 there always is another

generalization of Example 2, of genus g near to the bound (k−2)2(k−1)
2 stated directly after

Theorem 4.1: Namely we have that a k-gonal curve of genus g = (k−2)2(k−1)
2 − (k − 1) on a

Hirzebruch surface of invariant e = k − 4 (then e1 = e ≥ 1) cannot be a Castelnuovo curve.

In particular, it follows that for even k the lower genus-bound (k−2)2(k−1)
2 obtained for the

validity of Theorem 4.1 is the best possible. To be more precise: g = (k−1)k
2 + (k − 1) resp.

g = (k−2)2(k−1)
2 − (k − 1) is the smallest resp. greatest genus of a k-gonal non-Castelnuovo
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curve on a Hirzebruch surface, for k ≥ 5. (For even k we just have seen this. For odd k one

still has to exclude the cases g = (k−1)k
2 + k−1

2 and g = (k−2)2(k−1)
2 − k−1

2 ; in fact, in the
first case we have e = 0, � = g1k+3

2
which is impossible since k+3

2 < k, and in the second

case � = ge+1
x for e satisfying e1(e) = e(0)

1 is an extremal gk−2
(k−3)(2k−1)

2 +1
.)

To apply these results we note the

Example 3 We inspect the curves C of genus g = 3p for a prime number p > 2 which lie on
a Hirzebruch surface Xe and have gonality k > 3. Since g = (k−1)

(
x−1− 1

2ke
)
we clearly

have (k−1) | 2 g = 6p, and by the Remark (i) in Sect. 3 we know that (k−1)k ≤ 2g = 6p.
Thus it follows that k = 4 or k = 7 unless p = 5 in which case C is quadrigonal or a
smooth plane septic. By the Theorem, C is a Castelnuovo curve for k = 4, and if k = 7 it is
a Castelnuovo curve for all primes p ≥ 25. Let k = 7; then g ≥ 21, i.e. p ≥ 7. Checking
the few prime numbers between 7 and 23 it turns out (using Proposition 4.2) that C is a
Castelnuovo curve if and only if p ∈ {7, 17, 19}. Consequently, C is always a Castelnuovo
curve unless we have k = 7 and g = 33, 39, 69.

Having dealt with the question if C ⊂ Xe actually has extremal series we conclude
this section by clarifying how to find them all (in particular, how many there are, if any). By
Proposition 4.2 they lie inWe (unless g = (k−1)k

2 ), andwewill show that they “stick together”
therein, i.e. are consecutive members in We. More precisely, we supplement Proposition 4.2
by the

Lemma 4.4 A series in We of dimension e′ + 1 (then e′ ≡ e mod 2) is extremal if and only if
2 g

(k−1)k ≤ e′ ≤ 2 g
(k−2)(k−1) .

Proof We recall (from the proof of Theorem 4.1) that the series in We of dimension e′ + 1
has degree x(e′) = e1(e′) + 2 + (k − 1)e′. By the CC-formula, e1(e′) + 1 = g

k−1 − k−2
2 e′;

hence we see that 2 g
(k−1)k ≤ e′ ≤ 2 g

(k−2)(k−1) just means e′ ≥ e1(e′) + 1 ≥ 0.
Assume that e′ ≥ e1(e′) + 1 ≥ 0. If e′ = 0 it follows that e1(e′) + 1 = 0 and, then,

x(e′) = 1, a contradiction. Hence e′ > 0, and so our ge
′+1
x(e′) ∈ We is simple. As in the proof of

Theorem 4.1 we follow [12] and write x(e′) = me′ + q for some integer q = 2, ..., e′ + 1. If
e1(e′) ≥ 0 we thus have m = k − 1, q = e1(e′) + 2, and as in the proof of Theorem 4.1 this
implies that ge

′+1
x(e′) is extremal. Let e1(e′) = −1. Then x(e′) = 1+(k−1)e′ = (k−2)e′+e′+1

whence m = k − 2, q = e′ + 1, and by [12], 3.3 we obtain π(x(e′), e′ + 1) = m(m − 1) e
′
2 +

m(q − 1) = (k − 2)((k − 3) e
′
2 + e′) = (k−2)(k−1)

2 e′. But −1 = e1(e′) = g
k−1 − 1 − k−2

2 e′

shows that π(x(e′), e′ + 1) = g again, and so our ge
′+1
x(e′) is extremal in this case, too.

