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Abstract
Patients with cancer have a higher risk of venous thromboembolism (VTE), including deep vein thrombosis (DVT) and 
pulmonary embolism (PE), compared to the general population. Cancer-associated thrombosis (CAT) is a thrombotic event 
that occurs as a complication of cancer or cancer therapy. Major factors determining VTE risk in cancer patients include not 
only treatment history and patient characteristics, but also cancer type and site. Cancer types can be broadly divided into 
three groups based on VTE risk: high risk (pancreatic, ovarian, brain, stomach, gynecologic, and hematologic), intermediate 
risk (colon and lung), and low risk (breast and prostate). This implies that the mechanism of VTE differs between cancer 
types and that specific VTE pathways may exist for different cancer types. This review summarizes the specific pathways 
that contribute to VTE in cancer patients, with a particular focus on leukocytosis, neutrophil extracellular traps (NETs), 
tissue factor (TF), thrombocytosis, podoplanin (PDPN), plasminogen activator inhibitor-1 (PAI-1), the intrinsic coagulation 
pathway, and von Willebrand factor (VWF).
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Introduction

Patients with cancer have a fourfold to ninefold increased 
risk of venous thromboembolism (VTE), including deep 
vein thrombosis (DVT) and pulmonary embolism (PE), 
compared to the general population [1–6]. Cancer therapy 
is also associated with VTE and molecularly targeted cancer 
drugs which increase the risk of atrial thromboembolism 
(ATE) [7]. These thrombotic events, which occur as 
complications of cancer, are known as cancer-associated 
thrombosis (CAT). Of the first VTE events, 2–30% are 
cancer-associated, and VTE is the second leading cause 
of death in patients with cancer [2, 8]. Mortality in cancer 
patients with VTE is twofold higher than that in patients 
without VTE [4, 9].

Anticoagulation with low-molecular-weight heparin 
(LMWH), vitamin K antagonists, and direct oral anticoagu-
lants (DOACs) targeting factor X may effectively prevent 

VTE in cancer patients with a high VTE risk. However, the 
risk of anticoagulant-related bleeding is not negligible [6, 
10, 11]. Recently, the utility of DOACs (edoxaban, rivaroxa-
ban, and apixaban) for VTE prophylaxis in cancer patients 
was investigated in large-scale clinical trials (trial names: 
Hokusai VTE Cancer, Select-D, and CARAVAGGIO) 
[12–14]. The performance of each drug was assessed and 
compared to that of LWMH. The VTE rate was lower in the 
rivaroxaban group than in the LWMH group. Edoxaban and 
apixaban also demonstrated prophylactic efficacy similar to 
that of LWMH. However, bleeding events were observed at 
the same rate (apixaban) or at a higher rate (edoxaban and 
rivaroxaban) compared to the LWMH group. Developing 
safer anticoagulant drugs, such as factor XI inhibitors [15], 
which exert effective anticoagulant activity without exacer-
bating the bleeding risk, is highly anticipated.

Several risk assessment scores have been developed to 
predict VTE in patients with cancer. The Khorana Score 
was developed in 2008 [16], and it was calculated based 
on cancer type, platelet count, hemoglobin levels, leuko-
cyte count, and body mass index to stratify cancer patients 
receiving chemotherapy according to their VTE risk. 
According to their score, patients were classified into low 
(0.3–0.8%; score 0), intermediate (1.8–2.0%; score 1–2), 
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and high (6.7–7.1%; score  > 3) VTE risk groups. Based on 
the Khorana Score, several modified scoring systems, such 
as the Vienna [17], PROTECHT [18], CONKO [19], and 
ONKOTEC scores [20], have been developed. Most stud-
ies assessing the utility of these scores have clarified that 
each score can be applied to certain types of cancer but 
not universally. The establishment of cancer-type-specific 
scoring systems based on specific biomarkers or character-
istics may be needed for a more precise prediction of VTE.

