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Introduction

Hematopoietic stem cell transplantation (HSCT) is a critical 
procedure in the successful treatment of many blood dis-
orders and malignancies including leukaemia, lymphoma 
and myeloma [1–4]. Over 68,000 HSCT are performed 
each year worldwide, with mobilized peripheral blood (PB) 
being the predominant source of HSC for both autologous 
and allogeneic transplants [5]. Recombinant granulocyte 
colony stimulating factor (G-CSF; filgrastim/lenograstim) 
is the most common mobilization agent and is administered 
daily for up to 6 days, either alone or in conjunction with 
chemotherapy (Reviewed in [6]). Alternatively, use of the 
PEGylated variant of G-CSF (Pegfilgrastim), which has a 
significantly longer half-life, eliminates the need for daily 
dosing (Reviewed in [7]). An important factor that predicts 
the success of long-term hematopoietic reconstitution is 
the number of CD34+ hematopoietic stem and progenitor 
cells (HSPC) in the graft. The minimum collection thresh-
old required for transplantation is 2 × 106 CD34+ per kg 
body weight, although graft doses >5 × 106 CD34+ per kg 
are associated with faster recovery (Reviewed in [8]). Nev-
ertheless, despite G-CSF administration, approximately 
5–30% of patients fail to reach this minimum thresh-
old [9, 10] and as a consequence leads to significantly 
increased costs associated with greater resource utilization 
such as mobilization agents and antibiotics, transfusion 
and apheresis procedures as well as hospitalization times 
[11]. In recent times, novel strategies specifically target-
ing the interactions within the BM stem cell niche have 
been developed, such as the small molecule AMD3100 
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(plerixafor/Mozobil®), which is a selective CXCR4 antago-
nist [12–14]. Clinically, AMD3100 is not sufficiently effec-
tive when used alone and is currently only indicated for 
“rescue mobilization” in combination with G-CSF, when 
G-CSF alone has failed to mobilize the minimum threshold 
of CD34+ cells. Consequently, the development of novel, 
rapid and more effective mobilization agents as alternatives 
to current strategies remains an area of growing interest. 
This review describes the different classes of HSC mobi-
lization agents that are currently in clinical and pre-clinical 
development and their potential influence on traditional 
mobilization strategies.

Inhibitors of the CXCR4/SDF‑1α axis

HSC express the chemokine receptor CXCR4 and are in part 
retained in BM through the interaction with stromal-derived 
factor-1α (SDF-1α), a secreted chemokine synthesized 
by several cell types including osteoblasts, nestin-positive 

(Nes+) mesenchymal stromal cells (MSC), CXCL12 abun-
dant reticular (CAR) cells, endothelial cells and leptin 
receptor-positive (Lepr+) perivascular cells (Reviewed in 
[15–17]). The CXCR4/SDF-1α axis is the most well-studied 
target for HSC mobilization [18, 19] and many inhibitors/
modulators that perturb this interaction have been reported to 
mobilize HSC in animal models and humans. The canonical 
CXCR4 antagonist, AMD3100 (Fig. 1), is a small molecule 
bicyclam drug that is currently used in combination with 
G-CSF for clinical HSC mobilization in patients with NHL 
and multiple myeloma (MM) who have previously failed to 
mobilize with G-CSF alone [20–23]. Originally developed 
as an anti-HIV drug (Reviewed in [24]), AMD3100 remains 
the only CXCR4 antagonist approved by the Food and Drugs 
Administration (FDA). Since the adoption of the first-in 
class AMD3100 for clinical HSC mobilization, several other 
diverse classes of CXCR4 antagonists have been identified 
that are currently in various stages of clinical and pre-clinical 
development for HSC mobilization as well as anti-cancer 
and anti-HIV applications.