Conversely, assume that our ge
′+1
x(e′) is extremal. Then e′ > 0, and we observed earlier that

m0 := [ x(e′)−1
e′

]
is k − 1 if e′

� (x(e′) − 1) resp. is k − 1 or k if e′ | (x(e′) − 1). Since

x(e′) − 1 = (k − 1)e′ + e1(e′) + 1 it follows that we must have 0 ≤ e1(e′)+1
e′ < 1 in the case

m0 = k − 1, i.e. 0 ≤ e1(e′) + 1 < e′. In the case m0 = k we know that e′ | (x(e′) − 1)
whence k = [ x(e′)−1

e′
] = x(e′)−1

e′ = k − 1 + e1(e′)+1
e′ and so e1(e′) + 1 = e′ > 0. 
�

Example 4 Let g = 60, k = 5, and assume that C lies on Xe. Then e ∈ {0, 2, 4, 6} (by the
CC-formula, and since e ≤ e1(e) + 2), and C has always precisely three extremal series,
namely g731 (e

′ = 6 in Lemma 4.4), g936 (e
′ = 8; this is the series coming from Theorem 4.1)

and g1141 (e′ = 10).
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Conversely, an extremal curve of degree 31 in P
7 is a 5- or 6-gonal curve of genus 60. If

it is 5-gonal it has (besides the g731) exactly two further extremal series, of degree 36 resp. 41
(as we have seen just before). If it is 6-gonal (then e ∈ {0, 2, 4}) it has always precisely one
further extremal series, namely a g525 (the series alluded to in Theorem 4.1).

Corollary 4.5 Let C ⊂ Xe, k ≥ 4 and g 	= (k−1)k
2 . Then there is an extremal series of

dimension e′ + 1 on C if and only if e′ in an integer between 2g
(k−1)k and 2 g

(k−2)(k−1) satisfying
e′ ≡ e mod 2.

Proof By Proposition 4.2 and Lemma 4.4 it suffices to show that for C ⊂ Xe any integer e′
(if any) in the closed intervall

[ 2g
(k−1)k ,

2g
(k−2)(k−1)

]
satisfies e ≤ e′ ≤ e+ 2e1, i.e. e′ + 1 is in

the range of the dimensions of the series in We. In fact, since we always have e ≤ e1 + 2 =
g

k−1 + 1 − k−2
2 e it follows that e ≤ 2 g

(k−1)k + 2
k ≤ e′ + 2

k < e′ + 1, i.e. e′ ≥ e. And since
g

k−1 = e1+1+ k−2
2 ewe see that e′ ≤ 2 g

(k−2)(k−1) = 2
k−2 · g

k−1 = 2e1+2
k−2 +e; so if 2e1+2

k−2 ≤ 2e1
we obtain e′ ≤ e+ 2e1, as wanted. But

2e1+2
k−2 ≤ 2e1 means e1 ≥ 1

k−3 , and for e1 > 0 we are
done. So let e1 = 0. Then we are in the situation discussed at the end of the proof of Lemma
3.1, and so we have e = 2 and g = (k − 1)2. It follows that e′ = 2 = e unless k = 4 (and
e′ = 3). But for e1 = 0, e = 2, k = 4, g = 9 we have W2 = {g38}, and by Proposition 4.2
the claim of our Corollary is obvious in this case. 
�

Example 5 Let C ⊂ Xe be of odd gonality k ≥ 5 and genus g = (k−2)2(k−1)
2 − (k − 1). For

that genus, the only integer e′ between 2 g
(k−1)k = k − 4+ 2

k and 2 g
(k−2)(k−1) = k − 2− 2

k−2 is
k − 3. Since the CC-formula shows that for odd k also e is odd it follows that e′ 	≡ e mod 2,
and so C cannot be a Castelnuovo curve.

More generally, by the CC-formula we noticed (in the proof of Theorem 4.1) that for
curves of fixed odd gonality and fixed genus which lie on Hirzebruch surfaces the invariants
of these surfaces all have the same parity. Hence it follows that the answer to the question if
such a curve is a Castelnuovo curve does not depend on the specific value of the invariant of
the Hirzebruch surface containing it; so either all or none of these curves are Castelnuovo
curves. Conversely we note

Corollary 4.6 If no curve C of fixed gonality k ≥ 4 and fixed genus g ≥ (k−3)(k−1)k
4 lying on

some Hirzebruch surface is a Castelnuovo curve then k is odd.