In addition to treatment approaches and patient 
characteristics, cancer type and site have been regarded 
as major factors determining the risk of VTE in cancer 
patients. Cancer types can be broadly divided into 
three groups based on the VTE risk: high (pancreatic, 
ovarian, brain, stomach, gynecologic, and hematologic 
such as lymphoma and myeloma), intermediate (colon 
and lung), and low (breast and prostate) [21–26]. In the 
Khorana Score, stomach and pancreatic cancer were 
classified as high-risk malignancies. This implies that 
the mechanism of VTE differs between cancer types and 
that there may be cancer-type-specific VTE pathways. 
To characterize these pathways, several clinical studies 
have been performed in which various putative circulating 
biomarkers used to identify patients at a high risk of VTE 
were comprehensively measured.

In this review, the pathways proposed to contribute 
to VTE in cancer patients, that is, “the pathogenesis 

of CAT,” are summarized, focusing on leukocytosis, 
neutrophil extracellular traps (NETs), tissue factor (TF), 
thrombocytosis, podoplanin (PDPN), plasminogen activator 
inhibitor-1 (PAI-1), the intrinsic coagulation pathway, and 
von Willebrand factor (VWF).

Leukocytosis

Leukocytosis is observed in 14–30% of patients with can-
cer [27–29], while a high white blood cell count before 
chemotherapy (> 11 ×  109/L) is a risk factor for VTE in 
the Khorana Score [16]. Among different types of cancer, 
leukocytosis is frequently observed in lung and colorectal 
cancer [27–29]. Leukocytosis has been associated with 
an increased risk of VTE in patients with cancer in sev-
eral studies [16, 30, 31], which indicates the presence of 
a leukocyte-mediated pathway of thrombosis in this popu-
lation (Fig. 1). Neutrophils and monocytes are considered 
responsible for leukocytosis-mediated VTE. Specifically, it 
has been postulated that neutrophils enhance thrombosis for-
mation by generating neutrophil extracellular traps (NETs) 
[32], whereas monocytes express the procoagulant protein 
tissue factor (TF), resulting in the initiation of coagulation 
[33]. It was recently clarified that eosinophils also contribute 
to thrombosis through eosinophil extracellular traps (EETs) 
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Fig. 1  Suggested pathways of leucocytes-mediated cancer-associated 
VTE. Tumors stimulate neutrophils and generated neutrophil extra-
cellular traps (NETs) enhance thrombosis formation. Tumors induce 
tissue factor (TF) expression on monocytes, and TF expressed on 
monocytes or released as extracellular vesicles (EVs) initiate blood 

coagulation leading to thrombosis formation. Certain types of cancer 
such as pancreatic cancer strongly express TF on the tumor cells and 
directly trigger blood coagulation. Eosinophils may also contribute to 
thrombosis formation through eosinophil extracellular traps (EETs) in 
certain types of cancer
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[34] and that eosinophils may be involved in VTE in certain 
types of cancer.

Neutrophil extracellular traps (NETs)

NETs are released from activated neutrophils and are 
composed of extracellular chromatin fibers and antimicrobial 
proteins [32]. Although NETs help neutrophils kill bacteria 
and play an important role in the innate immune response, 
it was recently elucidated that they also trigger thrombosis 
by capturing circulating platelets and extracellular vesicles 
(EVs) [35–37]. NET formation and release are enhanced by 
various substances such as G-CSF [38]. Among the various 
biomarkers of NETs formation, citrullinated histone H3 
(H3Cit) and H3Cit-DNA complexes are considered superior 
in terms of accuracy [39]. These biomarkers are increased 
in cancer patients compared with healthy controls [40–45]. 
Furthermore, a correlation between NETs formation 
biomarkers and thrombotic events has been shown in 
patients with cancer, especially pancreatic and lung cancer 
[46–48]. Additionally, NETs have been detected in thrombi 
of patients [41]. These findings suggest that NETs facilitate 
thrombosis in cancer patients and that their inhibition may 
be a treatment option for VTE prophylaxis in cancer patients 
with leukocytosis.