Fig. 1  Chemical structures of AMD3100 and other CXCR4 antagonists in clinical development for HSC mobilization
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Currently, there are several promising CXCR4 antago-
nists that are in advanced clinical development, including 
POL6326, TG-0054, BKT-140 and LY2510924 (Fig. 1). 
POL6326 is a macrocyclic peptide that has been demon-
strated to be efficacious in mice and humans when used 
as a monotherapy [25–27] and has been the subject of sev-
eral clinical studies (Table 1). POL6326 was found to be 
well tolerated when given as an intravenous infusion over 
2 h, with maximum mobilization observed after approxi-
mately 6–8 h [28]. These promising studies concluded that 
the minimum threshold of CD34+ cells could be achieved 
with a single apheresis after only one dose of POL6326 and 
may be beneficial to patients and donors with contraindi-
cations to G-CSF. Interestingly, there are no reports on the 
effects of POL6326 in combination with G-CSF despite 
extensive reports of CXCR4 antagonists capable of syner-
gistically augmenting HSC mobilization when used with 
G-CSF. Unlike POL6326, the small molecule CXCR4 
inhibitor TG-0054 (Burixafor) [29] and the cyclic peptide 

BKT-140 [30] have been tested with G-CSF and shown 
to synergistically augment HSC mobilization when given 
as a single dose after a standard course of G-CSF, results 
which were corroborated in human volunteers and patients 
with haematological malignancies [31–34]. Other promis-
ing CXCR4 antagonists in development for HSC mobili-
zation include the cyclic peptide LY2510924 [35–37] and 
the small molecule ALT-1188 [38]. Notably, ALT-1188 has 
been shown to effectively mobilize murine HSPC when 
given as a single dose and synergistically when used in 
combination with G-CSF [38]. Impressively, ALT-1188 
plus G-CSF mobilized significantly more HSPC than 
G-CSF plus AMD3100, suggesting ALT-1188 could sig-
nificantly improve current mobilization strategies [38]. 
However, the efficacy in human HSC mobilization remains 
to be determined. Together, these promising studies high-
light POL6326, TG-0054, BKT-140 and ALT-1188 as rapid 
and effective mobilization agents that could replace G-CSF, 
and in the case of TG-0054, BKT-140 and ALT-1188, could 

Table 1  Summary of HSC mobilization agents tested in clinical studies

Agent Company Mechanism/target(s) Stage of development

POL6326 (balixafortide) Polyphor CXCR4 antagonist Phase I/II completed for HSC mobili-
zation (NCT01841476)

Phase II completed for acute myocar-
dial infarction (NCT01905475)

Ongoing Phase I for metastatic breast 
cancer (NCT01837095)

TG-0054 (burixafor) TaiGen Biotechnology CXCR4 antagonist Phase I/II completed (NCT01458288)
Phase I/II trials for 

AML(NCT01838395)

BKT140 (BL8040) Biokine Therapeutics and BioLine 
Rx

CXCR4 antagonist Phase I for mobilization 
(NCT01010880)

Phase II for AML. (NCT01838395)
Phase II for metastatic pancreatic 

cancer (NCT02826486)

NOX-A12 NOXXON Pharma Anti-SDF-1 Phase I completed
Phase II completed for MM 

(NCT01521533)
Phase II for relapsed CLL 

(NCT01486797)

Bortezomib Millennium Pharmaceuticals Proteasome inhibitor, downregulation 
of VLA4/VCAM-1 axis

In phase I clinical trial for MM
Clinical trial for mobilization in com-

bination with AMD3100

Groβ (SB-251353) GlaxoSmithKline CXCR2 agonist, induction of 
MMP-9 secretion

Phase II trial completed for HSC 
mobilization

PTH (teriparatide) Eli Lilly PTH receptor agonist, expansion of 
BM HSC

Phase I/II completed for HSC mobi-
lization

CDX-301 (rhFLT3L) Celldex FLT3 agonist Phase I clinical trial completed

LY2510924 Eli Lilly CXCR4 antagonist Phase I completed

Natalizumab Biogen VLA-4 antagonist Clinical study in MS patients

Meloxicam Boehringer Ingelheim Non-steroidal anti-inflammatory drug Phase II (NCT02003625)

Eltrombopag GlaxoSmithKline TPO receptor agonist Mobilization in MM (NCT01286675)

ALX-0651 Ablynx Anti-CXCR4
Nanobody

Phase I completed (NCT01374503)
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also be used to improve current G-CSF-based mobiliza-
tion strategies, which will be particularly beneficial in poor 
G-CSF mobilizers.