Proof We may assume that k ≥ 5. Recall that for C ⊂ Xe the number n := 2g
k−1 is an

integer. For the integral part
[ n
k−2

]
of n

k−2 we have
[ n
k−2

] = n−δ
k−2 ≥ n−(k−3)

k−2 for some integer

0 ≤ δ ≤ k − 3; thus if n−k+3
k−2 ≥ n

k , i.e. if n ≥ (k−3)k
2 , then

[ n
k−2

] ≥ n
k , and so there is an

integer e′ between 2 g
(k−1)k = n

k and 2 g
(k−2)(k−1) = n

k−2 . Clearly, n ≥ (k−3)k
2 is just our genus

bound g ≥ (k−3)(k−1)k
4 .

Assume that k is even. Thenwe can find such a curveC on aHirzebruch surface Xe0 whose
invariant e0 satisfies e0 ≡ e′ mod 2. (In fact, g ≥ (k−3)(k−1)k

4 implies that g ≥ (k − 1)2 for

k ≥ 6, and since we noticed in the proof of Corollary 4.5 that e ≤ 2 g
(k−1)k + 2

k and since k is

even it follows that any integer between 0 and 2
k

( g
k−1 + 1

) ≥ 2 is possible for e. So we can
choose e0 = 0 resp. e0 = 1 if e′ is even resp. odd.) Hence according to Corollary 4.5 Ce0
(on Xe0 ) is a Castelnuovo curve. 
�
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5 Moduli

Theorem 4.1 implies the

Corollary 5.1 If a curve C of gonality k ≥ 3 and genus g >
(k−2)(k−1)2

2 lies on a (not
assigned) Hirzebruch surface then it is represented by a point in a locus of codimension
k−3
k−1g in the moduli space Mg(k) of k-gonal curves of genus g.

Proof We may assume that k ≥ 4. The extremal series on C used in the proof of Theorem
4.1 are ge+1

x(e) with e > e1(e), for e ≥ 2 such that e1(e) = e(0)
1 (resp. also e1(e) = e(1)

1 in
the case of even k). Again writing (as we did there) x(e) = me + q with m = k − 1 and
2 ≤ q = e1(e) + 2 ≤ e+ 1 we apply the last formula in [12], section 6, counting the moduli
of extremal curves. Here this number is

D = g + m(e + 2) + 2q − (e + 1) − 4 = g + (k − 1)(e + 2) + 2(e1(e) + 2) − e − 5 =
g+(k−1)(e+2)+2

( g
k−1 +1− k−2

2 e
)−e−5 = g+ 2 g

k−1 +2k−5 = (2 g+2k−5)− k−3
k−1g,

and since dim(Mg(k)) = 2g+ 2k − 5 we are done. (In the case q = e+ 1 ≥ 4 there are also
extremal curves of degree x(e) in P

e+1 having gonality m + 2 = k + 1. But in the Hilbert
scheme of extremal curves of degree x(e) in P

e+1 they only constitute a lower dimensional
irreducible component, cf. [13], 3.12 ii).) 
�

Our moduli count for Castelnuovo curves can be generalized, which is useful for comput-
ing the number of moduli in the low genus cases left out in Corollary 5.1. To begin with, we
recall the (omitted) count for an extremal curveC inP

2, i.e for a smooth plane curve of degree
d > 4: it has gonality k = d−1, genus g = (k−1)k

2 , and since it has merely one g2d it depends
on only (h0(P2,C) − 1) − dim(PGL3(C)) = 1

2d(d + 3) − 8 = 1
2 (k + 1)(k + 4) − 8 =

1
2k(k+1)+2k−6 = (k+1) g

k−1+2k−6 = (2 g− k−3
k−1g)+2k−6 = dim(Mg(k))−

( k−3
k−1g+1

)

moduli.
Having dealt with the case of smallest genus g = (k−1)k

2 for C ⊂ X we turn to curves of
bigger genus. First we prove an auxiliary general result, namely the

Lemma 5.2 For an integer k ≥ 3 let g1k be a complete and base point free pencil and
L1, ..., Lk−2 be complete, base point free and simple linear series of dimension at least 2 on
a curve C. Then dim|L1 + · · · + Lk−2 + g1k | ≥ dim|L1 + · · · + Lk−2| + k − 1.