Tissue factor (TF)

TF is a glycoprotein receptor for factor VII (FVII) and 
activates FVII (FVIIa). The TF/FVIIa complex initiates the 
extrinsic coagulation pathway [49]. High TF expression has 
been observed in various types of cancer, such as pancreatic 
cancer, head and neck cancer, lung cancer, cervical cancer, 
prostate cancer, glioma, and leukemia [50–52]. Among these 
malignancies, association with VTE has been well studied in 
pancreatic cancer. Pancreatic cancer cells generally express 
high levels of TF, and their expression level correlates with 
histological grade [53]. TF expression level in pancreatic 
tumors correlates with VTE incidence [53]. Additionally, 
TF expressed in cancer cells can be released as extracellular 
vesicles (TF + EVs) [54–56], and plasma TF + EVs levels 
have been associated with VTE in pancreatic cancer in 
many studies [57–61]. These findings suggest that TF + EVs 
released from tumor cells into the circulation enhance 
thrombosis. Furthermore, TF + EV levels correlate with 
mortality in pancreatic cancer, thus addressing a potential 
biomarker for VTE onset and pancreatic cancer severity 
[59, 60]. Plasma TF + EVs levels are also increased in other 
types of cancer, including brain, lung, gastric, and breast 
cancer [59, 62, 63]. However, pancreatic cancer exhibits the 
highest levels of TF + EVs among various types of cancer 

[59]. Plasma TF + EVs can be measured using antigen-based 
assays, such as ELISA and flow cytometry, or activity-based 
assays. The procoagulant activity of TF + EVs can be more 
precisely evaluated using activity-based assays in which the 
extent of TF-dependent factor Xa generation is calculated 
using an anti-TF antibody [58, 62, 64, 65].

Thrombocytosis

Thrombocytosis, an increase in platelets in peripheral blood, 
is observed in cancer patients, especially in ovarian, breast, 
gastrointestinal, and lung cancer [66]. Although platelets 
play a role in arterial thrombosis, they also contribute to 
venous thrombus formation in cancer patients (Fig. 2) [67, 
68]. Increased platelet count is associated with an increased 
incidence of VTE in cancer patients [68–71]. Thrombocyto-
sis before chemotherapy (> 350 ×  109/L) is a risk factor for 
VTE, according to the Khorana Score [16]. The mechanism 
of thrombocytosis in patients with cancer remains to be fully 
elucidated. Nevertheless, one study using mouse models of 
ovarian cancer suggested that tumor-derived IL-6 stimulates 
hepatic thrombopoietin synthesis, leading to platelet pro-
duction [72]. Additionally, IL-6 levels and thrombocytosis 
were independent predictors of VTE in patients with ovar-
ian clear cell carcinoma [73]. Several biomarkers of plate-
let activation, including soluble P-selectin, soluble CD40 
ligand, thrombospondin 1, and platelet factor 4 (PF4), have 
been shown to increase in cancer patients [68]. However, few 
reports have demonstrated an association between these bio-
markers and VTE incidence [74, 75]. One study found that 
increased serum PF4 levels are associated with a higher risk 
of VTE in pancreatic cancer [76]. Another study found that 
cancer patients with increased levels of soluble P-selectin 
exhibited a high rate of VTE [77]. Since it is expressed by 
endothelial cells and platelets, P-selectin expressed by both 
types of cells could enhance VTE by recruiting leukocytes. 
These findings suggest that antiplatelet drugs such as aspi-
rin and clopidogrel may be useful for VTE prophylaxis in 
patients with certain types of cancer [50, 68, 78].