Novel modulators of CXCR4/SDF‑1

The successful development of inhibitors against CXCR4/
SDF-1 interactions based on small molecules, peptides 
and antibodies in clinical and pre-clinical studies for HSC 
mobilization (Reviewed in [39, 40]) has prompted the 
development of other classes of inhibitors with greater 
pharmacokinetic stability and superior in vivo efficacy. 
New structural classes of CXCR4/SDF-1 inhibitors may 
also assist in illuminating new mechanisms into HSC 
mobilization owing to the complexity of the CXCR4/
SDF-1 axis (Reviewed in [41]). An interesting new class of 
SDF-1 inhibitors is the “aptamer” or “Spiegelmer” family 
of drugs [42]. Spiegelmers are a class of artificial mirror-
image RNA oligonucleotide drugs constructed using non-
natural L-ribose units and have been of substantial clinical 
interest since the age-related macular degeneration aptamer 
drug Macugen® (Pfizer) was first approved by the FDA in 
2005 (Reviewed in [42, 43]. NOX-A12 (olaptesed pegol) 
is a PEGylated Spiegelmer that specifically targets SDF-1 
and has been shown to induce rapid mobilization of murine 
HSPC either alone or synergistically with G-CSF [44, 45]. 
In human trials, NOX-A12-induced mobilization resulted 
in significant numbers of human CD34+ cells that persisted 
in the blood for up to 4 days at the highest dose tested, 
which was attributed to its long plasma half-life (~38 h) 
[45]. The sustained mobilization of CD34+ cells may be 
desired to allow time for collection via apheresis but also 
drew speculation to its potential benefits towards chemo-
sensitization of haematological cancers (Table 1) [43, 45, 
46]. Should NOX-A12 perform favourably in clinical stud-
ies, it may open doors for the development of other target-
specific Spiegelmer drugs for HSC mobilization.

Another interesting new class of drugs are the single-
domain antibodies or “nanobodies”, which unlike conven-
tional antibodies, are antigen specific, heavy-chain-only 
antibody fragments (Reviewed in [47]). Nanobodies have 
garnered significant interest as potential therapeutics owing 
to their ease of production as recombinant proteins, small 
size, high solubility, good thermal stability and good in vivo 
tissue penetration (Reviewed in [48]). The single-domain 
CXCR4-specific nanobody referred to as “L8” mobilized 
equivalent numbers of CD34+ cells in Cynomolgus monkeys 
and with similar kinetics to AMD3100 [49]. L8 is a biva-
lent nanobody constructed by coupling two llama-derived 
monovalent nanobodies designated 238D2 and 238D4 with 
a short 20 amino acid peptide linker, which results in signifi-
cantly increased affinity to CXCR4 [49]. However, while a 

phase I clinical trial assessing the bivalent nanobody (now 
ALX-0651) was initiated in healthy volunteers, the trial has 
been abandoned for undisclosed reasons. In a separate study, 
fully human shark antibody-mimicking protein scaffolds 
termed “i-bodies” that target CXCR4 were found to inhibit 
HIV infection, cell migration and leukocyte recruitment but 
did not mobilize HSPC in either mice or humanized xeno-
graft mouse models [50]. Similar to CXCR4 i-bodies, anti-
CXCR4- and anti-SDF-1-blocking antibodies also fail to 
mobilize HSC [51] and support the notion that direct inhi-
bition of CXCR4/SDF-1 chemotaxis by CXCR4 antagonists 
is only partially responsible for HSC mobilization and likely 
requires perturbation of CXCR4-dependent downstream 
signalling (Reviewed in [52]). Indeed, additional mecha-
nisms for AMD3100-mediated HSC mobilization has been 
attributed to ROS signalling and CXCR4-dependent SDF-1 
release [53] as well as AMD3100-induced reduction of BM 
vascular integrity and increased vascular permeability [54]. 
As such, complete understanding of the detailed downstream 
effects that are mediated by CXCR4 inhibition will aid in 
improving future developments of HSC mobilization agents 
based on CXCR4 antagonists.