Proof Let E = P1+· · ·+ Pk be a general divisor in g1k ; in particular, these points Pj ofC are
pairwise different. Since Li (i = 1, ..., k − 2) is base point free and simple of dimension at
least 2 the series |Li−Pi | is base point free; hencewe can take Fi ∈ |Li−Pi | such that Pj is not
contained in the support of Fi , for all i = 1, ..., k−2 and j = 1, ..., k. Since |L1+· · ·+Lk−2|
is base point free the complete series |F1+· · ·+Fk−2+E | = |L1+· · ·+Lk−2+ Pk−1+ Pk |
can only have Pk−1 or Pk as base points; but since the g1k is base point free the subpencil
F1+· · ·+Fk−2+g1k in |F1+· · ·+Fk−2+E | has base points only in the support of the divisor
F1+· · ·+Fk−2 which does not contain Pk−1 or Pk . Hence |L1+· · ·+Lk−2+Pk−1+Pk | is base
point free which implies that dim|L1+· · ·+Lk−2+ Pk−1+ Pk | ≥ dim|L1+· · ·+Lk−2|+1.

Assume that we have already shown that dim|L1 + · · · + Lk−2 + Pk−i + Pk−i+1 + · · · +
Pk−1 + Pk | ≥ dim|L1 + · · · + Lk−2| + i for some integer i with 1 ≤ i ≤ k − 2.

The series |L1 + · · · + Lk−2 + Pk−i−1 + Pk−i + · · · + Pk−1 + Pk | = |(F1 + P1) + · · · +
(Fk−i−2+Pk−i−2)+Lk−i−1+· · ·+Lk−2+ Pk−i−1+Pk−i +· · ·+Pk−1+Pk | = |F1+· · ·+
Fk−i−2+Lk−i−1+· · ·+Lk−2+E | contains the subseries F1+· · ·+Fk−i−2+Lk−i−1+· · ·+
Lk−2 + g1k for which Pk−i−1 is not a base point since the series Lk−i−1 + · · ·+ Lk−2 + g1k is
base point free and Pk−i−1 is not in the support of the divisor F1+· · · Fk−i−2. Consequently,
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Pk−i−1 is not a base point of |L1 + · · · + Lk−2 + Pk−i−1 + Pk−i + · · · + Pk−1 + Pk |, and so
we have dim|L1+· · ·+ Lk−2+ Pk−i−1+ Pk−i +· · ·+ Pk−1+ Pk | ≥ dim|L1+· · ·+ Lk−2+
Pk−i +· · ·+Pk−1+Pk |+1 ≥ (dim|L1+· · ·+Lk−2|+i)+1 = dim|L1+· · ·+Lk−2|+i+1.


�
In our situation this Lemma has a remarkable consequence.

Theorem 5.3 For C ⊂ Xe of gonality k ≥ 4 the set We = We(g1k ) is an intrinsic notion (i.e.
does not depend on the specific Hirzebruch surface containing C).

Proof LetC ∼ kC0+ x f on X = Xe and (as before) � = |(C0+e f )|C | = |eg1k +C0|C |. Let
X ′ be another Hirzebruch surface containingC ; then X ′ has the same invariant e as X (by the
CC-formula), and the corresponding set W ′

e(g
1
k ) = {|�′ + ig1k | : i = 0, ..., e1} formed w.r.t.

X ′ is designed by the same gonality pencil g1k of C as for We(g1k ) (so �′ = |eg1k + C ′
0|C |).

Assume that � and �′ are different ge+1
x on C ; recall that x ≥ ke.

Let e > 0. Then � and �′ are base point free and simple of dimension at least 2. Applying
Lemma 5.2 we obtain dim|(k − 3)� + �′ + g1k | ≥ dim|(k − 3)� + �′| + k − 1. By the
Riemann-Roch theorem for C we thus have dim|KC − ((k − 3)� + �′ + g1k )| ≥ dim|KC −
((k − 3)� + �′)| − 1.

Let dim|KC − ((k−3)� +�′ + g1k )| = dim|KC − ((k−3)� +�′)|. Then |(k−3)� +�′|
is non-special, and so dim|(k−3)�+�′| = (k−2)x−g = (k−2)x−(k−1)(x−1− k

2e) =
(k−1) k2e+ (k−1)− x ≤ (k−1) k2e+ (k−1)− ke = (k−3) k2e+ k−1. But since we have
x ≥ (k − 2)e + 2 = (k − 3)dim(�)+ dim(�′) + 1 − (k − 3) and x ≥ e + 1 = dim(�′) the
hypotheses for applying [12], 4.2 are satisfied, and so we conclude that dim|(k−3)�+�′| ≥(

(k−3)(k−2)
2 (e+1)− (k−4)(k−3)

2

)+ (e+1)+ (k−3)(e+1) = (k−2)(k−1)
2 (e+1)− (k−4)(k−3)

2 .
Thus we obtain the contradiction k − 4 + e ≤ 0.

