Skip to main content

Advertisement

Log in

Potential role of Howell−Jolly bodies in identifying functional hyposplenism: a prospective single-institute study

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Although patients with cancer and immunosuppression are at a risk of functional hyposplenism, how to detect it promptly remains unclear. Since hyposplenism allows erythrocytes with nuclear remnants (Howell−Jolly bodies [HJBs]) to appear in the peripheral blood, HJB detection by a routine microscopic examination may help identify patients with functional hyposplenism. This prospective study was thus performed to determine the underlying diseases in patients who presented with HJBs. Of 100 consecutive patients presenting with HJBs, 73 had a history of splenectomy. The remaining 27 had hematologic cancer (n = 6, 22%), non-hematologic cancer (n = 8, 30%), hepatic disorders (n = 4, 15%), premature neonates (n = 3, 11%), hemolytic anemia (n = 2, 7%), autoimmune disorders (n = 2, 7%) and miscellaneous diseases (n = 2, 7%), and their prior treatments included chemotherapy (n = 8, 30%), steroids (n = 7, 26%) and molecular-targeted therapy (n = 3, 11%). Among the 27 patients, 22 had computed tomography scans available: 3 (14%) had underlying diseases in the spleen, and the remaining 19 (86%) were all found to have a decreased splenic volume, including 11 (50%) with more than 50% of the ideal value. The present findings suggest that HJB detection identifies patients with potentially functional hyposplenism who should receive appropriate interventional treatment, such as vaccination and prophylactic antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dameshek W. Hyposplenism. JAMA. 1955;157(7):613. https://doi.org/10.1001/jama.1955.02950240051023.

    Article  Google Scholar 

  2. Pearson HA, Spencer RP, Cornelius EA. Functional asplenia in sickle-cell anemia. N Engl J Med. 1969;281(17):923–6. https://doi.org/10.1056/NEJM196910232811703.

    Article  CAS  PubMed  Google Scholar 

  3. Kirkineska L, Perifanis V, Vasiliadis T. Functional hyposplenism. Hippokratia. 2014;18(1):7–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Sabatino A, Carsetti R, Corazza GR. Post-splenectomy and hyposplenic states. Lancet. 2011;378(9785):86–97. https://doi.org/10.1016/S0140-6736(10)61493-6.

    Article  PubMed  Google Scholar 

  5. de Porto AP, Lammers AJ, Bennink RJ, ten Berge IJ, Speelman P, Hoekstra JB. Assessment of splenic function. Eur J Clin Microbiol Infect Dis. 2010;29(12):1465–73. https://doi.org/10.1007/s10096-010-1049-1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. William BM, Corazza GR. Hyposplenism: a comprehensive review. Part I basic concepts and causes. Hematology. 2007;12(1):1–13. https://doi.org/10.1080/10245330600938422.

    Article  PubMed  Google Scholar 

  7. Sumaraju V, Smith LG. Smith SM (2001) Infectious complications in asplenic hosts. Infect Dis Clin North Am. 2001;15(2):551–65. https://doi.org/10.1016/s0891-5520(05)70159-8.

    Article  CAS  PubMed  Google Scholar 

  8. Johnston SD, Robinson J. Fatal pneumococcal septicaemia in a coeliac patient. Eur J Gastroenterol Hepatol. 1998;10(4):353–4. https://doi.org/10.1097/00042737-199804000-00014.

    Article  CAS  PubMed  Google Scholar 

  9. Rubin LG, Schaffner W. Clinical practice. Care of the asplenic patient. N Engl J Med. 2014;371(4):349–56. https://doi.org/10.1056/nejmcp1314291.

    Article  PubMed  Google Scholar 

  10. Corazza GR, Ginaldi L, Zoli G, Frisoni M, Lalli G, Gasbarrini G, et al. Howell-Jolly body counting as a measure of splenic function. A reassessment. Clin Lab Haematol. 1990;12(3):269–75. https://doi.org/10.1111/j.1365-2257.1990.tb00037.x.

    Article  CAS  PubMed  Google Scholar 

  11. Corazza GR, Tarozzi C, Vaira D, Frisoni M, Gasbarrini G. Return of splenic function after splenectomy: how much tissue is needed? Br Med J (Clin Res Ed). 1984;289(6449):861–4. https://doi.org/10.1136/bmj.289.6449.861.

    Article  CAS  Google Scholar 

  12. Sugawara Y, Hayashi Y, Shigemasa Y, Abe Y, Ohgushi I, Ueno E, et al. Molecular biosensing mechanisms in the spleen for the removal of aged and damaged red cells from the blood circulation. Sensors (Basel). 2010;10(8):7099–121. https://doi.org/10.3390/s100807099.