Up until recently, all described CXCR4 antagonists are 
from non-natural origins. In 2015, a naturally occurring 
16-mer amino acid peptide fragment derived from human 
serum albumin termed “EPI-X4” (LVRYTKKVPQVST-
PTL) was discovered and revealed to be a potent CXCR4 
antagonist and rapid mobilizer of murine HSPC [55, 56]. 
EPI-X4 is produced from the abundantly present serum 
albumin precursor through enzymatic digestion by the 
aspartyl proteases Cathepsin D and E [55]. Intriguingly, 
while all the prerequisites for the generation of EPI-X4 
are ubiquitously available throughout the body, its pres-
ence and endogenous regulatory role, if any, on native 
BM HSC remains to be determined. Nevertheless, EPI-X4 
has been demonstrated to reduce basal CXCR4 signalling 
activity and, therefore, also behaves as an inverse ago-
nist, suggesting endogenous CXCR4 signalling may not 
be restricted to SDF-1 [55]. Of note, G-CSF induces HSC 
mobilization through dynamic changes in the BM microen-
vironment mediated in part by secretion of the proteolytic 
enzymes cathepsin K or cathepsin G, which are produced 
by osteoclasts and neutrophils, respectively [51, 57, 58]. 
Thus, whether G-CSF can modulate the release of cathep-
sin D and E, which subsequently produce EPI-X4 within 
BM or whether EPI-X4 is involved in the complex cascade 
of events that follow G-CSF mobilization is not known. 
Furthermore, EPI-X4 has a very short plasma half-life of 
~17 min, which may limit its utilization as a therapeutic. 
However, the identification of several synthetic derivatives, 
specifically the dimeric derivative designated “WSC02” 
((IVRWSKKVPCVS)×2) has been shown to possess 
superior plasma stability compared to EPI-X4 peptide and 
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exhibited enhanced suppression of HSC migration towards 
SDF-1 [55]. These promising preliminary studies featuring 
EPI-X4 and its more stable synthetic derivatives warrant 
further investigation in their therapeutic potential [59].

Cytokines, growth factors and hormones

Although G-CSF and its related derivative, PEGylated 
G-CSF are the most common recombinant proteins used 
in clinical mobilization [60], other recombinant proteins 
based on cytokines, growth factors and hormones have sur-
faced as potential mobilization agents. Early studies and 
clinical trials using recombinant human stem cell factor 
(rhSCF; ancestim) [61, 62], which binds the c-kit receptor 
expressed by HSC, showed strong synergism with G-CSF 
and although approved in multiple countries, it has not 
been commonly utilized owing to adverse allergic reactions 
(Reviewed in [63]). Similarly, recombinant human throm-
bopoietin (rhTPO), which binds its receptor c-Mpl, has also 
been demonstrated to enhance G-CSF and chemotherapy-
induced mobilization [64, 65] but its clinical efficacy was 
not deemed sufficient for further development (Reviewed 
in [66]). Subsequent development of synthetic non-peptidic 
small molecule TPO receptor agonists identified the orally 
bioavailable thrombocytopenia drug eltrombopag (Fig. 3), 
which is currently undergoing clinical testing in combina-
tion with G-CSF for mobilization of patients with MM 
(Table 1). The CXC chemokine Gro-β and its truncated 
human recombinant analogue SB-251353 effectively and 
rapidly mobilize stem and progenitors when used alone or 
synergistically in combination with G-CSF in mice and rhe-
sus monkeys [67, 68]. HSC mobilization with Gro-β was 
found to be dependent on metalloproteinase-9 (MMP-9) and 
the collected PB HSC were shown to have enhanced homing 
and long-term reconstitution potential compared to G-CSF-
mobilized HSC [67, 68]. Nevertheless, the efficacy of Gro-β 
in human HSC mobilization remains to be determined.

Parathyroid hormone (PTH), the primary regulator of 
calcium homeostasis and bone remodelling, has also been 
shown to be critical in controlling HSC function via PTH 
receptor activation on osteoblasts [69]. Daily injections 
of PTH for 5 weeks followed by G-CSF treatment led to 
enhanced HSC mobilization compared to G-CSF alone 
[70]. PTH treatment alone does not mobilize, instead it 
promotes the expansion of BM HSC thereby increasing the 
number of HSC available to mobilize when using a stand-
ard mobilization regimen [70]. Furthermore, PTH treat-
ment also expands HSPC in transplant recipients and may 
be useful for improving BM recovery post-transplant [70]. 
However, due to lack of clinical efficacy there have been no 
further developments of PTH for HSC mobilization or for 
improving BM recovery post-transplant [71–73].