Podoplanin (PDPN)

PDPN is a transmembrane glycoprotein that binds the 
C-type lectin-like receptor 2 (CLEC-2) on platelets, 
leading to platelet aggregation [79]. PDPN is expressed by 
various types of cells, such as tumor cells, inflammatory 
macrophages, and cancer-associated fibroblasts, thereby 
contributing to cancer progression and metastasis [80, 81]. 
The association between PDPN expression in cancer cells 
and VTE has been extensively investigated in gliomas. A 
human glioblastoma cell line expressing PDPN induces 
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platelet aggregation in a CLEC-2-dependent manner [82]. 
PDPN expression is inversely correlated with survival rate 
of glioma patients [83]. Notably, PDPN protein expression 
level in tumor cells is associated with low platelet count and 
risk of VTE in glioma patients [84, 85]. These findings imply 
that PDPN induces platelet aggregation and consumption, 
resulting in a low platelet count concomitantly with VTE in 
patients with glioma. Since PDPN is released from cells in 
the form of EVs [86], it may induce platelet aggregation not 
only in cancer cells but also in the circulation.

Plasminogen activator inhibitor‑1 (PAI‑1)

PAI-1 is a serine protease inhibitor that inhibits plasminogen 
activators, including tissue plasminogen activator (tPA) and 
urokinase-type plasminogen activator (uPA), thereby reduc-
ing the generation of plasmin, resulting in hypofibrinoly-
sis [87]. PAI-1 is primarily produced by endothelial cells. 
Plasma levels of PAI-1 are increased by endothelial injury, 
such as acute/chronic inflammatory diseases, and elevated 
levels of PAI-1 are associated with thrombosis [87, 88]. 
Patients with VTE demonstrate higher levels of active PAI-1 
than controls [89]. Plasma PAI-1 levels are increased in dif-
ferent malignancies, such as melanoma, colorectal cancer, 
breast cancer, and pancreatic cancer [90–93]. Hisada et al. 
recently reported that high plasma PAI-1 activity is asso-
ciated with VTE in patients with pancreatic cancer [94]. 

These results suggest that elevated levels of PAI-1 may con-
tribute to VTE in patients with cancer and that drugs that 
inhibit PAI-1 function may be effective for VTE prophylaxis 
(Fig. 3). It is also important to clarify the origin of increased 
PAI-1 (tumor or host endothelium) and investigate the effect 
of PAI-1 inhibition on the tumor microenvironment [95].

Intrinsic coagulation pathway

In the intrinsic coagulation pathway, factor XII (FXII), 
activated by collagen, high-molecular-weight kininogen, 
and kallikrein, activates factor XI (FXI). Activated FXI 
further activates factor IX (FIX) and converts factor X 
(FX) to its active form in the presence of activated factor 
VIII (FVIIIa). Plasma levels of substances that can acti-
vate FXII, such as cell-free DNA, are increased in can-
cer patients. Cell-free DNA increases in cancer patients 
and tumor-bearing mice [38, 96–98]. Nickel et al. have 
reported that prostate cancer cells and secreted prostas-
omes expose long-chain polyphosphates on their surface 
and initiate coagulation in an FXII-dependent manner 
(Fig. 4) [99]. In this report, the deficiency of FXI, FXII, 
or high-molecular-weight kininogen but not plasma kal-
likrein protected mice from prostasome-induced throm-
bosis. Furthermore, targeting polyphosphate or factor 
XII ameliorates prostate cancer-driven thrombosis with-
out increasing bleeding. Suppression of the intrinsic 
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Fig. 2  Suggested pathways of platelet-mediated cancer-associated 
VTE. Tumor-derived interleukin-6 (IL-6) stimulated hepatic throm-
bopoietin (TPO) synthesis leading to platelet production and throm-
bosis formation. Certain types of tumors such as glioma express 

podoplanin (PDPN) and the released PDPN-positive extracellular 
vesicles (EVs) bind to C-type lectin-like receptor 2 (CLEC-2) on 
platelets, leading to platelet aggregation and thrombosis formation
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coagulation cascade may be useful for VTE prophylaxis 
in certain types of cancer. Drugs targeting FXII or FXI 
are especially attractive because decreases in the plasma 
levels of these factors are not associated with increased 
bleeding risk. Additionally, high plasma level of FVIII is 
a risk factor for VTE in patients with cancer [100–102]. 
Gathering large-scale epidemiological data regarding the 
incidence of cancer in patients with hemophilia A and 
conducting preclinical studies using FVIII-deficient mice 
with cancer may clarify the precise association between 
FVIII and cancer-associated VTE.