    Article  CAS  Google Scholar 

  13. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606–16. https://doi.org/10.1038/nri1669.

    Article  CAS  PubMed  Google Scholar 

  14. Inaba T, Ohama A. Prominent increase of Pappenheimer body-containing erythrocytes in a patient with hypoplastic spleen (IJHM-D-18-00279R2). Int J Hematol. 2018;108(4):351–2. https://doi.org/10.1007/s12185-018-2512-5.

    Article  PubMed  Google Scholar 

  15. Sills RH. Splenic function: physiology and splenic hypofunction. Crit Rev Oncol Hematol. 1987;7(1):1–36. https://doi.org/10.1016/s1040-8428(87)80012-4.

    Article  CAS  PubMed  Google Scholar 

  16. Geraghty EM, Boone JM, McGahan JP, Jain K. Normal organ volume assessment from abdominal CT. Abdom Imaging. 2004;29(4):482–90. https://doi.org/10.1007/s00261-003-0139-2.

    Article  CAS  PubMed  Google Scholar 

  17. Harris A, Kamishima T, Hao HY, Kato F, Omatsu T, Onodera Y, et al. Splenic volume measurements on computed tomography utilizing automatically contouring software and its relationship with age, gender, and anthropometric parameters. Eur J Radiol. 2010;75(1):e97–101. https://doi.org/10.1016/j.ejrad.2009.08.013.

    Article  PubMed  Google Scholar 

  18. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8. https://doi.org/10.1038/bmt.2012.244.

    Article  CAS  Google Scholar 

  19. Ong SY, Ng HJ. Howell-Jolly bodies in systemic amyloidosis. Int J Hematol. 2018;108(2):119–20. https://doi.org/10.1007/s12185-018-2473-8.

    Article  PubMed  Google Scholar 

  20. Boyko WJ, Pratt R, Wass H. Functional hyposplenism, a diagnostic clue in amyloidosis. Report of six cases. Am J Clin Pathol. 1982;77(6):745–8. https://doi.org/10.1093/ajcp/77.6.745.

    Article  CAS  PubMed  Google Scholar 

  21. Cummins KD, Westall GP, Grigoriadis G. Numerous Howell-Jolly bodies in a patient with idiopathic splenic calcification. Br J Haematol. 2015;169(6):767. https://doi.org/10.1111/bjh.13454.

    Article  PubMed  Google Scholar 

  22. Picardi M, Selleri C, Rotoli B. Spleen sizing by ultrasound scan and risk of pneumococcal infection in patients with chronic GVHD: preliminary observations. Bone Marrow Transpl. 1999;24(2):173–7. https://doi.org/10.1038/sj.bmt.1701861.

    Article  CAS  Google Scholar 

  23. Matsubayashi H, Uesaka K, Kanemoto H, Aramaki T, Nakaya Y, Kakushima N, et al. Reduction of splenic volume by steroid therapy in cases with autoimmune pancreatitis. J Gastroenterol. 2013;48(8):942–50. https://doi.org/10.1007/s00535-012-0692-y.

    Article  CAS  PubMed  Google Scholar 

  24. Mbanwi AN, Wang C, Geddes K, Philpott DJ, Watts TH. Irreversible splenic atrophy following chronic LCMV infection is associated with compromised immunity in mice. Eur J Immunol. 2017;47(1):94–106. https://doi.org/10.1002/eji.201646666.

    Article  CAS  PubMed  Google Scholar 

  25. Cerezo-Wallis D, Soengas MS. Understanding Tumor-Antigen Presentation in the New Era of Cancer Immunotherapy. Curr Pharm Des. 2016;22(41):6234–50. https://doi.org/10.2174/1381612822666160826111041.

    Article  CAS  PubMed  Google Scholar 

  26. Burns E, Anand K, Acosta G, Irani M, Chung B, Maiti A, et al. Autosplenectomy in a patient with paroxysmal nocturnal hemoglobinuria (PNH). Case Rep Hematol. 2019;2019:3146965. https://doi.org/10.1155/2019/3146965.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nores M, Phillips EH, Morgenstern L, Hiatt JR. The clinical spectrum of splenic infarction. Am Surg. 1998;64(2):182–8.

    CAS  PubMed  Google Scholar 

  28. Cull E, Stein BL. Splenic infarction, warm autoimmune hemolytic anemia and antiphospholipid antibodies in a patient with infectious mononucleosis. Int J Hematol. 2012;95(5):573–6. https://doi.org/10.1007/s12185-012-1047-4.