One of the more promising cytokines in clinical develop-
ment is the human recombinant FMS-like tyrosine kinase-3 
ligand (rhFLT3L) termed “CDX-301”. Pre-clinical studies 
in mice showed a daily course of CDX-301 over 10 con-
secutive days effectively mobilized murine HSPC when 
used alone or synergistically in combination with a single 
dose of AMD3100 [74]. Importantly, the combination of 
CDX-301 and AMD3100 mobilized significantly greater 
numbers of HSC compared to G-CSF plus AMD3100 
[74]. The transplant of blood mobilized using CDX-301 
plus AMD3100 into lethally ablated mice was also shown 
to be associated with a survival advantage [74]. Moreo-
ver, the CDX-301 plus AMD3100 combination effectively 
mobilized regulatory T cells (Treg), which may have pro-
tective effects against graft vs host disease (GvHD) after 
allogeneic transplantation (Reviewed in [75]). Indeed, 
transplantation of irradiated recipients with blood mobi-
lized with CDX-301, either alone or in combination with 
AMD3100 correlated with enhanced survival in an allo-
geneic transplant setting [74]. A subsequent phase 1 clini-
cal trial showed CDX-301 was well tolerated in healthy 
volunteers and the optimal mobilization of CD34+ cells 
occurred using a 10-day course, with all patients treated 
with this regimen achieving the minimum threshold of PB 
CD34+ cells for transplantation [76]. While CDX-301 did 
not produce significantly greater Treg numbers in the PB of 
patients, the study does raise important considerations as to 
whether accompanying immune cells such as Treg can effect 
transplant outcomes. In any case, these promising stud-
ies warrant further testing to determine whether CDX-301 
either alone or in combination with AMD3100 (or other 
CXCR4 antagonists) could be used as an effective alterna-
tive to G-CSF-dependent mobilization regimes. However, 
like G-CSF, the major drawback of CDX-301, particularly 
in healthy donors, is the unavoidable 5–10-day course of 
daily injections required to elicit optimal mobilization.

Integrin antagonists

HSC express several integrin subtypes that are known to 
modulate HSC function and retention in BM (Reviewed 
in [77]), with VLA-4 (α4) being the most well-established 
integrin target for mobilization. The integrin α4, which 
associates with both β1 and β7 subunits, mediates HSC 
retention via adhesion to niche-derived VCAM-1, fibronec-
tin and thrombin-cleaved osteopontin (tcOPN) (Reviewed 
in [77, 78]). Inhibition of α4 using the blocking antibody 
natalizumab, a drug currently used for the treatment of 
multiple sclerosis (MS) and Crohn’s disease, effectively 
mobilized murine and non-human primates when used 
alone or in combination with G-CSF or SCF [79]. Subse-
quent clinical studies in MS patients showed natalizumab 
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effectively mobilized CD34+ cells in humans [80, 81] but 
its association with development of the potentially fatal 
condition progressive multifocal leukoencephalopathy 
(PML) [82] has prevented its use in clinical mobilization. 
To address the issues associated with natalizumab-induced 
prolonged inhibition of VLA4, the highly potent and selec-
tive small molecule α4β1 antagonist BIO5192 (Fig. 2) was 
developed and shown to mobilize HSPC alone and in com-
bination with G-CSF and/or AMD3100 [83] without the 
sustained leukocytosis that can lead to PML [84]. Never-
theless, BIO5192 is not being pursued for clinical develop-
ment. However, similar studies using the orally bioavailable 
dual α4β1/α4β7 antagonist firategrast (SB-683699) (Fig. 2), 
which is currently in clinical development for treatment of 
MS, will be tested in due course for efficacy in HSC mobi-
lization in murine models [85].

In addition to α4β1, HSC express the related α9β1 inte-
grin, which also binds to VCAM-1 and tcOPN [86]. How-
ever, unlike α4β1 which is ubiquitously expressed by all 
leukocytes, the expression of α9β1 is largely restricted to 

HSPC and HSC [87]. A single dose of the dual α4β1/α9β1 
integrin antagonist “BOP” (Fig. 2) was shown to mobilize 
HSPC and HSC in a rapid and transient manner [87]. Of 
note, inhibition of α9β1 was identified to be important for 
HSC mobilization, while α4β1 was predominantly involved 
in WBC mobilization [87]. Using a fluorescent analogue 
of BOP termed “R-BC154” [88], human and murine HSC 
were found to bind BOP through endogenously primed/
activated integrins within the endosteal BM, the region 
near bone where HSC with superior homing potential and 
enhanced proliferative capacity reside [89]. These obser-
vations are consistent with the greater amount of divalent 
metal cations (Mn2+, Mg2+ and Ca2+) present near bone 
and the high dependency of integrin activity on these spe-
cific cations [87]. Small molecule integrin antagonists like 
BOP, which can take advantage of the enhanced integrin 
activity near the bone/BM interface to enable preferen-
tial targeting and mobilization of potent endosteal HSC 
may lead to grafts that benefit long-term transplant out-
comes. The integrin antagonists BIO5192, firategrast or 