Von Willebrand factor (VWF)

VWF is a large multimeric glycoprotein that plays an 
essential role in primary hemostasis [103]. VWF mediates 
platelet adhesion to the subendothelial collagen matrix and 
platelet interactions under high-shear conditions. VWF is 
synthesized in endothelial cells and megakaryocytes and 
stored in large multimeric forms in the Weibel–Palade 
bodies (WPB) of endothelial cells and alpha granules of 
platelets [104]. Besides hemostasis, VWF plays an impor-
tant role in inflammation [105, 106]. Increased levels of 
plasma VWF have been documented in patients with can-
cer and are correlated with advanced cancer stage and poor 

Tumor VTE

PAI-1 Hypofibrinolysis

Hypercoagulation

Endothelial cells

Inflammation

Fig. 3  Suggested pathways of hypofibrinolysis-mediated cancer-asso-
ciated VTE. Tumor-derived plasminogen activator inhibitor-1 (PAI-1) 
inhibits plasminogen activators including tissue plasminogen activa-
tor (tPA) and urokinase-type plasminogen activator (uPA) and there-
fore reduces the generation of plasmin, resulting in hypofibrinolysis. 

This enhances clot strength leading to thrombosis formation. Tumor 
may enhance PAI-1 expressions of host endothelium via chronic 
inflammatory stimuli, leading to hypofibrinolysis

Tumor VTE
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Fig. 4  Suggested pathways of intrinsic coagulation pathway-mediated 
cancer-associated VTE. Certain types of cancer cells produce long-
chain polyphosphates which can activate factor XII (FXII). Activated 

FXII further activates factor XI (FXI) and triggers the intrinsic coag-
ulation pathway in the presence of activated factor VIII (FVIII), lead-
ing to thrombosis formation



500 K. Tatsumi 

prognosis [107, 108]. Additionally, high plasma VWF lev-
els are an independent risk factor for VTE in patients with 
cancer [109, 110]. Tumor cells can induce endothelial cells 
to release VWF; certain tumor cells have the capacity for 
de novo expression of VWF, thereby increasing thrombotic 
tendency (Fig. 5).

VWF is also associated with severe bleeding in certain 
malignancies, known as acquired von Willebrand syndrome 
(AVWS). In AVWS, reduced VWF activity increases the 
bleeding tendency. The mechanisms of cancer-associated 
AVWS are heterogenous but ultimately result in increased 
VWF clearance from plasma and decreased VWF levels 
(Fig. 5) [111]. Cancer is a major underlying cause of AVWS, 
and most AVWS cases occur in patients with hematological 
malignancies [112, 113]. Lymphoproliferative disorders 
are the most common causes of AVWS, accounting for 
approximately 50% of all AVWS cases [112]. VWF plays 
different roles depending on the type of cancer, and the use 
of chemotherapeutic drugs may compromise its regulation. 
A better understanding of the role of VWF in cancer will 
enhance the development of novel strategies for cancer 
treatment and VTE prophylaxis.

Conclusions

Multiple pathways leading to VTE in cancer patients have 
been postulated, and these pathways seem to differ between 
cancer types. Additionally, patient characteristics and 
chemotherapy may further modify coagulation status. The 
development of reliable, cancer-type-specific biomarkers for 
VTE prediction and evidence-based safe anticoagulants that 
confer a low risk of bleeding is necessary for the optimal 
management of cancer-associated thrombosis.
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