Let dim|KC − ((k − 3)� +�′ + g1k )| = dim|KC − ((k − 3)� +�′)|− 1. Then, according
to [14], Lemma 1.8 the base point free part of |KC − ((k − 3)� + �′)| is m · g1k with m =
dim|KC − ((k −3)� +�′)| ≥ 0, and we obtain 2 g−2− (k−2)x = deg(KC − ((k−3)� +
�′)) ≥ m · k = k(g − 1 − (k − 2)x + dim|(k − 3)� + �′|) whence dim|(k − 3)� + �′| ≤
k−2
k ((k − 1)x − g + 1) = (k − 2)(1+ k−1

2 e). But by the inequality obtained above by [12],
4.2 it follows that k ≤ 3, a contradiction.

Let e = 0. Then we have g = (k − 1)(x − 1), and �, �′ are two (by assumption different)
base point free pencils of degree x ≥ k. Let L := |� + g1k | and L ′ := |�′ + g1k |; then these
series (in W0(g1k ) resp. W

′
0(g

1
k )) are two different very ample webs of degree x + k. Using

thesewebswe proceed as in the case e > 0. ByLemma 5.2we have dim|(k−3)L+L ′+g1k | ≥
dim|(k−3)L+L ′|+k−1. Since x ≥ k we can apply [12], 4.2 and obtain dim|(k−3)L+L ′| ≥
(3 (k−3)(k−2)

2 − (k−4)(k−3)
2 )+ 3+ 3(k − 3) = k2 − k − 3. If |(k − 3)L + L ′| is non-special we

have dim|(k−3)L+L ′| = (k−2)(x+k)−g = (k−2)(x+k)−(k−1)(x−1) = k2−k−1−x
which leads to the contradiction x ≤ 2. If |(k−3)L+L ′| is special then (again by [14], Lemma
1.8) |KC −((k−3)L+L ′)| = m ·g1k +F withm = dim|KC −((k−3)L+L ′)| ≥ 0 and some
effective divisor F of C whence 2 g − 2− (k − 2)(x + k) = deg(KC − ((k − 3)L + L ′)) ≥
k(g−1−(k−2)(x+k)+dim|(k−3)L+L ′|)which implies that dim|(k−3)L+L ′| ≤ (k−2)k;
then (k − 2)k ≥ dim|(k − 3)L + L ′| ≥ k2 − k − 3, and we obtain the contradiction k ≤ 3.

After all, we see that �′ = � and, then, W ′
e(g

1
k ) = We(g1k ). 
�

Remark (i) If C is a Castelnuovo curve the claim of Theorem 5.3 is just a consequence of
Proposition 4.2 since a curve cannot havemore than one extremal series of a fixed degree.

(ii) Our last two results Lemma 5.2 and Theorem 5.3 generalize the last part of the proof of
the main result (Theorem 3.1) of [9] (cf. Claim 2 etc. there). Moreover, [9] contains a
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natural interpretation of We for k = 4, based on the description of complete and very
ample series on quadrigonal curves.

(iii) The proof of Theorem 5.3 shows not only the uniqueness of � but, e.g. for e > 0,
more generally that a complete, base point free and simple ge+1

x on C is unique, and
|ge+1

x − eg1k | 	= ∅.
(iv) At least if the gonality of C ⊂ Xe is a prime number the series � is of maximal index

of speciality among all complete and base point free linear series on C which are not
compounded of a fixed gonality pencil g1k of C . In fact, let grd be complete and base point
free onC . Then, according to theRemark in Sect. 3 of [15], d ≤ ek−1+r implies for prime
k that grd = rg1k , and d ≤ ek−1+r just means h1(grd) > h1(�) since ek−1 = e1+(k−2)e
(cf. Section1), i.e. ek−1 = x − 2 − e = x − h0(�) = g − 1 − h1(�).

Corollary 5.4 A curve C of gonality k ≥ 4 which is not a smooth plane curve can have only
finitely many complete and very ample linear series moving C into a rational normal surface
scroll.