    Article  PubMed  Google Scholar 

  29. Shubha H, Vivek T. A study of hundred adults cases presenting with normoblastemia. Int J Clin Diagn Pathol. 2019;2:8–13.

    Article  Google Scholar 

  30. Muller AF, Toghill PJ. Splenic function in alcoholic liver disease. Gut. 1992;33(10):1386–9. https://doi.org/10.1136/gut.33.10.1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corazza GR, Addolorato G, Biagi F, Caputo F, Castelli E, Stefanini GF, et al. Splenic function and alcohol addiction. Alcohol Clin Exp Res. 1997;21(2):197–200.

    Article  CAS  Google Scholar 

  32. Satapathy SK, Narayan S, Varma N, Dhiman RK, Varma S, Chawla Y. Hyposplenism in alcoholic cirrhosis, facts or artifacts? A comparative analysis with non-alcoholic cirrhosis and extrahepatic portal venous obstruction. J Gastroenterol Hepatol. 2001;16(9):1038–43. https://doi.org/10.1046/j.1440-1746.2001.02567.x.

    Article  CAS  PubMed  Google Scholar 

  33. Watzl B, Watson RR. Role of alcohol abuse in nutritional immunosuppression. J Nutr. 1992;122(3 Suppl):733–7. https://doi.org/10.1093/jn/122.suppl_3.733.

    Article  CAS  PubMed  Google Scholar 

  34. Saad AJ, Jerrells TR. Flow cytometric and immunohistochemical evaluation of ethanol-induced changes in splenic and thymic lymphoid cell populations. Alcohol Clin Exp Res. 1991;15(5):796–803. https://doi.org/10.1111/j.1530-0277.1991.tb00603.x.

    Article  CAS  PubMed  Google Scholar 

  35. Stockman JA 3rd, Oski FA. Erythrocytes of the human neonate. Curr Top Hematol. 1978;1:193–232.

    CAS  PubMed  Google Scholar 

  36. Holroyde CP, Oski FA, Gardner FH. The “pocked” erythrocyte. Red-cell surface alterations in reticuloendothelial immaturity of the neonate. N Engl J Med. 1969;281(10):516–20. https://doi.org/10.1056/nejm196909042811002.

    Article  CAS  PubMed  Google Scholar 

  37. Davies JM, Lewis MP, Wimperis J, Rafi I, Ladhani S, Bolton-Maggs PH, et al. Review of guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen: prepared on behalf of the British Committee for Standards in Haematology by a working party of the Haemato-Oncology task force. Br J Haematol. 2011;155(3):308–17. https://doi.org/10.1111/j.1365-2141.2011.08843.x.

    Article  CAS  PubMed  Google Scholar 

  38. Uchino K, Ato F, Yamada S, Matsumura S, Kanasugi J, Nakamura A, et al. Emergence of Howell-Jolly bodies in a patient with splenic hypoplasia complicated by fulminant pneumococcal infection. Rinsho Ketsueki. 2020;61(4):318–21. https://doi.org/10.11406/rinketsu.61.318.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of the members of Department of Clinical Laboratory, Aichi Medical University Hospital for performing routine microscopic examinations and all of the medical staff of Aichi Medical University Hospital who provided valuable assistance in caring for the patients in this study.

Funding

This study was supported by Grants from the Ministry of Education, Culture, Sports and Technology of Japan (#18K08343), the Ministry of Health, Labour and Welfare of Japan, and Sysmex Corporation. The funders played no role in the study design, data collection and analysis, the decision to publish or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AT designed the study and acquired funding. YN collected data in cooperation with ME under the supervision of TN and HT HO and KS evaluated computed tomography scans of the spleen. SM, HY and IH were involved in the management of patients. AT and YN performed the statistical analysis and wrote the paper.

Corresponding author

Correspondence to Akiyoshi Takami.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

Explanation of novelty

We capitalized on the fact that Howell-Jolly bodies (HJBs) can be detected by routine clinical microscopy due to hyposplenism, as discovered by Dr. Dameshek, the founder of Blood, when 100 consecutive HJB-positive patients were analyzed, all of whom had underlying splenic diseases or a reduced splenic volume suggestive of functional hyposplenism, except for splenectomized cases. This study is this first to show that the HJB detection can easily and promptly screen patients with potential functional hyposplenism at risk of serious infections, and its usefulness should be recognized again.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagami, Y., Uchino, K., Okada, H. et al. Potential role of Howell−Jolly bodies in identifying functional hyposplenism: a prospective single-institute study. Int J Hematol 112, 544–552 (2020). https://doi.org/10.1007/s12185-020-02925-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02925-7

Keywords

Navigation