Fig. 2  Chemical structures of promising experimental agents for HSC mobilization

Fig. 3  Chemical structures of repurposed drugs for HSC mobilization
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BOP may prove to be effective and rapid alternatives to 
G-CSF mobilization, especially when used in combination 
with AMD3100 or other CXCR4 antagonists described in 
this review. Furthermore, since these small molecule inte-
grin antagonists are expected to be used as a single-dose, 
short-acting, transient mobilization agent, they are unlikely 
to lead to the development of PML, although further long-
term safety studies are required.

Carbohydrates: polysaccharides, synthetic 
mimetics and nucleotide sugars

Several natural and synthetic polysaccharides have been 
shown to mobilize HSC, including sulfated polysaccharides 
such as fucoidan and sulfated colominic acid, betafectin, 
and modified glycosaminoglycans (Reviewed in [90]). A 
synthetic heparin sulphate mimetic termed “EP80031” has 
also been shown to mobilize potent long-term HSC when 
used alone or with G-CSF and/or AMD3100 [91]. Inter-
estingly, EP80031 is an octasaccharide that contains an 
alkyne-functionalized linker, making it amenable to Cu(I)-
catalysed “click chemistry” [92], and also possesses ben-
zyl ether-protecting groups, suggesting the hydroxyl func-
tionality of EP80031 is not required for biological activity 
(Fig. 2). In any case, the clinical development of EP80031 
or related compounds for mobilization can be complicated 
by the well-known challenges related to the scalable and 
economical production of pure and structurally defined oli-
gosaccharides in large quantities (Reviewed in [93]). How-
ever, with advancements in automated synthesis of oligo-
saccharides, such endeavours have become more feasible 
(Reviewed in [94]). Thus, this proof-of-concept study high-
lights the potential of synthetic oligosaccharide mimetics 
for therapeutic mobilization.

The natural nucleotide sugar uridine diphosphate glu-
cose (UDP-Glc), normally involved in metabolism and 
a precursor to glycogen synthesis, was recently shown 
to selectively mobilize HSC when used alone or in com-
bination with G-CSF [95]. Of note, sorted PB HSC from 
UDP-Glc-mobilized mice possessed superior long-term 
engraftment potential compared to phenotypically equiva-
lent HSC harvested from G-CSF-mobilized blood, which 
is consistent with previous reports indicating G-CSF-
mobilized HSC have reduced capacity to sustain long-
term hematopoiesis [87, 96]. Although UDP-Glc was not 
associated with any observable toxicity, high doses were 
required for effectiveness. Consequently, it has been spec-
ulated that the more potent analogue MRS 2690 (Fig. 2) 
[97] may elicit similar effects at lower doses and thus rep-
resents a better compound for clinical development. In any 
case, these encouraging results warrant further assessment 
into this class of compounds in efforts to identify more 

potent and effective derivatives that mobilize long-term 
repopulating HSC.

Repurposed drugs for mobilization

Repositioning or repurposing existing drugs for new indica-
tions has several advantages as the repurposed drug is faster 
and cheaper to develop and is less likely to fail in clinical 
trials due to toxicity [98]. Several existing drugs have been 
assessed for HSC mobilization including the anti-psychotic 
drug thioridazine (Fig. 3) [99], the thrombocytopenia drug 
eltrombopag, the osteoporosis drug teriparatide (rhPTH) 
and the MS drug natalizumab as described earlier. Borte-
zomib (Velcade®) (Fig. 3), a proteasome inhibitor used in 
the treatment of MM, has been reported to mobilize HSPC 
when used alone or in combination with either AMD3100 
or G-CSF in murine models [100] and has also undergone 
early clinical studies [101, 102]. In addition, the non-steroi-
dal anti-inflammatory drug (NSAID) meloxicam (Fig. 3), 
has also been shown to mobilize HSC and HSPC in mice, 
non-human primates and healthy human volunteers [103]. 
Furthermore, meloxicam-mobilized grafts lead to faster 
recovery of neutrophils and platelets in transplant recipi-
ents and suggest this regime would be highly beneficial to 
patients undergoing HSCT [103]. Based on these promis-
ing results, a clinical trial has been initiated to test meloxi-
cam with G-CSF in MM patients (Table 1) and should 
these trials prove successful, NSAID-induced HSC mobi-
lization with G-CSF would be a simple method for improv-
ing transplant outcomes, particularly because meloxicam is 
administered orally.