Proof We observed in Remark (ii) in Sect. 3 that such a series grd (thus satisfying dim|grd −
g1k | = r − 2) is of form |� + ig1k | for some integer i with 0 ≤ i ≤ e1 + 1, and C ⊂ X
has only one gonality pencil g1k unless C is a smooth plane curve (which has infinitely many
gonality pencils, but this case is excluded here) or a curve of type (k, k) on a smooth quadric
in P

3 (in which case it has exactly two gonality pencils); cf. [2]. Hence our claim follows
from Theorem 5.3. 
�

In generalization of Corollary 5.1 we now have

Corollary 5.5 The curves C of fixed gonality k ≥ 3 and fixed genus g 	= (k−1)k
2 lying on

Hirzebruch surfaces constitute a locus of codimension k−3
k−1g in Mg(k).

Proof We may assume that k ≥ 4. There is a complete and very ample linear series grd
on C ⊂ X embedding C in a rational normal scroll S in P

r . Since, according to Remark
(i) in Sect. 3, C is not a smooth plane curve we have r ≥ 3, and by Corollary 5.4 there
are only finitely many (in fact, at most two) such grd on C . We write C ∼ kH + β f
(as in the proof of Proposition 4.2) where the curve H on X corresponds to a hyperplane
section of S. Then, within the Hilbert scheme Id,g,r of integral and non-degenerate curves
of arithmetic genus g and degree d in P

r , C belongs to the locus Ik,β made up by such
curves in |kH + β f | on some scroll of degree r − 1 in P

r , and according to [13], p. 91/92
we have dim(Ik,β) = (h0(X ,C) − 1) + dim(space of rational normal surface scrolls in
P
r ) = ( k(k+1)

2 (r − 1) + (k + 1)(β + 1) − 1
) + ((r − 1)(r + 3) − 3) = ( k(k+1)

2 + r +
3
)
(r − 1) + (k + 1)(β + 1) − 4. (If g is sufficiently near to Castelnuovo’s genus bound

π(d, r) then Ik,β is an irreducible component of Id,g,r ; cf. [13], 3.13–3.16.) Observing that
g = (k−1)k

2 (r − 1) + (k − 1)(β − 1) [13, p. 91] it follows that C depends on dim(Ik,β)–

dim(PGLr+1(C)) = dim(Ik,β) − ((r + 1)2 − 1) = k(k+1)
2 (r − 1) + (k + 1)(β + 1) − 7 =

(k + 1)
( k
2 (r − 1)+ β − 1

) + 2k − 5 = (k + 1) g
k−1 + 2k − 5 = (2 g + 2k − 5) − k−3

k−1g =
dim(Mg(k)) − k−3

k−1g moduli. 
�
To clarify the deviation in the number of moduli observed for a smooth plane curve C

(though C lies on a Hirzebruch surface) we add the

Remark By blowing up P
2 at a point P0 ∈ C a smooth plane curve C of degree d ≥ 5 lies

on X1 with class (k + 1)(C0 + f )−C0 = kC0 + (k + 1) f (k = gon(C) = d − 1), and if we
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embed X1 via H ∼ C0 +2 f as a smooth cubic scroll in P
4 then |H |C | is a very ample g42k+1.

(Note that |H |C | = |(C0 + 2 f )|C | = |(C0 + f )|C + f |C | = |g2d + g1k | = |� + g1k | /∈ W1

with g1k := | f |C | = |(C0 + f )|C − C0|C | = |g2d − P0|, and that already |(C0 + 3 f )|C | =
|g2d + 2g1k | = |3g2d − 2P0| has dimension 7 > 6 = dim|C0 + 3 f |.)

Conversely, any k-gonal smooth, irreducibe and non-degenerate curve of degree 2k+1 in
P
4 which lies on a cubic scroll S is isomorphic to a smooth plane curve of degree d = k + 1

since it has genus g = (k − 1)((2k + 1) − 1 − 1
2k(4 − 1)) = (k−1)k

2 ([10], Lemma 3.1, and
Remark (i) in Sect. 3), and S cannot be a cone (otherwise the projection off its vertex gives
a contradiction); thus S is smooth, i.e. S ∼= X1.

As in the proof of Corollary 5.5, we can compute the number of moduli ofC , by using here
our series g42k+1 = |2g2d − P0|. But then we have to take into account that for a smooth plane
curve C of degree d the one-dimensional varietyW 4

2k+1 = {|2g2d − P| : P ∈ C} = g2d +W 1
k

entirely consists of very ample series each moving C into a smooth cubic scroll in P
4. Thus

our total freedom of choice for the point P0 ∈ C blown up to obtain C ⊂ X1 gives rise to a
violation of the claim of Corollary 5.4, and this explains the different outcome in the number
of moduli in this special case.
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