Novel mobilization agents from random screening

In most cases, the identification of potential mobiliza-
tion agents (e.g. CXCR4 antagonists, integrin antagonists, 
cytokines, etc.) is based on our existing understanding 
of interactions that regulate HSC function, maintenance 
and retention with the BM. An alternative strategy is the 
application of unbiased screening of compounds, which 
has the benefit of potentially unravelling new molecular 
targets and the discovery of new classes of biologically 
active compounds. While unbiased screening has proven 
successful in the identification of StemReginin 1 (SR1) 
for ex vivo expansion of human CD34+ cells [104], it is 
more difficult and costly for HSC mobilization applica-
tions as such phenotypic screens are dependent on in vivo 
assays. Nevertheless, the novel small molecule mobiliza-
tion agent Me6TREN (Fig. 2) was identified in a compound 
screen through phenotypic analysis of murine HSPC in PB 
of treated mice [105]. Further analysis showed Me6TREN 
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mobilizes more HSPC than AMD3100 or G-CSF, syner-
gizes with G-CSF and sustains HSPC levels in PB for up 
to 3 days after a single dose [105]. Although the direct tar-
get of Me6TREN was not elucidated, it is speculated the 
mechanism is distinct to AMD3100 based on their differ-
ing mobilization kinetics [105]. Nevertheless, Me6TREN-
induced mobilization was shown to occur through activa-
tion of MMP-9 and disruption of the CXCF4/SDF-1 axis, 
which are downstream effects that have also been attributed 
to AMD3100 [106]. While Me6TREN has yet to be tested 
in humans, its clinical development would see it used as 
either a single-agent replacement of G-CSF or for aug-
menting G-CSF mobilization for both autologous and allo-
geneic HSCT.

Summary

Since the approval of G-CSF and AMD3100 for HSC 
mobilization in PB HSCT, significant effort has been made 
to identify novel, rapid and effective mobilization agents as 
alternatives to G-CSF or for augmentation of current mobi-
lization regimes. Several candidates based on recombinant 

proteins, synthetic and endogenous peptides, small mol-
ecules and carbohydrates as well as more unique classes 
of agents such as Spiegelmers and nanobodies have been 
identified with promising therapeutic potential (Summa-
rized in Fig. 4). The diverse class of agents investigated so 
far provides opportunities to identify novel mechanisms 
that regulate HSC trafficking and mobilization. Indeed, it 
is appreciated that HSC mobilization is not only mediated 
by direct inhibition of adhesive HSC niche interactions but 
is also attributed to perturbation of signalling pathways, 
changes in BM vascular integrity and permeability and 
modulation of other niche constituents. Thus, identification 
of agents that can collectively influence these mechanisms 
may provide substantial improvements to existing HSC 
mobilization methods and subsequent transplant outcomes. 
In addition, current and future therapeutic development of 
HSC mobilization agents should also consider the entire 
“mobilized blood product”, which comprises other cell 
types in addition to HSC and progenitors when evaluating 
the success of a lead candidate. For example, in the allo-
geneic transplant setting, mobilization strategies that can 
provide enhanced HSPC yield in addition to balancing the 
numbers of accompanying effector T cells and regulatory 

Fig. 4  Summary of HSC 
mobilization agents and their 
therapeutic targets within the 
BM microenvironment. Inset 
figure legend refers to: a cellular 
components of the BM niche; b 
receptors; c extracellular matrix 
molecules and/or ligands; d 
mobilization agents



149New agents in HSC mobilization

1 3

T cells may lead to improved transplant outcomes through 
modulation of graft-versus-leukaemia or abrogation of 
graft-versus-host effects, respectively. Despite the recent 
advancements in HSC mobilization agents, no new drugs 
have been approved for use in this context since the clini-
cal adoption of AMD3100. However, with several candi-
dates in clinical development (Summarized in Table 1) and 
encouraging pre-clinical data from new agents and repur-
posed drugs, the outlook is promising.
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